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Abstract. We consider a coupled bulk-surface system of partial differential equations with
nonlinear coupling modeling receptor-ligand dynamics. The model arises as a simplification of a
mathematical model for the reaction between cell surface resident receptors and ligands present in
the extracellular medium. We prove the existence and uniqueness of solutions. We also consider a
number of biologically relevant asymptotic limits of the model. We prove convergence to limiting
problems which take the form of free boundary problems posed on the cell surface. We also report
on numerical simulations illustrating convergence to one of the limiting problems as well as the
spatiotemporal distributions of the receptors and ligands in a realistic geometry.
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1. Introduction. We start by outlining the mathematical model for receptor-
ligand dynamics whose analysis and asymptotic limits will be the main focus of this
work. Let I' be a smooth, compact closed n-dimensional hypersurface contained in
the interior of a simply connected domain D C R"*!', n = 1,2. The surface I'
separates the domain D into an interior domain I and an exterior domain . We
will denote by 0pf2 the outer boundary of €, i.e., the boundary dD. The vectors v
and vq denote the outward pointing unit normals to 2 on ' and 0yf2, respectively.
Figure 1 shows a cartoon sketch of the setup. We assume that the outer boundary
DoSY is Lipschitz. We consider the following problem: Find u: Q x [0,7) — RT and
w: T x [0,T) — R such that

(1.1a) 000y — Au =0 in Q x (0,7),
1
(1.1b) Vu-v= —5 U on T x (0,7),
k
(1.1c) u=wup or Vu-vg =0 on 9o x (0,7,
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F1ac. 1. A sketch of the cell membrane I' and the extracellular medium Q.

(1.1d) Oyw — opArw = Vu - v on T x (0,7),
(1.1e) u(-,0) = u°(") in Q,
(1.1f) w(-,0) = w(-) on I,

where dq, dr, §; > 0 are given model parameters and the initial data are bounded,
nonnegative functions, i.e., u’ € L>(Q), w® € L>(T), and u°,w® > 0. In the above
Ar denotes the Laplace—Beltrami operator on the surface I' and A the usual Cartesian
Laplacian in R™+1,

We will use either Dirichlet or Neumann boundary conditions on 0yf2. For the
Dirichlet case, we assume that the Dirichlet boundary data up are positive scalar
constants. Our analysis remains valid if we consider bounded positive functions for the
Dirichlet boundary data; we restrict the discussion to positive scalar boundary data
for the sake of simplicity. The restriction to nonnegative solutions is made since we
are interested in biological problems where u and w represent chemical concentrations
and hence are nonnegative.

Problem (1.1) may be regarded as a basic model for receptor-ligand dynamics in
cell biology, modeling the dynamics of mobile cell surface receptors reacting with a
mobile bulk ligand, which is a reduction of the model (2.1) presented in section 2.
Receptor-ligand interactions and the associated cascades of activation of signalling
molecules, so called signalling cascades, are the primary mechanisms by which cells
sense and respond to their environment. Such processes therefore constitute a funda-
mental part of many basic phenomena in cell biology such as proliferation, motility,
the maintenance of structure or form, adhesion, cellular signaling, etc. (Bongrand,
1999; Hynes, 1992; Locksley, Killeen, and Lenardo, 2001). Due to the complexity of
the biochemistry involved in signaling networks, an integrated approach combining
theoretical and computational mathematical studies with experimental and modeling
efforts appears necessary. Motivated by this need, in this work we focus on under-
standing a mathematical reduction of theoretical models for receptor-ligand dynamics
in cell biology consisting of a coupled system of bulk-surface partial differential equa-
tions (PDEs).
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A number of recent theoretical and computational studies of receptor-ligand in-
teractions (e.g., Marciniak-Czochra and Ptashnyk, 2008; Garcia-Peniarrubia, Gélvez,
and Gélvez, 2013), employ models which are similar in structure to those considered
in this work. Models with similar features arise in the modeling of signaling networks
coupling the dynamics of ligands within the cell (e.g., G-proteins) with those on the
cell surface (Levine and Rappel, 2005; Jilkine, Marée, and Edelstein-Keshet, 2007;
Mori, Jilkine, and Edelstein-Keshet, 2008; Ratz and Roger, 2012, 2014; Madzvamuse,
Chung, and Venkataraman, 2015; Bao, Fellner, and Latos, 2014; Morgan and Sharma,
2016). The ability of cells to create their own chemotactic gradients, i.e., to influence
the bulk ligand field, has been conjectured to play a crucial role in collective di-
rected migration, for example, during neural crest formation (McLennan et al., 2012,
2015a,b) and hence understanding such models is of much biological importance.

Through proving well-posedness results, this work gives a mathematically sound
foundation for the use and simulation of coupled bulk-surface models for receptor-
ligand dynamics. Moreover, we justify the consideration of various small parameter
asymptotic limits of such models, through nondimensionalization using experimentally
measured parameter values. We provide a rigorous derivation of the limiting problems
and discuss their well-posedness. We also discuss the numerical solution of the original
and limiting problems illustrating the asymptotic convergence together with robust
and efficient methods for their approximation. This work suggests that models for
receptor-ligand dynamics featuring fast reaction kinetics can be derived using classical
elements of free boundary methodology as components of the modeling.

While our focus is on receptor-ligand dynamics, problems of a similar structure
arise in fields such as ecology where one considers populations consisting of two or more
competing species (Holmes et al., 1994). Such a scenario can be modeled by so-called
spatial segregation models and the corresponding asymptotic limits have been the
subject of much mathematical study (e.g., Conti, Terracini, and Verzini, 2005; Crooks
et al., 2004; Dancer et al., 1999). Further details on the cell-biological motivation for
studying (1.1), together with the limits dq, dr, dx — 0, is given in section 2.

The main focus of this work is to show the system of PDEs (1.1) is well-posed
and so is meaningful from the mathematical perspective and, furthermore, to obtain
reduced models as limits of this system as we send the parameters dq,dr, and &k
to zero. Specifically, we establish existence and uniqueness of a solution to (1.1)
and show that in the limits 6 — 0, dg,dr > 0 fixed, o = §p — 0, o > 0 fixed,
0o = Or = 0 — 0, this solution to (1.1) converges to a solution of suitably defined
limit problems. Furthermore, in the latter two cases, r = 0 — 0 and dg = ér =
dr — 0, the uniqueness of the solution to the limit problems, respectively, constrained
parabolic and elliptic problems with dynamic boundary conditions, is also shown.
We then show that the limit problems with dynamic boundary conditions may be
reformulated as variational inequalities and briefly explore some connections with
classical free boundary problems. These reduced models in the form of free boundary
problems may be considered as models in their own right and offer simplifications
with respect to numerical computation.

That the fast reaction limit (d; — 0) leads to interesting free boundary problems
is because of the complementary nature of the resulting limit

u >0, w >0, uw =0 onI'.

Such limits have been considered for coupled systems of parabolic equations (posed
in the same domain) in a number of previous works (e.g., Evans, 1980; Bothe, 2001;
Bothe and Pierre, 2012) with the limiting problem corresponding to a Stefan problem
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(Hilhorst, Van Der Hout, and Peletier, 1996; Hilhorst et al., 2001; Hilhorst, Mimura,
and Schétzle, 2003). Here in this paper the main complication in the analysis is that
the species reside in different domains and the coupling is on the boundary of the
bulk domain which results in added technical complications in passing to the limit.

For the limit problems dr = d; = 0 and dr = dx = o = 0 with dynamic boundary
conditions, we obtain Stefan and Hele-Shaw-type problems on the hypersurface I with
a differential operator, which may be interpreted as a nonlocal fractional differential
operator, obtained by using the Dirichlet to Neumann map for the bulk parabolic and
elliptic operators. This leads to an interesting variational inequality reformulation in
the case of the limit bulk elliptic equation consisting of a boundary obstacle problem
that is satisfied by the integral in time of the solution. The approach follows that
employed for the reformulation of the one-phase Stefan problem and the Hele-Shaw
problem for which the transformed variable (integral in time of the solution) satis-
fies a parabolic (Duvaut, 1973) or elliptic (Elliott, 1980; Elliott and Janovsky, 1981)
variational inequality, respectively.

Problems related to those considered in this work have been the focus of recent
studies. For example, Morgan and Sharma (2016) consider coupled bulk-surface sys-
tems of parabolic equations with nonlinear coupling in which the surface resident
species are defined on the boundary of the bulk domain. They derive sufficient con-
ditions on the coupling to ensure global existence of classical solutions extending
the results of Pierre (2010) from the planar case to the coupled bulk-surface case.
Schimperna, Segatti, and Zelik (2013) consider the well-posedness of singular heat
equation with dynamic boundary conditions of reactive-diffusive type (i.e., including
the Laplace—Beltrami of the trace of the solution on the boundary). Bao, Fellner,
and Latos (2014) consider a reaction-diffusion equation in a bulk domain coupled
to a reaction-diffusion equation posed on the boundary. They prove existence and
uniqueness of a weak solution to the problem and establish exponential convergence
to equilibrium. Vézquez and Vitillaro (2008, 2009, 2011) study the well-posedness of
the Laplace and heat equations with dynamic boundary conditions of reactive and
reactive-diffusive type. The heat equation with nonlinear dynamic Neumann bound-
ary conditions which arises in problems of boundary heat control is considered by
Athanasopoulos and Caffarelli (2010). The authors prove continuity of the solution
and, furthermore, they extend their results to the case where the heat operator in the
interior is replaced with a fractional diffusion operator. Existence and uniqueness of
weak solutions to Hele-Shaw problems which are Stefan-type free boundary problems
with vanishing specific heat are considered by Crowley (1979). Elliptic equations with
nonsmooth nonlinear dynamic boundary conditions have been studied in a number
of applications. Aitchison, Lacey, and Shillor (1984) propose a simplified model for
an electropaint process that consists of an elliptic equation with nonlinear dynamic
boundary conditions involving the normal derivative. The authors formally derive
the steady state stationary problem which consists of a Signorini problem similar to
the elliptic variational inequality we derive in section 9. This problem is studied by
Caffarelli and Friedman (1985) where the authors prove that the steady state solution
(t — o0) of an implicit time discretization solves the Signorini problem proposed as
the formal limit by Aitchison, Lacey, and Shillor (1984). A similar problem, which
models percolation in gently sloping beaches, that consists of an elliptic equation vari-
ational inequality with dynamic boundary conditions involving the normal derivative
is proposed and analyzed by Aitchison, Elliott, and Ockendon (1983); Elliott and
Friedman (1985); Colli and Kenmochi (1987). Perthame, Quirés, and Vazquez (2014)
derive Hele-Shaw-type free boundary problems as limits of models for tumor growth.
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Finally we mention the work of Nochetto, Otérola, and Salgado (2015) who consider
the numerical approximation of obstacle problems, in particular, they prove optimal
convergence rates for the thin obstacle (Signorini) problem and prove quasi-optimal
convergence rates for the approximation of the obstacle problem for the fractional
Laplacian.

Our main results are stated in Theorems 4.2, 5.3, 6.3, and 7.3.

e In Theorem 4.2 we establish the existence of a unique, bounded solution to
(1.1).

e In Theorem 5.3 we present a rigorous derivation that in the limit 6 — 0,
dq,0r > 0 fixed, the solution to (1.1) converges to a solution of a system of
constrained coupled bulk-surface parabolic equations (cf., (5.1)).

e In Theorem 6.3 we present a rigorous derivation that in the limit ép = o — 0,
with dq > 0 fixed, the solution to (1.1) converges to the unique solution of
constrained parabolic problem with dynamic boundary condition (cf., (6.1)).

e In Theorem 7.3 we present a rigorous derivation that in the limit éq = ér =
0k — 0, the solution to (1.1) converges to the unique solution of constrained
elliptic problem with dynamic boundary condition (cf., (7.1)).

We conclude the paper by providing some numerical experiments employing a
coupled bulk-surface finite element method where we support numerically the the-
oretical convergence results to a limiting problem and investigate the resulting free
boundary problem on a surface.

2. Biological motivation. We now present a model for receptor-ligand dynam-
ics and justify, through nondimensionalization of the model using parameter values
previously measured in experimental studies, the simplifications and limiting problems
considered in this work.

We start with the following model, that corresponds to one of the models pre-
sented by Garcia-Penarrubia, Gélvez, and Gélvez (2013) if one neglects the terms
involving internalization of receptors and complexes. The reaction under considera-
tion is between mobile receptors that reside on the cell surface with ligands present in
the extracellular medium (the bulk region surrounding the cell). We assume a single
species of mobile surface (cell membrane) resident receptor whose concentration (sur-
face density) is denoted by ¢, and a single species of bulk resident diffusible ligand
whose concentration (bulk concentration) is denoted by c¢y,. The receptor and ligand
react reversibly on the surface to form a (surface resident, mobile) receptor-ligand
complex, whose concentration is denoted by c,;. The kinetic constants k., and kg
represent the forward and reverse reaction rates. Denoting by I' the cell surface and
by € the extracellular medium with outer boundary 9o (cf., Figure 1), we have in
mind models of the following form:

(2.1a) Oscr, — DpAcr, =0 in Q x (0,7),
(2.1b) DiVer - v = —konercr + kogCri onI'x (0,7),
(2.1c) c, =cp or DrVer -vg =0 on 92 x (0,7,
(2.1d) Oicy — D, Arc, = —koncrcr + kogCri on I x (0,7),
(2.1e) 0icry — DypjArcy; = konercr — kofCry on T x (0,7).

The model is closed by suitable (bounded, nonnegative) initial conditions. For the
outer boundary condition we take either a Dirichlet or a Neumann boundary condition.
The Dirichlet boundary condition, with ¢p > 0 a positive constant, arises under the
modeling assumption that the background concentration of ligands sufficiently far
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away from the cell is uniform. Alternatively, the Neumann boundary condition arises
from assuming zero flux across Jdy2.

2.1. Nondimensionalization and limit problems. We are interested in dif-
ferent limit problems arising from model (2.1) for ligand-receptor binding. To simplify
notation, we write the unknowns as v = ¢y, w = ¢,, and x = ¢,; and the parameters
Dq =Dy, Dr = D, = Dy, k = kon, k—1 = kog.

The first problem we consider is to find u: 2x[0,7) — Rand w, x: I'x[0,T) - R
such that

(2.2a) Oiu — DoAu =10 in Q x (0,7),
(2.2b) DoVu-v =—kuw+k_1x on ' x (0,7),
(2.2¢) uw=up or DoVu-vg =0 on 92 x (0,7,
(2.2d) Oyw — DrArw = DoVu - v onI' x (0,7,
(2.2e) Oyx — DrArx = —DqoVu -v onT'x (0,7),
(2.2f) u(-,0) = u°(") in Q,

(2.2¢) w(-,0) = w’(") onT,

(2.2h) x(-,0) =x°() on T

In order to determine the sizes of each coefficient, we take the following rescaling.
We set

f==xz/L, t=t/S, a=u/U ©=w/W, x=x/X,

where L is a length scale, S is a time scale, U,W. and X are typical concentrations
for w,w, and Y, respectively.
Applying the chain rule, this leads to a nondimensional form of (2.2):

(2.3a) 500:0 — Al = 0 in Q x (0,7),
1 . .
(2.3b) Vi v = — =i + 0 X on T x (0,7),
k
(2.3¢) @ =1p or Vii-vg =0 on 9o x (0,7),
(2.3d) Opib — dp A = pVii - v on I x (0,7),
(2.3¢) X — orAsX = — /' Vii - v on T x (0,7),
(2.3f) a(-,0) = a%(-) := u°(-)/U in Q,
(2.3g) w(-,0) = a@°() == w’(-) /W on T,
(2.3h) X(50)=x"() =x"()/X on I'.
Here we have six nondimensional coefficients:
5o L2 _ Dq _kalX o Dr§
27 DS T kLw' X DU N L2
_ DoSU ,  DoSU

w M T TIx

Taking values from Table 1, we infer that
b= (5.68)-S71, 6 =57-10"2, §, =87-1072
or=(1.8-107*s™1)- S, pu=(57-10"2%s"Y.85 4 =(57-10"%s"1)-5.
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TABLE 1
Parameters used for rescaling equations. The values for U and W are extreme values taken
from within a physical range from Garcia-Penarrubia, Gélvez, and Gélvez (2013).

Parameter Value Source

L 7.5-10"%m Garcfa-Pefiarrubia, Galvez, and Gélvez (2013)
U 1.0 - 1073 molm—3 Garcia-Pefiarrubia, Galvez, and Gélvez (2013)
w 2.3-10"8 molm—2 Garcia-Pefiarrubia, Galvez, and Gélvez (2013)
X 2.3-10"8 molm—2 Limited by total receptor concentration
Dq 1.0- 1071 m2s1 Linderman and Lauffenburger (1986)

Dr 1.0-107 15 m2s~1 Linderman and Lauffenburger (1986)

kon 1.0-103m3mol~'s~!  Garcia-Pefiarrubia, Galvez, and Gélvez (2013)
koft 5.0 -1073s~1 Garcia-Pefarrubia, Galvez, and Gélvez (2013)

First, we note that J,, < 1. Considering the limit §,, — 0 by dropping the terms
0y Xx decouples the equations for u,w, from the equation for x. This results in the
problem, which we have written in terms of the original variables:

(2.4a) O — 05 Au=0 in Q,
1

(2.4b) Vu-v= —5 U onI'x (0,7),
k

(2.4c) uw=up or Vu-vqg =0 on 0pf2,

(2.4d) Oyw — orArw = pVu - v on I,

(2.4e) u(-,0) = u’(") in Q,

(2.4f) w(-,0) = w’(") on I

This is the first problem we consider in section 4. Similar methods to those shown
in the remaining sections can be used to show well-posedness of the system (2.3)
and rigorously take the limit §,, — 0 for dx,dq,dr,u > 0 fixed. The existence and
uniqueness theory of (2.3) and the limit to obtain (2.4) in the more general case of
time dependent domains are considered by Alphonse, Elliott, and Terra (2016).

We see that 6 < 1. Again using the original variables, we consider the limit
problem: Find u: Q@ x [0,7) = R and w: I x [0,7) — R such that

(2.5a) O — 05 Au=0 in Q,
(2.5b) uw =0 on T,
(2.5¢) u=up or Vu-vg =0 on 0pf,
(2.5d) ow — éprArw = uVu - v on I
(2.5¢) u(-,0) = u’(") in Q,
(2.5f) w(-,0) = w’(") onT,

where g, dr, and p are positive parameters. We consider this problem as a large
ligand-receptor binding rate limit of (2.2). We consider the well posedness of the
problem and the justification of the limit in section 5.

We can consider different problems by choosing different timescales S. We can
achieve two different problems by resolving the timescale of the volumetric diffusion
(6q &~ 1) or the timescale of the surface adsorption flux (u = 1).

For S = L?/Dq = 5.6, we have

b =1, or=10-10%<1, p=32-10"'~1.
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This leads to a parabolic limit problem with dynamic boundary condition: Find
u: Q@ x[0,T) = Rand w: ' x [0,7) — R such that

(2.6a) O — 05 Au =0 in Q,
(2.6b) uw =10 on T,
(2.6¢) u=up on Jyf2,
(2.6d) Ow =Vu-v on T,
(2.6¢) u(+,0) = u°(") in Q,
(2.6f) w(-,0) = w’(") on I'.

In this case, we have resolved the timescale of the diffusion of ligand, but the effect
of the diffusion of surface bound receptor is lost. We consider the well-posedness of
this problem and the justification of the limit in section 6.

Alternatively, taking S = 10%s, we have

b =57-10"2« 1, or=18-10"2 <« 1, p=>57~1.

This leads to an elliptic problem with dynamic boundary condition: Find u: € x
[0,7) - R and w: T x [0,T) — R such that

(2.7a) —Au=0 in Q,
(2.7b) uw =0 on T
(2.7¢) u=up on 9pf2,
(2.7d) ow=Vu- v on I,
(2.7e) w(-,0) = w’(") on T

In this regime, we have chosen a timescale so that the diffusion of ligand has no
memory of its previous value, except via the boundary condition. This means this
problem no longer requires an initial condition for u to be a closed system. We do
not consider the exterior Neumann boundary condition in this case, since we arrive
at a trivial problem where the solution is v = 0 and w = wg. The well-posedness of
this problem and a rigorous justification of limit is given in section 7. We also show
in section 9 that we can reformulate problems (2.6) and (2.7) by integrating forwards
in time to derive variational inequalities.

Remark 2.1. In the large ligand-receptor binding rate limit, the nonlinear con-
straint (2.5b) (uw = 0) implies that the domain T' is separated into two regions, for
positive times, where u = 0 and where v > 0. In the region v > 0, we have a Neu-
mann boundary condition Vu -~ = 0. This can be interpreted that there is no flux of
ligand onto or off the surface in this region. In the region u = 0, we have a Dirichlet
boundary condition (u = 0). This can be interpreted that the ligand in this region is
perfectly (i.e., instantaneously) absorbed.

3. Preliminaries. In this section, we define some of our notation and collect
some technical results that will be used in the subsequent sections. We also prove
some compact embedding results in Lemmas 3.6, 3.7, and 3.8 that are used to deduce
strong convergence from weak convergence in suitable spaces.

Given a Hilbert space Y we denote the dual space of linear functionals on Y by
(V). As we consider functions defined on surfaces, along with the surface function
spaces L?(T") and H'(I"), we will also use the space H'/?(T") and its dual (H/?(T))’.
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For a Hilbert space Y, we consistently use the notation (-,-), to denote the duality
pairing between the space Y and its dual (V).

DEFINITION 3.1. The space H'/?(T) is defined by

(3.1) HY2(T) := {€ € LAD) £ I€ll rasaqry < +00}

where

(32) el = ( [ ans [ [EDZE0E o) do<y>>

The space can be characterized via the following result.

1
2

PROPOSITION 3.2 (trace theorem). The trace operator from H'(Q) to H'/?(T) is
bounded and surjective.

Proof. The result can be found in (Grisvard, 2011, Thm 1.5.1.3). d
We recall the following interpolated trace inequality.

PROPOSITION 3.3 (interpolated trace theorem). For all ¢ € H' () and for any
0>0

(3.3) ||¢||i2(r) <9 ||V¢||2Lz(g) t+cs H¢||2Lz(ﬂ) -

Proof. See, e.g., (Grisvard, 2011, Thm 1.5.1.10). d

Note that for ¢ € L?(T') and p € H/? (T") the following duality pairing is equal to
the L?(T) inner-product:

(3.4 &Py = [ € do

3.1. Compact embeddings. Since we are dealing with nonlinear problems, we
will need to use some compact embeddings of Bochner spaces.

We recall that if {f;} is a sequence of bounded functions in L?(0,T; B) with B
a Banach space, for 1 < p < oo, then there exists a subsequence {fx,} C {fi} and
f € L?(0,T; B) such that

(3.5) fr, =~ f  in LP(0,T;B).

Here we are interested to show under what conditions we may assert the existence of
a strongly convergent subsequence. The basic results we require are summarized by
Simon (1986).

LEMMA 3.4 (Aubin-Lions-Simons compactness theory (Simon, 1986)). Let {fx}
be a bounded sequence of functions in LP(0,T; B), where B is a Banach space and
1<p<oo. If

1. the sequence of functions {fr} is bounded in L*(0,T; X), where X is com-
pactly embedded in B,
2. and either
(a) the derivatives {0: fr.} are bounded in the space LP(0,T;Y"), where B C'Y
or
(b) for each k, the time translates of {fr} are such that

T—1
(3.6) /0 |fet+7) = fe@®)| dt =0 as 70,
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then there exists a subsequence {fy,} C {fr} and f € LP(0,T; X) such that

fr, = f in LP(0,T; X),

(8.7) fr, = f in LP(0,T;B).

Remark 3.5. Using the criterion 2(a), we see that if {nz} C L?(0,T; L?(Q2)) with
a constant C' > 0 such that

anHLZ(o,T;Hl(Q)) +||8t77kHL2 (O,T;<H1(Q))’ <C for all k,

then, there exists a subsequence, for which will use the same subscript {7}, and
n € L?(0,T; H'(2)) such that

ne —n in L*(0,T; H'(Q)),

(3.8) o )
ny —n  in L*(0,T; L*(Q)).

This follows from the compact embedding of H'(2) in L?(1).

However, we wish to recover strong convergence of a subsequence with less control
over the time derivatives. The generality of criterion 2(b) allows a more general weak
in time notion of solution to be used.

We will apply this result for sequences to derive strongly convergent subsequences
in L2(0,T; (H'/2(T))").

LEMMA 3.6. Let {4} be a bounded sequence in HY/?(T). Then there exists a
subsequence {&,} C {&} and &€ € HY*(T) such that

&, ~ & in HYA(T),

(3.9 &, — €& in LX(D).

Proof. For any p € H'/2(T"), we define an extension to , written Ep € H(Q),
as the unique solution of:

—A(Ep)=0 in €,
Ep=0 on Jy€2,
Ep=p on I

We note that for a constant independent of p, we have

1Ep iy < cllpllmzry -

This implies we have a sequence {F¢;} which is uniformly bounded in H'(Q):
There exists Cy > 0 such that

1EEk || 10y < Co-

From the compact embedding of H'(Q) into L?(f2), we know that there exists a
subsequence {&, } C {&} and € H*(Q2) such that

E&, = in L*(Q).
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Denote £ = n|r. Fix € > 0 and choose § < £/(4Cp). From the strong convergence
of {E; }, we know there exists K such that for j > K,

[ Bek, — nHL2(Q) < 2’

where ¢g is from Proposition 3.3. It follows that for j > K, we can infer by applying
the interpolated trace inequality (Proposition 3.3), with ¢ as above, that

kaj - 5HL2(F) < 5HEfkj - ’7||H1(Q) + C<5||E€kj - E§HL2(Q)

g2500+§g5.

Thus, we have shown the strong convergence of & to & in L?(T). O

LEMMA 3.7. Let {£;} be a bounded sequence in L*(T'). Then there exists a sub-
sequence {&k,} C {&} and & € L*(T) such that

&, =& in L*(T),

(3.10) /
&, — & in (HI/Q(I‘)) .

Proof. Since {&} is uniformly bounded in L?(T"), we know that it has a sub-
sequence {{;} which weakly converges to some § € L?(T"). We suppose, for con-
tradiction, that there exists no subsequence of {y,} that strongly converges to £ in
(H'/2(I"))’. This implies that there exists § > 0 such that

||€kj _fH(HUQ(F))/ > 0.

Using the definition of (H'/?(T"))" as the dual space to H'/?(T'), this implies there

exists a sequence {p,;} C H'/2(T) with HijHl/z(r) =1, such that for all j

1)
<§kj - fapj>H1/2(r) = /F(fkj —&p; do > 3

From Lemma 3.6, we know that a subsequence {p; } C {p;} converges strongly to
p € HY2(') in L*(T"). Hence, we can infer

| >

/(ﬁkj —&)p do >
r

However, this contradicts the supposition that &, converges weakly to £ in
L2(T). |

We conclude this section with a result which is similar in nature to the previous
results.

LEMMA 3.8. Let {nx} be a bounded sequence in L?(0,T;H(Q)) and n €
L2(0,T; HY(Q)) such that

(3.11) e — 1 in L*(0,T; L*(2)).
Then the trace sequence converges to the trace of the limit:

(3.12) Nelr — 1lr in L*(0,T; L*(I)).
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Proof. Denote by Cy > 0 the upper bound of {n;} and 1 in L?(0,T; H(Q)):

17kl 20,7581 2)) H M 20,7501 0y < Co-

Fix e > 0 and choose § < /(2Cp). Then from the convergence of {n;} in
L?(0,T; L?(Q)), there exists K such that for k > K,

13
e =1l 20,7200 < 5

where ¢; is from Proposition 3.3. It follows that for k¥ > K, we can infer by applying
the interpolated trace inequality (Proposition 3.3), with ¢ as above, that

16 =1l 20,7522 (ry) < Ollme = nll 20,7500 () + Collme = MMl 20,7 02(02))
<6Cy + % <e.

Thus, we have shown the strong convergence of n; to 1 in L%(0,T; L?(T)). d

4. Ligand-receptor model. In this section, we establish an existence and
uniqueness theory for (1.1). As described in section 2.1, (1.1) arises from (2.1) if
one neglects the receptor-ligand complexes, nondimensionalizes as in (2.3), and (for
simplicity) sets the surface interchange flux pu = 1.

In order to introduce the concept of a weak solution to (1.1), for v € R, we
introduce the Sobolev space

H;(Q) = {v € H' (Q)|v =~ on 9yQ},

where the boundary values are understood in the sense of traces and we adopt the
notation of using the same symbol for a function and its trace. We now introduce our
concept of a weak solution to (1.1).

DEFINITION 4.1 (weak solution of (1.1)). For the Dirichlet boundary data case,
we say that a pair (u,w) € L?(0,T; HeluD () x L20,T; HY(T')) with u,w > 0 and
with (Oyu, dyw) € L*(0,T; (HZ (Q))) x L*(0,T; (H'(I))") is a weak solution of (1.1)
if for all (n,p) € H. () x HX(T) and for a.e. t € (0,T)

1
(4.1a) 0 (O, M) i1 () +/ Vu-Vn dox = ——/uwn do,
co Q Ok Jr
1
(4.1b) (Ow, p) g1 (ry + 60 / Vrw - Vrp do = —— / uwp do.
r Ok Jr
In the case of Neumann boundary data, we say that a pair (u,w) € L*(0,T; H'())
L*(0,T; HY(T)) with uw,w > 0 and with (Qpu,dw) € L2(0,T,(H*(Q)))

L2(0,T; (HY(T"))") is a weak solution of (1.1) if for all (n,p) € HY(Q) x HY(T') and
for a.e. t € (0,7)

X
X

1
(4.2a) 60 (9w, m) g1 (@) +/ Vu-Vn de =—— / uwn do,
Q Ok Jr
1
(4.2b) (Ovw, p) i ry + 5p/ Vrw - Vrp do = —— / uwp do.
r Ok Jr

We note that if u € L2(0,7;H*(Q)) then by the trace theorem u &
L?(0,T; H/2(T")). We now show the well-posedness of problem (1.1) in the sense
of the following theorem.
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THEOREM 4.2 (existence and uniqueness of a bounded solution pair to (1.1)).
Given bounded, nonnegative initial data ug and wq, there exists a unique solution pair
(u,w) to the systems (4.1) and (4.2).  Furthermore, we have that in the case of
Dirichlet data

0 <wu(z,t) < max(|luop=(),up) for ae (x,t)€Qx(0,T),

4.3
(4.3) 0 <w(z,t) < |lwollLee(ry for a.e. (x,t) €T x (0,T),

or in the case of Neumann data

0 <u(z,t) < |lugllp=()y  for a.e (x,t) € 2x(0,T),

4.4
(44) 0 <w(x,t) < |lwol|lpery for a.e. (x,t) €T x (0,T).

Proof. In the interests of brevity we give the full details of the proof only in
the Dirichlet case. An analogous argument holds for the case of Neumann boundary
conditions.

We start by replacing w by M (w) in the nonlinear coupling terms, where M : R —
R™T is the cutoff function

0, r<o0,
(4.5) M(r)=<r, 0<r<M,
M, r>M

with M > |lwgl| e (ry. This leads us to consider the following problem. Find (u,w),
in the same spaces as Definition 4.1, that satisfy for all (n, p) € H} (€) x H*(T') and
for a.e. t € (0,7)

1
(4.6) da (Oru, M) g1 () +/ Vu-Vn de=—— / uM(w)n do,
0 Q ok Jr
1
A1) @wp + 0 [ Vew Vep do =~ [ udu)p do.
r r

As M(w) is bounded, existence for this problem with the cutoff nonlinearity can
be shown via a Galerkin method and standard energy arguments. We now show
positivity of the solutions to (4.6), (4.7): u,w > 0 a.e. in their domains and that the
trace of u > 0 on I' . Testing (4.6) with u_ = min(u,0) and using the fact that
M (w) > 0, we have
S0 d [ 2 gy [ | )2 do = —i/(u,fM(w) do < 0.
2 dt Jo Q Ok Jr
Since ug > 0, we have u > 0 a.e. in  x (0,7). Moreover, by the trace inequality,
applied to u_, we have that the trace of u is nonnegative. We next test (4.7) with
w_ = min(w, 0) to get

1d

—— [ (w_)? da+5r/|Vp(w_)|2 dU:fi uM(w)w- do =0,
2dt J; .

ok Jr

as M(w)w_ = 0 from the definition of M() (4.5). Since wg > 0, we see that w > 0
a.e. in T' x (0,7). We now show pointwise bounds. Let (u,w) be solutions of (4.6)
and (4.7) and set 6" = (w — [|wo|| £ (r)). The variable 6" satisfies

1
<5‘t9“’,p>H1(F) +5p/ V50" - Vrp do = f—/uwp do.
r ok Jr
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We test with p = (6%); > 0 and recall that when u,w > 0 then

1d
—— [ (69)? da+5p/ vy da—f—/uwew do <0.
2dt J;
This implies that 0% = 0 and hence w < ||wol| (). The same argument for u with

0" = (u — Inax(uD7 ||uHLN(Q)) so that 0% € H] , gives u < max(up, ||UHL<>0(Q))~ As
M was chosen such that M > |[wo| gy and w > 0, we have that M(w) = w, hence
we have constructed a solution to (4.1) which satisfies

(4.8) 0 <u < max(|luglleo,up) and 0 < w < ||wploo-

It remains to show that the solution is unique. To do this, we argue as follows.
Let (u1,wq) and (u2,w3) be two (weak) solutions of (4.1) . Defining €% := u; — u2
and e := w; — wy we have that e*,e® satisfy for all (n,p) € H} () x HY(I') and
for a.e. t € (0,7)

1
(4.9a) da <3t6“777>H; @ _|_/ Ve* - Vn dz = 5 /(u1w1 — ugws)n do,
0 Q r
1
(49b> <at€w,p>H1(F) do + / 5FVF€w . Vpp do = —5—k /(U1’LU1 - ’LL2IU2)P do.
r r

Let ¥ : R — R be a smooth convex function satisfying 1(0) = ¢'(0) = 0. Setting
n=1'(e*) and p = ¢'(e”) in (4.9) and combining the equations gives

410
T (/ daib(e dx—i—/w v da) /1//’ ) Ve dx+/6 V' (e”) |Vre® | do
= =5 [ =) (e + 0/ (e) 4

Hence as v is convex we have

411

= (/ Soe dx+/F¢(ew) da) < —i/r(ulwl —ugwn) (4(e) + /(")) do
Integration in time gives
/ Sl (1) do+ [ (e
/ / (urwr — ugwy) (Y’ (e*) + ¢’ (e)) do dt,

as e“(-,0) = 0 and e“(-,0) = 0 and we have chosen v such that ¢(0) = 0. Defining
the function

(4.12)

1 it n >0,
sgn(n) =40 ifn=0,
-1 ifn<0,

we replace ¥ by a sequence of smooth functions 1 such that

br(@) = lal, dp(z) = sgn(x), z€R,
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pointwise and pass to the limit (k — oo), which yields

/5Q|e \dx+/|e )] do

(4.13)
< —*/ / UIW, — UgWs) (sgn( “) 4+ sgn(e “’)) do dt.

For aq,by,as, by € R it is easily verified that
(Clel — agbg)(sgn(al — ag) + sgn(b1 — bg)) 2 07

hence the right-hand side of (4.13) is nonpositive. Thus for a.e., ¢t € (0,T)

</ 0q |e"] dx—|—/\e“’| do’> =0,

which completes the proof of uniqueness and hence the proof of the theorem. 0

In the subsequent sections we will consider the limit problems obtained on sending
da, or, and dx to zero in (1.1). To this end we derive some estimates on the solution
pair (u,w) of (4.1) , which we will use in the subsequent sections to deduce the exis-
tence of convergent subsequences which converge to solutions of the limit problems.
We note that the bounds hold for constants which are independent of d;, dr, and .

LEMMA 4.3 (estimates for the solution of (4.1) and (4.2)). The solution pair
(u,w) to (4.1) and (4.2) satisfy the following estimates,

8o el (0.1y:2 () + 2 IV 2 (0.1y:2 () < 59/ ug dz + Cp,
(4.14) @

2 2
1wl 0, 7);22(ry) + 200 VEwlle (0,7 2(r)) < /ng do,
where Cp € RT depends on the Dirichlet boundary data up and Cp = 0 in the
case of the Neumann boundary condition. Furthermore, we have an estimate on the
nonlinearity:

1
(4.15) o luwll L2 o,myxry < llwoll L

The following estimate on time translates of uw and w along with Lemma 3.4 will be
used to deduce the necessary compactness

5Q/T T/ Gt 1) — ) de di
/T T/ Gt 1) —w(t)? do dt < O,

where the constant C' is independent of T,dq, or, and Jy.

(4.16)

Proof. The first estimate (4.14) follows from a straightforward energy argument
due to the nonnegativity of u and w. Specifically, test with (u — Du,w), where Du
satisfies ADu=01in Q, Du=0on I, and Du = up on 9y in the Dirichlet case (4.1)
or simply with (u,w) in the Neumann case (4.2).
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For the estimate (4.15) we have, using the nonnegativity of u, w,

1 1 [T
a ||uw||L1(Fx(O,T)) = a wu do dt

/ / —Oyw do dt

= [ w1 +u0) a0

where we have used the nonnegativity of w in the last step.
For the estimate (4.16) we argue as follows. For a fixed 7 € (0,7) and for
€ [0,T — 7) introducing the notation 9, f(t) := f(t + 7) — f(t) we have, using (4.1),

[ Gt 47 = wl.0) do
_ /()T/Fatw(',tJrs)éTw(',t) do ds

:/ /—5erw(-,t+s)-vraw(.,t) - (%[uw](-,t—&—s)(iw(-,t) do ds.
0 r k

Integrating in time gives

(4.17) /T T/ Gt+7) —w(-,1)? do dt
//T T/ —6rVrw(-,t +s) - Vroyw(-,t)

*f[uw]( t+5)0;w(-,t) do dt ds
O,

T _ 1
2
S/O 201 | Vrwllze o 0,7) + [1079]] oo (1 0.1 o lwll o,y dss

where we have used Young’s inequality in the last step. Applying the estimates (4.8),
(4.14), and (4.15) in (4.17) yields the desired estimate for the second term in (4.16).
For the bound on the first term in (4.16), we note that as 9,u € H} (),

5o / Bou(-,1)
Q

- /T/ —Vu(-,t+s) - Voyu(-t) — %[uw}( t+8)0-u(-,t) do ds,
0 Jo k

from which the desired bound follows from an analogous calculation to (4.17) together
with the estimates (4.8), (4.14), and (4.15). 0

5. Fast reaction limit problem (dx = 0). We now show that for fixed
da,0r > 0 as & — 0 the solution to (1.1) converges to a (weak) solution to the
following constrained parabolic limit problem. For convenience we work with v = —w

and set v = —w?.
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B(r)

FI1G. 2. Sketch of the function B; cf. (5.2).

PROBLEM 5.1 (problem for instantaneous reaction rate). Find @: Q x [0,T) —

R*, 0: T x [0,T) = R~ such that

(5.1a) o0t — Au =0 in Qx (0,7),
(5.1b) Vi-v+00—0rAro =0 and o€ B(a) onT x (0,T),
(5.1c) it=up or Vi-vg=0 on 9p2 x (0,7),
(5.1d) a(-,0) =u’(-) >0 in €,
(5.1e) o(-,0) =°(-) <0 onT.
Here 3: R — {0, 1}® is the set valued function (cf. Figure 2)

0 if r <0,
(5.2 B(r) = { [~00,0]  ifr =0,

{0} ifr>0.

We consider (5.1) as a parabolic equation with dynamic boundary conditions inter-

preted as a differential inclusion.

In order to define a weak solution to (5.1) we define the Bochner spaces

Voo (Q) = {v e r? (O,T; HY (Q)) L9 € L2 <O,T; (H;U (Q))/>}
V() = {v cL? (O,T; H (r)) : 9 € L? <O,T; (Hl (r))’) } .

We will make use of the following function space

and

Veo (,T) := {v E Ve, () 1 vlp € V(I‘)}.
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We note that similar spaces have been introduced for the weak formulation of a
parabolic problems with dynamic boundary conditions, (see, for example, Calatroni
and Colli, 2013).

DEFINITION 5.2 (weak solution of Problem 5.1). We say that a pair (u,v) with
we L0, T; HY, ()N L¥(0,T; LA(Q)) and 5 € L*(0,T; H'(T)) N L*(0,T; L*(T))
with @ >0 and v < 0 4s a weak solution of Problem 5.1 if for all n € Ve, (Q,T') with
n(-,T) =0, we have

T
0 ““D

+/§FVF17-VF77 do) dt:/59u0n(~70) dx—l—/von(-,O) do
r Q r

and
(5.4) vepP(a) ae onl x(0,7T).
We make the corresponding modifications to the function spaces for the Neumann

boundary condition.

THEOREM 5.3 (convergence of the solution of (1.1) to a solution of (5.1)). As
3 — 0 the solution pair (u,w) to (4.1) converge (up to a subsequence) to a pair
(u,w) in the following topologies:

(5.5) u—u inL*0,T;H,, (Q)
(u—a in L*(0,T; Hl( )) in the Neumann case),
(5.6) w—w in L*(0,T; H (T)),

uw—a in L*(Q x (0,T)),
w—w in L*(T x (0,T)).

Moreover, the pair (4,v), with © = —w are a weak solution to Problem 5.1.

Proof. In the interests of brevity we give the details for the Dirichlet boundary
condition case. The Neumann case is handled similarly.

From standard weak compactness arguments (3.5) together with the estimate
(4.14), we can extract a subsequence which we will still denote (u,w) such that

uw—a in L*0,T;H,, (Q),
w—w in L*(0,T; HY(T)).

From the Aubin—Lions—Simon compactness theory (Lemma 3.4), the estimate on time
translates (4.16) means we can extract a subsequence which we will still denote (u, w)
such that

u—a in L2(Q x (0,T)),
w—w in L*(T x (0,7)).

We now show the pair (u,?), with = —w, are a weak solution to Problem 5.1. We
start by noting that for all n € V., (Q,T') with (-,T) = 0, we have
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T
/ —00 (0, u) 1 Q)—i-/ Vu-Vn dz dt— 5Q/u n(-,0) dz / / —uwn do dt
0 Heup
T
:/ — <8tn,w>H1(F) —|—6r/ Vrw-Vrn do dt—/won(-,O) do.
0 r r

Letting d; — 0 the convergence results (5.5)—(5.8) give

T
/ (—69 Om, @)1 (o) +/ Va - Vn dx) dt — 69/ u’n(-,0) dz
0 ““D Q Q

T
:/ <— <at77,’LD>H1(F)+5F/VF'IZ}VF77 dU) dt_/won(70) d07
0 r I

and, hence, with v = —w

(5.9)

T
/ (59 <8tn, ’L_L>Hé () + / AR Vn dx — <8tn, rD>H1(F) + 51“/ Vro- VFU dO’) de¢
0 “D Q T

:(59/ u®n(-,0) dm+/v0n(~70) do.
Q r

It remains to show that v € B(u). As w,w > 0 for all d;, we have & > 0 and
o = —w < 0. Moreover, from (4.15) we have

[ <ol

and, hence, the strong convergence results (5.7) and (5.8) imply
b =—uw=0 ae inl x(0,7).

Thus the limit pair (@,7) are a weak solution to Problem 5.1 in the sense of Defini-
tion 5.2. 0

Remark 5.4 (uniqueness of the solution to Problem 5.1). Theorem 5.3 ensures
existence of a solution to Problem 5.1. However we are unable at present to prove
uniqueness. In particular, the strategy employed for the proof of uniqueness to the
limiting problems 6.1 and 7.1 does not seem applicable in this case.

6. Parabolic limit problem with dynamic boundary condition (dx =
dr = 0). We now present a rigorous derivation of the parabolic problem with dynamic
boundary conditions presented in section 2.1 as a limit of (1.1). Specifically we show
that for fixed dg > 0, in the limit 0 = ér — 0 the unique solution of the problem
(1.1) converges to the unique solution of the following problem.

PROBLEM 6.1. Find u: Q% [0,T7) = R" and 9: T x [0,7) — R~ such that

(6.1a) S04t — Al =0 in Q x (0,7T),
(6.1b) Vi-v+00=0 onT x (0,T),
(6.1c) v € B(u) on T x (0,7),
(6.1d) a=up or Vu-vr=0 on 9o x (0,7),
(6.1e) (-,0) = ug(-) >0 on €,

(6.1f) 0(-,0) = vo(-) <0 onT,

where B: R — {0,1}® is the set valued function defined in (5.2).
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In order to define a weak solution of Problem 6.1 we introduce the space
H! (o,T; H;O(Q)) - {v € L2 (O,T; H., (Q)) - Qv € L2 (0, T HQO(Q))} :

DEFINITION 6.2 (weak solution of (6.1)). We say a function pair (@,0) with
u e L?(0,T; HeluD () N L>(0,T; L3(Q)) and © € L*>(0,T; L*(T")) is a weak solution
of (6.1), if for allm € H' (0,T; H (Q)) with n(-,T) =0, we have

T
/ (/ —8aadm + Vi - Vi dx+/—f;am do> dt
0 Q T

(6.2) _ 0, /. 0, /.
—6Q/QU n(-,0) dx—|—/Fv n(-,0) do
and 0 € B(q) a.e. inT x(0,T).

We make the obvious modifications for the Neumann case.

THEOREM 6.3 (convergence of the solution of (1.1) to a solution of (6.1)). As
0k = 0r — 0 the solution pair (u,w) to (4.1) converge to a pair (u,w) in the following
topologies:

(6.3) u—a inL*0,T;H,, (Q)
(u—a in L*(0,T; Hl( )) in the Neumann case),
w—1w in L*(0,T; L*(T))
u—a in L*(Q x (0,T)),
ulp = alr  in L2(T x (0,T)).

)

Moreover, the pair 4,0, with © = —w are the unique weak solution to (6.1) in the
sense of Definition (6.2).

Proof. As in the proof of Theorem 5.3, the uniform estimates of Lemma 4.3
together with the compactness results of Lemma 3.4 and Lemma 3.8 imply the weak
and strong convergence results given in the theorem.

We now show that the limit pair (@, 0), with & = —w are a weak solution of (6.1).
We start by noting that for all n € C*°(Q x (0,T)) with 7 = 0 on 9y€2 x (0,T") and
n(-,T) = 0, we have

/ / —bquom + Vu - Vn dx dt—59/un( 0) dz
Q

/ / —uwn do dt

:/ /—w@tn+5pva~vpn do dt—/won(~,0) do
o Jr r

T
z/ /—w@tn—éprpn do dt—/won(~,0) do.
o Jr r
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Letting 0 = dr — 0, the convergence results (6.3)—(6.5) give

/ / —dqudm + Vi - Vn dz dt—59/un( 0) dz
Q

/ / —wdn do dt—/wn( 0) do,

and, hence, with v = —w, we infer that

/ / —dquoin + Vi - Vn dx dt—ég/un( 0) dx

/ [0 do = [ n(e0) de o

A density argument yields that the above holds for all test functions 7 in the spaces
of Definition 6.2. As u,w > 0 we have & > 0,0 = —w < 0. To check v € f(a) it
remains to show that fr 40 = 0. This follows since

T T
//ﬂﬁdadt:/ /—fw?dcrdt
o Jr

— lim // w)W + u(w —w) +vw do dt =0,
5k,(5r*>0

where we have used that the first term on the right-hand side is zero since v — @ and
w € L*(0,T; L*(T)) from (6.6), (4.14), the second term is zero since w — @ and u
is bounded in L?(0,7T; L*(T)) from (6.4), and the final term is zero from the estimate
(4.15).

To prove that the solution is unique we argue as follows. Let (uy,7;) and
(t12,72) be solutions of (6.1) in the sense of Definition 6.2. We define §%(-,t) :=
(Gy (-, t) — t2(-,1)),0°(-,t) == (01(+,t) — Da(-,1)). The pair (6%, 0°) satisfy

T T
(6.8) / / —000%0im + V" -V dx dt — / / 0°0ym do dt =0
0 Q 0 T

for all n € H' (0,T;H} () with n(-,T) = 0. For ¢t € (0,T) we define 67(-,t) =
ftT 0%(-,s) ds. Noting that #* is an admissible test function, we set n = ° in (6.8)

which gives
dx dt+/ /9”9“ do dt = 0.

59//9 d:z:dtf/ th/’vo

As 0*(-,T) = 0 we have

59//9“ dxdt+//‘V€“

Recalling that 0; € 8(4;),4 = 1,2, the monotonicity of 3 gives

dz dt+/ /vlfvg (7 — tg) do dt =0.

I

L2((0,T);H' ()
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Finally, (6.8) and the above bound yield

T ~
/ /0”@77 do dt =0
o Jr

for all n that are admissible test functions in the sense of Definition 6.2. For any
¢ € L*(0,T; H/?*(T")) we define D¢ such that D¢ = ¢ on I', AD$ = 0 in Q, and
D¢ = 0 on 9p2. Then we may take n(-,t) = ftT D¢(-,s) ds as a test function in the

above which gives
T ~
/ / 0°¢ do dt =0
o Jr

for all ¢ € L(0,T; H'/*(T")). Hence

1671 =0

2 (O,T;(Hl/Z(F))’)
which completes the proof of the theorem. 0

7. Elliptic limit problem with dynamic boundary condition (dg = ér =
dr = 0). We now present a rigorous derivation of the elliptic problem with dynamic
boundary conditions presented in section 2.1 as a limit of (1.1). As mentioned in
section 2.1 we will only consider the case of Dirichlet boundary data. Specifically we
show that as dq = dr = §; — 0 the unique solution to (1.1) with Dirichlet boundary
data converges to the unique solution of the following problem.

PROBLEM 7.1. Find 4:Q x (0,T) = RT and o: ' x [0,T) = R~ such that

(7.1a) —Aa=0inQx (0,T),
(7.1b) Vi-v+900=0onT x(0,T),
(7.1c) 0 € B(u) onT x (0,T),
(7.1d) 4 =wup on O x (0,T),
(7.1¢) o(-,0) =v°(:) <0 on T,

where B: R — {0,1}® is the set valued function defined in (5.2).

DEFINITION 7.2 (weak solution of (7.1)). We say a function pair (4,0) with
@ e L*0,T; HeluD () and © € L*(0,T; L*(T")) is a weak solution of (7.1) if for all
ne HY(0,T;H () withn(-,T) =0 on T, we have

(7.2) /OT (/Q V- Vi dw—/rﬁam do) dt—/rvon(.’()) do—0

and 0 € B(0) a.e. inT x (0,T).
The strategy of passing to the limit follows that of section 6.

THEOREM 7.3 (convergence of the solution of (1.1) to a solution of (7.1)). As
dq = dp = 0 — 0 the solution pair (u,w) to (4.1) converge to a pair (4, W) in the
following topologies:

(7.3) w—a inL*0,T;H,, (Q),
(7.4) w—1w in L*(0,T; L*(T)),
(7.5) w— 1w in L20,T; H-Y2(I).
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Moreover, the pair i,0, with © = — are the unique solution to Problem (7.1) in the
sense of Definition (7.2).

Proof. As in the proof of Theorems 5.3 and 6.3, the estimates of Lemma 4.3,
specifically (4.14) together with the compactness results recalled in (3.5) imply the
convergence results (7.3) and (7.4). The strong convergence result (7.5) follows due to
the Lions—Aubin—Simon compactness theory (Lemma 3.4) together with the estimate
on the time translates of w (4.16) and the compact embedding of L?(T') into H~/%(T')
shown in Lemma 3.7.

The fact that the limits @, 0 = —w satisfy

T
/ (/ Vi -Vn dx—/ﬁ@m do) dt—/von(-,O) do=0
0 Q r r

for all n as in Definition 7.2, follows from the weak convergence results (7.3) and (7.4)
together with an analogous density argument to that used in the proof of Theorem 6.3.
It remains to check © € B(u). As previously we have 4 > 0 and ¢ < 0. The fact that
@,9 € L?(T' x (0,T)), the strong convergence result (7.5), the weak convergence result
(7.3) which implies weak convergence of the trace of u in L?(0,T; H'/?(T)), and the
estimate (4.15) imply

T T
/ /a@ do dt:/ (0, @) gprya(ry dt =0,
o Jr 0
and hence 0 € B(u).

Similarly the uniqueness argument mirrors that which was used in the proof of
Theorem 6.3. Letting (d1,01) and (2, 02) be two solutions of (7.1) in the sense of
Definition 7.2 and setting 0%(-,t) := (t1(-,t) — @2(-, 1)), 0°(-, 1) := (01(-,t) — Da(-, 1)).
The pair (0%, 0°) satisfy

T T
(7.6) / Vol .V dx dt—/ /eﬁam do dt =0
0 Q 0 r
for all n € H'(0,T; H! () with n(-,7) =0 on I. For ¢ € (0,T) we define 67(-, 1) =

ftT 0%(-,s) ds. Noting §* is an admissible test function, we set = 6 in (7.6) which
gives, using the fact that 0%(-,T) = 0,

A

Recalling that 9; € 8(4;),7 = 1,2, the monotonicity of 8, together with the Poincaré
inequality as 6% € H} (Q) gives

0
lo
Finally, via the same argument used in the proof of Theorem 6.3, (7.6) and the above
bound yield
lo

which completes the proof of the theorem. 0

2 T
dx dt+/ /(@1—{)2)(’&1—’&2) do dt = 0.
0 r

112
o

L2((0,7);H'(2)) -

o —

L2((0,T);H-1/2(T))

)
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8. Degenerate parabolic equations. In this section we give alternative for-
mulations of the limiting problems of sections 5-7. Solutions to the Problems 8.1,
8.2, and 8.3 introduced in this section are solutions of Problems 5.1, 6.1, and 7.1,
respectively.

The structure of the equations is revealed by writing them as abstract degenerate
parabolic equations holding on the surface I'. Doing this, one observes that the prob-
lems are the analogues of the Hele-Shaw and steady one-phase Stefan problems with
the half-Laplacian replacing the usual Laplacian (—A) (see (Crowley, 1979; Elliott
and Ockendon, 1982) for further details on the formulation of the Hele-Shaw and
one-phase Stefan problems).

First, we define a parabolic extension operator

PP L2(0,T; HYA(I)) — L*(0,T; HY, ()
or
P2 [2(0,T; HY*(T)) — L0, T; H'(Q))
Neumann case. We fix n € L?(0,T; H'/?(T')), we define P%21 to be the unique solution
of

500, (P°?n) — A(P%n),=0 in Qx (0,T),
P‘Sﬂnzn on I x (0,7),
Pn=0o0r V(Pn)-vg=0 on dyQ x (0,T),
(P%2n)(-,0) =0 in Q.

(8.1)

This allows us to define a parabolic Dirichlet to Neumann (DtN) map
A% L2(0, T HYA(D)) — L*((0,T); (H'*(I)))
by
(8.2) Adeq = V(P%y) - v for n € L*(0,T; H/*(I)).

Next, we define a new elliptic extension operator P°: L?(0,T; H/?(T)) —
L?(0,T; HeluD (Q)), which formally is a limit of P%® from (8.1). Forn € L?(0,T; H/*(T"))
we define P’ to be the unique solution of

~A(P’n) =0 inQx(0,T),
(8.3) P’ =n onTl x(0,7),
P=0 on 90 x(0,7T).

This allows us to define the elliptic DtN map A°: L?(0,T; HY/*(T')) —
L2((0,T); (H'*(T))") by
(8.4) A=V (P') v for n € L*(0,T; HY*(I)).

We note that the operator A° may also be viewed as the half-Laplacian (—Ar)'/2 for
functions on I' (Caffarelli and Silvestre, 2007).

It is also convenient to introduce extensions of the data. First we introduce Ug“
as the solution of the parabolic problem

500U — AU =0 in Qx (0,T),
U =0 onT x(0,7T),
U =up or V(US) -vg =0 on dQ x (0,T),
U (-,00=0 in Q.

(8.5)
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Second, we have Up as the solution of an elliptic problem
—AUp =0 in Q,

(8.6) Up=0 on T,
Up =up or VUp -vqg =0 on 0y}

In the Neumann case we have Ug” =Up =0.
Third, we introduce U}S“ as the solution of the parabolic problem

500U — AU =0 in Qx (0,T),
U?Q =0 onIx(0,T),
U}S“ =0or V(U}S“) ve=0  ondQ2x(0,T),
U?O(.7()) =wug in Q.

(8.7)

Note that as dg — 0 that U — 0 and U2 — Up in L(0,T; H'(2)). Finally, we
write L for —Ar as an operator L*(0,7; H (")) — L?(0,T; (H*(T))")

PROBLEM 8.1 (fast reaction limit, 6y = 0). Find @ > 0 and ¥ <
L2(0,T; H/2(T)) and © € L*(0,T; H'(T)) with 9,5 € L(0, T; (H"

0 with u €
(F))’) such that

/
A0+ o Lo+ A%+ V(UR + UM) - v=0  in L? (0, ; (Hl(r)) > 7

T
v € p(u) onT'x (0,7,
o(-,0) ="  in Q.

(8.8)

PROBLEM 8.2 (bulk parabolic limit equation with dynamic boundary condition,
6p = 0p = 0). Finda > 0 and © < 0 with & € L*(0,T; HY*(T)) and © €
L2(0,T; L*(T)) with 9,9 € L*(0,T; (HY(T))") such that

/
0+ A0+ V(UR 4+ UP) v =0 in L2 (0, T (Hl(r)) ) :

(8.9) 5 € B(@) on T x (0,7),

o(-,0) =2 in Q.
PrROBLEM 8.3 (elliptic equation with dynamic boundary condition, §; = dr =

6o =0). Pinda>0 and ® <0 with & € L*(0,T; H'/2(T")) and © € LQ(O,T L2(I))
with 9,0 € L*(0,T; (HY(T'))) such that

/
8o+ A4+ VUp-v=0 in L (0, T; (Hl(r)) ) :

(8.10) v € B(a) on T x (0,T),

o(-,0) =0 in Q.

9. Variational inequality formulation. Similarly to the Hele-Shaw and one-
phase Stefan problems, that may be reformulated as variational inequalities via an in-
tegration in time (Duvaut, 1973; Elliott, 1980; Elliott and Janovsky, 1981; Rodrigues,
1987), via integrating in time, the systems (6.1) and (7.1) and Problems 8.2 and 8.3
may be reformulated, respectively, as parabolic and elliptic variational inequalities of
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obstacle type. The obstacle problem lies on the surface I' and is a consequence of the
complementarity which is maintained after an integration with respect to time and
noting that this integration commutes with the operators A% and A°.

We set

t
(9.1) 0= [ ats) ds

0
where 4 satisfies (7.1). We find it convenient to introduce Z%Q as

(9.2) Z%(-,t) = tUp.

Proceeding formally, we claim that if the pair (&, 0) satisfy (6.1) (or (7.1) with
do = 0) then the pair (z,0) satisfy the following problem.

PROBLEM 9.1. For each t € (0,T), find z(t) € H'(Q) and 9(t) € L*(T') such that

(9.3a) 000z — dqug — Az =0 in €,
(9.3b) Vzv+0—-1"=0 on T,
(9.3c) 0 € B(z) on T,
(9.3d) z2=2Zp on 2.

We check the condition ¢ € 8(z) on ' x (0,T). The remaining conditions follow
formally from integration in time of (7.1). Let xp denote the characteristic function
of the set B, then we have

/ Pxen0 do = / (xas0 — Yaso) do + / dxaso do.
I I I

Noting that x,~0 > xa>0 as 4 > 0 and recalling v < 0 we have

/ﬁxz>0 do 2/@Xﬂ>0 do =0
r r

as 0 € f(u). Finally as © < 0 and 2 > 0 this yields ¢ € 8(z).
We now show that (9.3), in the case dg = 0, may be formulated as an elliptic
variational inequality. For all n € H} ()

(9.4) 0:/—Azn dx:/Vz~V17 dw—/Vz~u77dU.
Q Q r
Thus defining the convex set

K :={ne H, () n>0onT},

Zp(,t)

we see that for any n € K; we have
/VZ“V(T]*Z) d:c:/VZol/(nfz) do
Q r

(9.5)
— /(vo —v)(n—2) do.
r
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Now since z > 0,v < 0, and zv = 0 we arrive at the following elliptic variational
inequality where time enters as a parameter: Find z € K; such that

(9.6) /Vz~V(77—z) dz > /vo(n—z) do  for alln € K.
Q r

The same argument outlined above yields that if z is defined by (9.1) with @
replaced by @, the unique solution to the parabolic problem (6.1), then z satisfies the
parabolic variational inequality, find z € K; such that

/ 000zn+Vz-V(n—z) dz

(9.7) @

> / Soul(n — 2) dz + / v(n—2) do  for all n € K;.
Q r

We may also integrate the appropriate degenerate parabolic problems in time
yielding, for example, in the case dg = 0,

A2 +VZp v -0 = - on T,
(9.8) P )
01<0, 2>20, 20=0 onl,

and obtain the elliptic variational inequality from this calculation.

10. Numerical experiments. We now present some numerical simulations
that support the theoretical results of the previous sections and illustrate a robust
numerical method for the simulation of coupled bulk-surface systems of equations.
We employ a piecewise linear coupled bulk-surface finite element method for the ap-
proximation. The method is based on the coupled bulk-surface finite element method
proposed and analyzed (for linear elliptic systems) by Elliott and Ranner (2013).

10.1. Coupled bulk-surface finite element method. We define computa-
tional domains €2, and I'j, by requiring that €2, is a polyhedral approximation to 2
and we set T'y, = 0Qp, \ 0o, i.e., T, is the interior boundary of the polyhedral domain
Q. We assume that Qy, is the union of n+1 dimensional simplices (triangles for n = 1
and tetrahedra for n = 2) and hence the faces of I'j, are n dimensional simplices.

We define T, to be a triangulation of €2 consisting of closed simplices. Further-
more, we assume the triangulation is such that for every k € T, kNI, consists of at
most one face of k. We define the bulk and surface finite element spaces V},v € R
and Sy, respectively, by

V] = {cb € () : ® =7 on 8, and By, € P1(k), for all k € 7,1}7
and
Sn={WeC)): v, eP(s), forall ke Ty withs =kNTy #£0}.

10.2. Numerical schemes. In the interests of brevity we only present numer-
ical schemes for the approximations of (4.1) and (9.6), i.e., the original problem with
Dirichlet boundary conditions and the elliptic variational inequality, respectively. For
simplicity we take up = 1. The modifications for the Neumann case and the parabolic
variational inequality are standard. We divide the time interval [0,1] into M sub-
intervals 0 =tg < t; < --- <tpy_1 <ty =1 and denote by 7 :=t,,, — t,,,_1 the time
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step, which for simplicity is taken to be uniform. For a time discrete sequence, we
introduce the shorthand f™ := f(t,,).

For the time discretization of (4.1) we employ an IMEX method where the
diffusion terms are treated implicitly whilst the reaction terms are treated explic-
itly (Lakkis, Madzvamuse, and Venkataraman, 2013) which leads to two decoupled
parabolic systems. The fully discrete scheme for the approximation of (4.1) reads as
follows: For m = 1,..., M find (U™, W™) € (VP x S}) such that for all (®,V) €
(Vi x Sp)

1
/ o= (Um—Um‘l) dde+ | VU .V du
Qn

T Qn

1
L —— T

k JT

1
(10.1) / — (Wm — Wmfl) U doy, +/ 5FVFh,Wm+1 -V, ¥ doy,
r, T I'n
1
= —— Ah {Um_lwm_l} v dah’
k JTp

U =7"0, and WO =AM,

where " : C(Q),) — V}i? and A" : C(I',) — S, denote the Lagrange interpolants
into the bulk and surface finite element spaces respectively.

For the approximation of (9.6), we note that at each time step a single ellip-
tic variational inequality must be solved, the solution of which may be obtained
independently of the values at other times. Introducing the bulk finite element space

Kt = {@ €C(Qn):®>0,8=1ton dQ and Bl € P'(k), forall k € Th}

the fully discrete scheme for the approximation of (9.6) reads, for m =1,..., N, find
Z™ € K! such that for all & € K},

(10.2) vZ"™.V(@®—-2") do > / (D — Z™) doy,.
Qp Tn

For a discussion of the analysis of discretization of this problem we refer to Nochetto,
Otérola, and Salgado (2015).

10.3. Two dimensional (2D) simulations. For all the simulations we use the
finite element toolbox ALBERTA (Schmidt and Siebert, 2005). For the visualization
we use PARAVIEW (Henderson, Ahrens, and Law, 2004). We start with the case where
Q is two dimensional, i.e., the surface I is a curve. We set 0p{2 to be the boundary of
the square of length four centered at the origin and define the surface of the cell I" by
the level set function I' = {x € R?|(z1+0.2—23)?+23 —1 = 0}. We generated a bulk
triangulation of the domain §2;, and the corresponding induced surface triangulation
of T'j, using DistMesh (Persson and Strang, 2004). We used a graded mesh size with
small elements near T', the bulk mesh had 2973 DOFs (degrees of freedom) and the
induced surface triangulation had 341 DOFs. Figure 3 shows the mesh used for all
the 2D simulations.

In light of the theoretical results of the previous sections, we consider (4.1) with
€ =0 =6qg = 6r = 1071,1072 and 1073, respectively, and compare the simulation
results with the results of simulations of (9.6). For the problem data for (4.1), we

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/17 to 129.11.22.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

388 C. M. ELLIOTT, T. RANNER, AND C. VENKATARAMAN

F1c. 3. The computational domain for the simulations in 2 dimensions of section 10.3, generated
using DistMesh (Persson and Strang, 2004).

w_0
16E oor? 027 04’ 07¢
71‘2
04 o o o 0,07
o-&

Fic. 4. Simulation results of section 10.3. Snapshots of the computed solution Z together with
the initial data WO of the elliptic variational inequality (9.6) at times 0.01,0.2,0.4, and 0.7 reading
from left to right. The color scale for WO is fized in every figure.

took the end time T' = 0.7 and up = 1. For the initial data for (4.1) we took

w® = max(0, cos(rxs) + sin(rz1)), * € T, and v’ = up = 1 and for (9.6) we took

v? = —w". For each of the simulations of (4.1) we used same uniform time step,
7 = 1078, In order to compare the solutions of (4.1) with those of (9.6), we solve
(9.6) at a series of distinct times and postprocess the solution to obtain u = 9,z and
w=Vz-v+uw’

Snapshots of the solution Z to (9.6) at a series of distinct times is shown in
Figure 4. We note that to postprocess Utm := (Zt= — Z'm~=7) /7 we solve (9.6) at t,,
and t,, — 7 fixing 7 = 1072. We stress that as time simply enters as a parameter in
(9.6) its solution may be approximated independently at any given time, it is simply
for the recovery of U for which we require values of Z at a previous time.

Figure 5 shows snapshots of the simulated U and W. Initially we observe depletion
of the bulk ligand concentration U in each case near regions where the initial data for
the surface receptors w® is large. As time progresses we observe a decay in W with
larger decreases in W observed for smaller values of . Similarly the speed at which
the system approaches the steady state corresponding to constant solutions u = 1
and w = 0 appears to be an increasing function of €. The postprocessed U and W
obtained from the solution to (9.6) show qualitatively similar behavior with faster
dynamics towards the steady state which is attained by the end time ¢t = 0.7, with
none of the simulations with € > 0 attaining this steady state by ¢ = 0.7. In order to
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Fic. 5. Simulation results of section 10.3. (First three rows) Snapshots of the computed solu-
tions U and W of (4.1) in 2 dimensions at times 0.01,0.2,0.4, and 0.7 (reading from left to right)
for different values of € = 6q = dr. The fourth row shows the computed solutions U and W = =V
postprocessed from solving the elliptic variational inequality (9.6) at times 0.01,0.2,0.4, and 0.7
reading from left to right.

illustrate more clearly the formation of the free boundary as ¢ — 0, in Figure 6 we
show plots of W and the trace of U over the surface I',. We observe that as ¢ — 0 the
supports of the trace of U and W become disjoint and their profiles approach that
obtained on postprocessing the solution of (9.6).

In order to support our assertion that the changes observed in Figures 5 and 6 are
due to the changes in € and not due to insufficient numerical resolution, in Appendix A
we investigate numerically the effect of the discretization parameters, specifically the
mesh size and the time step, on the numerical solution. The results of Appendix A
illustrate that the large qualitative changes observed on reducing e are due to the
changing parameter rather than issues with numerical resolution.

10.4. Three dimensional (3D) simulations. We conclude this section with
some 3D simulations. We set 9o = {x € R®||z| = 2}, i.e., the surface of the
sphere of radius two centered at the origin and define the surface of the cell I' by
the level set function I' = {z € R3|(z; + 0.2 — 23)? + 423 + 23 — 1 = 0}. We
generated a triangulation of the bulk domain (and the correspondlng induced surface
triangulation) using CGAL (Rineau and Yvinec, 2013). We used a bulk mesh with
11167 DOF's and the induced surface triangulation had 2449 DOF's for the simulation
of (4.1) while for the simulation of (9.6) we used a finer mesh with 60583 bulk DOFs

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/17 to 129.11.22.158. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

390 C. M. ELLIOTT, T. RANNER, AND C. VENKATARAMAN

ek

um = (2tn — 20 =0.01y/0.01, w" = w0 + V2"

Fi1G. 6. Simulation results of section 10.3. (First three rows) Plots of the trace of U (black)
and W (red) of (4.1) over T'y, at times 0.01,0.2,0.4, and 0.7 (reading from left to right) for different
values of € = 6q = dr. The fourth row shows plots of the trace of U (black) and W = =V (red)
postprocessed from solving the elliptic variational inequality (9.6) at times 0.01,0.2,0.4, and 0.7
reading from left to right.

and 15169 surface DOFs. Figure 7 shows the computational domain used for all the
simulation of (4.1).

We report on the results of two simulations. We consider the approximation
of (4.1) with ¢ = §g = dr = 1 x 1072 and for the problem data we set T = 0.6,
up = u® = 1, and w® = max(cos(wxs) + sin(nz1),0), x € I' and, similarly to sec-
tion 10.3, we compare these results with those obtained from postprocessing the solu-
tion to the elliptic variational inequality (9.6) with v = —w°. For the simulation of
(4.1) we used a fixed uniform time step of 1x 10~6. Snapshots of the solution Z to (9.6)
at a series of distinct times is shown in Figure 8. As previously, to postprocess Utm :=
(Ztm —Z'm=T) /T we solve (9.6) at t,, and t,, —7 fixing 7 = 0.01. Figure 9 shows snap-
shots of the simulated U and W. Analogous behavior to the 2D case of section 10.3 is
observed. We note that the solution of Z shown in Figure 8 appears quite smooth and
the rough nature of the postprocessed U and W may be an artifact of the postpro-
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T
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Fic. 7. The coarser computational domain used for the simulations in 3 dimensions of sec-
tion 10.4, generated using CGAL (Rineau and Yvinec, 2013). The left figure shows the outer bound-
ary of the bulk triangulation, the middle figure shows the bulk triangulation with elements with their
barycenters in the top half (x3 > 0) removed together with the surface triangulation of the interior
surface Ty, and the right figure shows the triangulation of the surface T'y,.

-04
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Fic. 8. Simulation results of section 10.4. Snapshots of the computed solution Z together with
the initial data WO of the elliptic variational inequality (9.6) at times 0.05,0.2,0.4, and 0.6 reading
from left to right. The color scale for W9 is fized in every figure. For visualization, we have hidden
the top half of the bulk domain (points with x3 > 0).

. ) e =0.01
04
0.4
0_

(b) u™ = (2fm — 2tm=0:01)/0.01, w™ =w® + V2™
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Fi1c. 9. Simulation results of section 10.4. Top row, snapshots of the computed solutions U
and W of (4.1) in 3 dimensions at times 0.05,0.2,0.4, and 0.6 (reading from left to right) for
e = dqg = 0r = 0.01 on a coarser mesh. Bottom row, the computed solutions U and W = =V
postprocessed from solving the elliptic variational inequality (9.6) at times 0.05,0.2,0.4, and 0.6
reading from left to right on a finer mesh. For visualization, we have hidden the top half of the bulk
domain (points with x3 > 0).

cessing together with the slice through the bulk triangulation taken for visualization
purposes. As noted in section 9, the elliptic variational inequality is a reformulation
of the Hele-Shaw free boundary problem on the surface I' with the differential op-
erator now the half-Laplacian rather than the usual Laplacian (Laplace-Beltrami).
We therefore conclude the numerical results section with Figure 10 which shows the
evolution of the approximated free boundary on the surface I',. We approximate the
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Fic. 10. Stmulation results of section 10.4. Snapshots of the level curve on which the trace of
Z = 5x 1073 that approzimates the free boundary in the elliptic variational inequality (9.6) and thus
the surface Hele—Shaw problem (9.8) at times 0.05 (black), 0.15 (red), 0.25 (yellow), 0.35 (blue),
and 0.45 (green).

position of the free boundary by plotting the level curve of the set where the trace of
Z =5 x 1072 at a series of times.

11. Conclusion. In this work we developed a well-posedness theory for a system
of coupled bulk-surface PDEs with nonlinear coupling. The system under considera-
tion arises naturally as a simplification of models for receptor-ligand dynamics in cell
biology and hence developing a rigorous mathematical framework for the treatment
of such systems is an important task due to their widespread use in modeling and
computational studies, e.g., (Garcia-Penarrubia, Géalvez, and Gélvez, 2013; Levine
and Rappel, 2005; Madzvamuse, Chung, and Venkataraman, 2015; Bao, Fellner, and
Latos, 2014). Whilst the model we consider (1.1) is a simplified model problem,
the nonlinear coupling between the bulk and surface species is preserved and this is
expected to be the main difficulty in the mathematical understanding of more biolog-
ically complex models of receptor-ligand interactions. Thus our techniques should be
applicable to many of the models derived and simulated in the literature.

On nondimensionalization of the model using experimentally estimated parame-
ter values, we identified three biologically meaningful asymptotic (small-parameter)
limits of the model. We present a rigorous derivation of the limiting problems which
correspond to free boundary problems on the surface of the cell and we demonstrated
the well-posedness of the free boundary problems. Moreover, we discussed connections
between the different free boundary problems and classical free boundary problems,
namely, the one-phase Stefan problem and the Hele-Shaw problem. This perspective
gives rise to the possibility of using these ideas when constructing receptor-ligand
models with other mechanisms.

Finally, we reported on numerical simulations of the original problem (1.1) and
a suitable reformulation of the elliptic limiting problem obtained when one considers
fast reaction, slow surface diffusion, and fast bulk diffusion. The simulation results
illustrated the convergence towards the limiting problem thereby supporting our the-
oretical findings. We note that the reformulated problem is considerably cheaper
to solve computationally. Hence in a biological setting where one is in a parameter
regime in which the limiting problem provides a good approximation to the original
problem it may be preferable to solve the limiting free boundary problem rather than
the original coupled system of parabolic equations.
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F1G. 11. Meshes used for the simulations of Appendiz A. A coarse mesh (left) and two finer
meshes generated by globally bisecting the elements of the coarse mesh twice (middle) and four times

(right).
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F1G. 12. Snapshots of the numerical solution of U and W for the experiments of Appendiz A at
t = 0.5 on the coarse mesh with large time step (left), the twice globally refined mesh with medium
time step (middle), and the fine mesh (four times globally refined) with small time step (right).

Appendix A. Numerical investigation of the influence of the mesh size
and time step. In order to verify that the results of section 10.3 are due to
changes in the parameter ¢ rather than the discretization parameters, we now carry
out the numerical experiment of section 10.3 on a series of different meshes with
different time steps. Specifically, we consider a coarse triangulation of the domain
considered in section 10.3 and two finer triangulations generated by refining the coarse
triangulation. The triangulations had 376,1369, and 5206 bulk DOF's, respectively,
and the corresponding surface triangulations had 106,212, and 424 DOF's. Figure 11
shows the three meshes.

For the simulations we solved (4.1) with the same initial conditions and final time
of section 10.3 with ¢ = 0, = g = or = 0.1 and 0.01. For the smaller value of ¢ =
0.001 considered in section 10.3 the numerical scheme was unstable for significantly
larger time steps than that employed in section 10.3. We set the time step to be
2x107% 1x107%, and 5 x 107 for the coarse, medium, and fine mesh simulations,
respectively.

Figure 12 shows a snapshot of the numerical solutions at ¢ = 0.5 for the cases
€ = 0.1 and € = 0.01 for the three different numerical experiments. We observe that
while for a fixed value of €, the qualitative features of the simulation are similar for all
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0.01.

Fi1Gc. 13. Plots of the difference between the fine and coarse mesh solutions and the fine and

medium mesh solutions.

the different discretization parameters under consideration, there are clear differences
between the simulation results for the two different values of €.
In order to provide quantitative evidence for the convergence of the numerical

solutions as the discretization parameters are reduced, in Figure 13, we plot the L2
difference between the solution on the finest mesh and the solutions on the coarser
meshes against time. We observe that the numerical solutions appear to converge as
the discretization parameters are refined for a fixed value of €.
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