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Abstract

This paper investigates the use of Local Linear Embedded Regression (LLER) for the
guantitative analysis of glucose from near infrared spectra. The performance of the LLER
model is evaluated and compared with the regression techniques Principal Component
Regression (PCR), Partial Least Squares Regression (PLSR) and Support Vector
Regression (SVR) both with and without pre-processing. The prediction capability of the
proposed model has been validated to predict the glucose concentration in an aqueous
solution composed of three components (urea, triacetin and glucose). The results show that
the LLER method offers improvements in comparison to PCR, PLSR and SVR.
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1. INTRODUCTION

Diabetes mellitus is a chronic disease that is increasing at an alarming rate [1]. Diabetic
patients must monitor their blood glucose levels several times a day in order to have better
control of their condition. The conventional technique for measuring glucose levels is the
finger prick method, which is very painful and inconvenient on a daily basis. To address
this issue, researchers have tried to come up with non-invasive techniques for glucose

measurement.

Near Infrared (NIR) spectroscopy has been identified as one of the promising techniques
for non-invasive glucose measurementlRNspectroscopyis faster and providesa
reasonable signab-noise ratioas compared to other methods. The prediction of the
concentration of glucose from a NIR spectra remains a challenge due to underlying noise
and necessitates the development of advanced and efficient multivariate datas analysi
algorithms[2-5].

Principal Component Regression (PCR) and Partial Least Squares RegressiongRLSR)
the most commonly used multivariate regression methods for the quantitative analysis of
NIR absorbance spectra [6-11]. However, these models degrade prediction performance if
the analyte of interest contributes less variation to the spectra [12]. The drawbaaks of th
PCR and PLSR models mentioned above motivated the implementation of a new megressio
model which preserves the information related to an analyte of interest irrespective of its

variation in the spectral mixture.

In this paper, the use of the Local Linear Embedded Regression (LLER) technique is

investigated for the quantitative analysis of glucose from near infrared spectra. liERe L



a non-linear dimensionality reduction technique called Local Linear Embedding (LBE) [1

is used to map the high dimensional data non-lineartya low dimensional space. Due to

its advantages such as no local minima, good representational capacityighnd h
computational efficiency, LLER is considered one of the robust regression models-for non

linear data14].

In this paper, the LLER model is first developed and then evaluated and compared to key
existing regression techniquesrefprocessing methods in terms of first-derivative and

bandpass filtering are also implemented with the different regression methods and the
resulting models are evaluated. It is shown that the LLER technique can be an attractive

alternative model for the prediction of glucose from NIR spectra.
2. THEORY
2.1 Local Linear Embedding (LLE) Dimensionality Reduction Algorithm:

An LLE analysis oraraw matrix consisting of N vectors  with dimensionality D can be

implemented as follows

Let the number of nearest neighbours and the dimensionality of the embedded data be K and
d respectively. Initially, K-nearest neighbors of each data point are identified by using

Euclidean metric and the reconstruction weighits that best represent the data points by

their neighboring points can be computed by minimizing the following cost function E(W).
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where the reconstruction weighis signif contribution of the j’th point to the i’th

reconstruction. The cost function also represents the reconstruction error, which is the
squared sum of the difference between the actual data and the reconstructed datt. The co

function can be minimized with the following two constraints:

The first constraint is the sum of all the reconstruction weights should be equal to unity. i.e.

The latter constraint is every data point is reconstructed only from its neighbourning poi

ie.
W, =0, if X; is not one of the K nearest neighbouring points. The significance of these two

constraints is that for any particular data point, the reconstruction weights are invariant to
rescalings, rotations and translations of that data point and its neighbours. The iavarianc

translations is achieved by the first constralty].[

Solving equation (1) based on the above constraints is a least square progleen as
[13]. The optimum weights are invariant to translation, rescaling and rotation of the data

point and its neighbours.

Finally, the embedded vecto‘?i , with dimensionality equal to d can be computed by

minimizing the local reconstruction errar(y)
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where ©(Y) is the local reconstruction error that represents the summed squares of the
difference between the original embedded data and their reconstructioV;aade the

reconstruction weights calculated from equation (1).

The local reconstruction errap(Y)  can be reduced with the following two constraints:

N —_
1. YY =0
i=1
1.
2. =YY =1
N =

where | representnidentity matrix.

Solving, the embedded vector is a well-known problem in linear algebra aah ibe

minimized by solving the sparse NxN Eigen vector problem [13].

The advantage of the algorithm is that the LLE model has to set only one parameter K which
affect the performance of the LLER model in a direct way. However, incorrect chol€e of
may degrade the performance of the model. If the value of K is selected too small, the
mapping loses its global property [15]; on the other hand, if the value of K is sdlszted

high, the data mapping will lose its non-linear propet}.

Two methods are proposed to optimize the neighbourhood size (K) in [16]. In the first
method, the residual variance of the embedded data is calculated for every valudlef K in
range [1K,]. The optimum valueK,, is the value of ‘K’ corresponding to minimum

residual variance. The limitation of this method is that it is time consuragigneeds to

optimize both the reconstruction errorV(and the local reconstruction erra@r(Y) for



every value of K. In the second method, the cost function E(W) is calculated for different

values of K in the rangH-K.,. ], which is called hierarchical methol_opt corresponds

to the minimum residual variance. However, the residual variance has more than one
minimum [16] resulting a set S of potential candidates for K_opt. Residual variance must be

computed for each value of K from the set S. The value of K corresporfus t@rtimum

residual variance is chosen as K_opt.
The first method is used to optimize the parameter K in this study.

2.2. Local Linear Embedded Regression (LLER):
In the LLER method, the LLE analysis is used to map the high dimensional absorbance

spectra (A) talower dimensional embedded vector (Y).

NxD

The absorbance matrixeAR is decomposed as the product of the Local Linear

Embedding matrix ¥ R™“ and the reconstruction factors P.
A=Y.P (3)

where d is the dimensionality of the embedded vector, N is the number of training spectra,

and D is the number of variables in the raw spectra.

In the LLER method, the scores actually represent the embedded vectors that aredcompute
from the LLE algorithm and then the loading mats computed by multiplying the pseudo-
inverse of the scores matrix with the input raw spectra. The obtained scores and loading

matrices can be used in laing the LLER model.

The reconstruction matrix can be represented as shown in equation (4).



P=Y"A (4)

whereY* is the pseudo-inverse of the embedded data matrix Y. Embedded vector Y and
reconstruction factors P are considered to be scores and loading factors régpAstite
concentration of analytéC,) relates to the embedded data Y, the embedded data can be
regressed against thaalyte’s concentration using Multiple Linear Regression (MLR) as

follows.

&Y .Bie (5)

Where B represents the coefficients of the regressfn.is defined by the least squares

method as
Bie =(YY)YC, (6)

The concentratior€,,., for the new dafg., can be obtained from the following equation,

when both the training spectra and concentration are centered.
Conen= (A NS +C ()
From equatons 3 and B,can be replaced by™ By
Cynen= (Aven— AP B +C, (8)

where p+ is the pseudo-inverse of the loading factors of the training spgctia,the

average vector of the training spectra abg is the average value of the training data

concentration.



As explained above, the LLER model has to set two parameters, one is the K nearest
neighbouring points and the other one is the dimension of the embedded data d. If d is
selected too high, the mapping reduces the sigrabise ratio; conversely, if d is selected

too small, different parts of the dataset might be mapped onto eachlaihé@ihe lower and

upper limits of K are chosen as the minimum and maximum possible values of K far whic

the LLER model converges.

The implemented calibration models are tested by using the test dataset. For each value of K
the error parameters Root Mean Square Error of Calibration (RM$#®0) Mean Square

Error of Cross Validation (RMSEQ\ANnd RMSEP are computed. The values of d and K that
together produce the minimum RMSECV are selected as the optimum parameters of the

LLER calibration model.
2.3 LLER model Combined with Digital Bandpass Filtering

The performance of the calibration model can be improved by the integratioa lOfER

model with pre-processing techniques such as the first derivative and bandpass filtering. To
our knowledge, this is the first time LLER is combined with digital bandpass filtering for
NIR spectroscopy. In this work, the digital Gaussian and Chebyshev bandpass filters have
been used to suppress the high frequency components as well as the baselinasvariati
which dominate the low frequency components in the raw spectra [18,19]. The digital
bandpass filters are defined by two parameters [20,21], the centre frequentlgeand
bandwidth. Both of these parameters should be optimized to select the optimum band of

frequencies that contains the maximum information related to the glucose concentration.



A Gaussian filter can be implemented either in the frequency domain or in the time domain.
The Gaussian function has the same profile in both the frequency and time do2a8k [2

In the frequency domain, the mean and standard deviation of the Gaussian function are
equivalent to the centre frequency and bandwidth respectively. The Gaussian bandpass filter
was implemented in the frequency domain, as shown in Figure 1, due to its reduced

complexity.

Input raw spectra
Fast Fourier

Transform

Filtered signal

14 Inverse Fast Fourier

>

Transform

Normalize the input

Gaussian
function

|

Bandwidth (w], centre frequency

data between0
and 1

Figure 1: Block diagram of the Gaussian digital bandpass filter

Initially, the Fast Fourier Transform is applied on the input raw spectra, which is then
multiplied with the Gaussian function; the input to the Gaussian functitie raw spectra
normalized between 0 and 1. Finally, an Inverse Fast Fourier Transform is performed on the

result at the output of the mudtier to get the filtered signal.



Chebyshev filters provide an optimal tradeoff between passband ripples and a steeper roll-
off, compared to other time domain filters [24] and can be efficiently implemented in time
domain. The block diagram of the Chebyshev digital bandpass filter is showguire

below.

Design analog Transformation Bilinear
chebyshevlow fromlow pass filter transformation
passfilter toband pass filter
f, =Bandwidth /2 centre frequency(f.)
Filtered signal h(n)
Convolution Inverse Z-

transform

Inputraw spectra

Figure 2: Block diagram of the Chebyshev digital bandpass filter

Initially, an analog low pass filter is designed, with the uppenoffutequency equal to half

of the desired bandwidth of the Digital Bandpass (DBP) filter. The obtained low pass filter i
transformed t@ bandpass filter by shing the spectrum to the centre frequency of the DBP
filter. The transfer function in analog form is then converted to the digitaadoby

applyingabilinear transformation. The impulse response of the digital bandpass filter can be



obtained by applying the inverse Z-transform on the previous output. Finally, the raw
spectras convoluted with the impulse response of the Chebyshev filter to obtain the filtered

signal.

The grid search optimizatior29| is used to optimize the filter parameters. Initially the
RMSECV is calculated for all possible values of centre frequency and bandwidth. The
predictive performance of the modé&sevaluated by using the coefficient of determination
(R?), the Root Mean Square Error of Calibration (RMSEC), the Root Mean SquareErr
Cross Validation (RMSECV) in addition to the Root Mean Square Error of Reogdict
(RMSEP). A good model should have a highd&ow RMSEC,alow RMSECV, anda low
RMSEP.The optimum values of ¢ and w are selected as the values of ¢ and w for which the

RMSECYV has the minimum value.
3. Experimental data preparation

For this experiment, samples were prepared by dissolving glucose, urea and triacetin in a
phosphate buffer solution. Triacetin was used to model the triglycerides in the blood. Dry
solutes of glucose and urea were dissolved in the buffer to prepare their aqueous solutions
whereas triacetin solution was diluted by the buffer solution. The buffer solution was
prepared by dissolving 3.4023 grams of potassium dihydrogen and 3.0495 grams of
sodium mono hydrogen phosphate in distilled water. A preservative in the form of
fluorouracil was added to the buffer solution. The analytes used in this experiment were

purchased from Sigma Aldrich, UK.

In this study 30 samples were prepared by varying concentrations of glucose, urea and

triacetin. The concentration of these solutions was chosen in such a manner that it was



within physiological range in blood. Concentration of glucose, urea and triacetin ranged
from 20 to 500 mg/dLO to 50 mgdL and 10 to 190 mdL respectively. After preparing

the samples, triplicate spectra for each sample were collected with a Fourier transform
spectrophotometer (spectrophotometer Cary 5000 version 1.09) which spanned the spectral
region from 2000 nm to 2500 nm with a spectral resolution of 1 nm and in this way 90 NIR
spectra were collected from 30 samples. The purpose of using three replicate spectra is to
reduce the effect of instrument noise. The absorbance spectra of the buffer solution were

used as reference spectra.

The collected spectra were divided randomly into calibration and test sets. The calibration
set contained the three replicate spectra of 20 samples and was used to build the calibration
model. The test set contained the triplicate spectra of 10 samples and was used in the

prediction phase to test the calibration model.

The experiments were carried out in a non-controlled environment. i.e; experiments were
not carried under constant temperatdiles introduced significant baseline variation in the

collected spectra to evaluate the ability of the proposed methods in this work to deal with
the uncompensated variations. Many previous studies in this area have carried out

experiments in a controlled environment to compensate the effect of the baseline variation.

In this study, the Van Der Maaten toolbo6] has been used to perform the LLE
dimensionality reduction on the input raw spectra. The key parameters for LLE model are
the number of nearest neighbors (K) and the embedded dimension (d). The grid search

optimization was used to select the optimum values of K and d in order to prevent the



overfitting problem. The doublet (K,d) with the lowest RMSECYV is used to build the final
LLER model. The optimum number of PCs and LVs for the PCR and PLSR models were
found using “10-fold cross validation” respectively. The key parameters for SVR model

using Radial Basis Fucntion (RBF) kernel are cost (C), gamyaand epsilond). The grid
search optimization on G, ande using 10-fold cross validation was used to avoid over
fitting problem as mentioned in LIBSVM (A Library for Support Vector Machines).[27]
The triplet with minimum RMSECV were chosen as the optimum parameters to build the

final SVR model.

The grid search optireaion [25 is used to optimize the filter parameters (c,w). In the
optimization of the DBP filtering, the centre frequencyigcvaried from 0.01 f to 0.5 f and

the bandwidth (Wis varied from 0.01 f to 0.8 f; where f is the normalized frequency [19].
The values for the filter parameters (c and w) are chosen in such a way that the filter spans
the whole frequencies from-f(c-w/2) to fi= (c+w2); where f is the lower cutoff
frequency andy is the upper cuttoff frequency of the designed digital bandpass filter. In
each iteration, the designed digital bandpass filter is combined with thetiorednodel

and the RMSEYV is calculated. The computed RMSECYV is then stored in the variable
called SECV and is compared with SECV_opt as shown in the flowchart below; where
SECV_opt is the temporary variable used to store the updated minimum RMSECV value in
each iteration. The values of ¢, w, k and d corresponding to the minimum RMSECYV value

are chosen as



Parameter initialization
¢=0.01f; w=0.01f; d = 1; K=3; SECV_opt=200;

cmax=0.5f, wmax=0.8f, dmax=30, Kmax=59
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Figure 3: Flow chart of parameter optimization for DBPF-LLER model



the c_opt, w_opt, K _opt, d_opt respectively. The maximum values for ¢, w, K and d are
considered as cmax, wmax, Kmax, and dmax respectively. Thetomednodel with the

lower RMSECYV is chosen as the optimized digital bandpass filter. The optimum filter
parameters for the Chebyshev filter are found to be ¢=0.03 f, w= 0.04 f and for the

Gaussian digital filter, these were ¢=0.02 f, w=0.01f.

The selection process of the parameters for the optimum DBPF-LLER model is illustrated

in the flow chart as shown in Figure 3.

4. Discussion of Experimental Results and Comparisons:

For the evaluation, validation, and comparisons, a set of prediction models were developed.
Initially the PCR, PLSR, SVR and LLER models were implemented with no pre-
processing. The prediction performance of the models was examined by computing the
RMSEP, RMSEC, RMSECV and’Ror each model. Figure 4 shows the comparison of all
the prediction models with no pre-processing; thaxiz- shows the reference glucose
concentration (mg/dL) and the axs represents the predicted glucose concentration
(mg/dL). The “*’ symbols correspond to the test samples where as ‘0’ symbols correspond

to the calibration. The straight line is the reference line.
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Figure 4: Comparison of the PCR, PLSR, SVR and LLER models without pre-pragcessi

The results demonstrate that the LLER model gives a betterciimedcompared to the

PCR, PLSR and SVR models when no pre-processing of the raw data is used. This is an

interesting result that confirms the advantage of adopting an efficent non-linear

dimensionality reduction technique (LLE) in a calibration model when dealing with NIR

spectra. Figure 4 shows that

the LLER model exhibits a more consistent precision of

calibration relative to the PCR, PLSR and SVR models, although the testing and training

data had a wider range of glucose concentation. The advantage of the LLER method over

the PCR, PLSR and SVR models is that it preserves the neighbourhood structure of nearest

spectra in the mapped plane. The LLE algorithm maps the high dimensional input



coordinates into low dimensional data (Y) by minimising the cost funebipr) as given in
equation 2. The cost function is based on the reconstruction coefficients of K nearest
neighbours. Then the mapped data are regressed against the analyte of interest to build the
calibration model, which is completely identified by the embedded dimension d and the K
nearest neighbours. So, the values of K and d affect the prediction performance of the
LLER model. This has been investiagted and Table 1 below summarises the impact of

these two parameters on the resulting RMSEP and RMSECYV values for the LLER model.

Table 1: The prediction capability of the LLER model for different valfeK and d

Calibration model RMSECYV (in mg/dL) | RMSEP (in mg/dL)
LLER (K=18,d=14) 34.90 33.20
LLER (K=18, d= 15) 36.10 36.00
LLER (K=18 , d= 16) 34.80 35.30
LLER (K=19, d=14) 35.70 34.60
LLER (K=19, d= 15) 32.60 3100
LLER (K=19, d=16) 33.40 35.20
LLER (K=20, d=14) 38.20 36.50
LLER (K=20, d= 15) 34.60 34.20
LLER (K=20, d= 16) 33.70 36.80




Furthermore, as already mentioned, appropriate pre-processing of the raw data prior to
applying the calibration model can yield tangible improvements in prediction, since the raw
NIR spectra are affected by baseline shift, background noise, light scattering and
instrumental noise in general. Hence, a set of pre-processing techniques including first
derivative, Gaussian digital bandpass filtering and Chebyshev digital bandpass filtering are

applied and evaluated for each model.

Firstly, the PCR and PLSR models were implemented with the different pre-processing
techniques where the number of factors that produce the minimum RMSECYV are chosen as
the optimum number of principal components and latent variables for PCR and PLSR
respectively. The comparison of PCR and PLSR when different pre-processing techniques
are applied is shown in Figure 5. The y-axis shows the RMSECV and the x-axis represents
the number of principal components or Latent variables for PCR and PLSR respectively.
The results show that the models with pre-processing of NIR data gives much better
prediction accuracy in comparison to models with no pre-processing. From Figure 5, it is
also observed that models with bandpass filtering achieve better prediction accuracy in
comparison to the first derivative pre-treatment. The optimum number of principal
components and latent variables are identified to be 6. Information about NIR spectra is
prominent in the frequency components in the mid-band range, while the noise and baseline
variations tend to occupy the high and the low frequency range respectively, that is why
these can be effectively reduced using an optimised bandpass filter rather than the first
derivative which tends to reduce the signal to noise ratio (SNR). First derivative pre-

processing can eliminate only base line variations in the raw spectra, whereas the bandpass



filter can eliminate both the low frequency baseline variations and the high frequency noise

from the spectra.

The PCR, PLSR, SVR and LLER models were then implemented with the raw data pre-
processed using the first derivative, the Gaussian, and the Chebyshev digital bandpass

filters.

PCR and PLSR with different pre-processing techniques
300 T T T T T

:
—a— PCR
PCR+FD
—&— PCR+GF
—&— PCR+CF
—%—PLs
PLS+FD ||
—+— PLS+GF
—+— PLS+CF

RMSECY (in mgfdL)

5 6
Number of PCs/LVs

Figure5: PCR and PLSR with different pre-processing techniques

Figure 6 illustrates the prediction performance comparison of the PCR, PLSR, SVR and
LLER models with the three different pre-processing methods. For each subplogxke x-
represents the reference glucose concentration (mg/dL) andathe shows the predicted
glucose concentrath (mg/dL). The ‘0’ symbols correspond to the calibration where as ‘*’

symbols correspond to the test samples. The reference line is represented by a stright line as

shown in Figure 6. The results as summarized in Table 2, demonstrate that the LLER



combined with the Chebyshev filter gives the best prediction accuracy. The advantage of a
Chebyshev filter over a Gaussian bandpass filter is that it offers an optimal trade off
between a steeper roll off and passband ripples. Hence, it is more effective in reducing the
effect of both the high frequency noise and low frequency baseline variations without

affecting the mid-band NIR data.
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Figure 6: Comparison of PCR, PLSR, SVR and LLER models with different types of pre-



Table 2 Comparison of PCR,PLSR, SVR and LLER models

Regression Pre Optimum parameters RM SEC* RMSECV* R? RM SEP*

model processing

PCR None 6PCs 25.34 67.59 0.90 40.00

PCR 1 6PCs 24.92 51.07 0.88 28.10
derivative

PCR GDBPF 6PCs 17.54 56.70 0.97 24.77

PCR CDBPF 6PCs 15.93 51.23 0.98 18.98

PLS None 6LVs 11.30 34.07 0.90 38.96

PLS 1 6LVs 22.54 31.59 0.97 27.56
derivative

PLS GDBPF 6LVs 12.00 38.30 0.96 24.59

PLS CDBPF 6LVs 15.92 28.43 0.98 19.06

SVR None e=0.1 y=0.001 C=0.1*10"6 2.50 38.44 0.90 42.00

SVR 1% £=0.2 y=0.001 C=0.2*10"6 | 13.50 28.98 0.98 22.98
derivative

SVR GDBPF £=0.04 y=0.8 C=0.04*10"6 | 12.09 28.00 0.99 15.17

SVR CDBPF e=4.5 y=1.56 C=4.5*10"6 12.47 27.40 0.99 14.59

LLER None K=19, d=15 18.52 32.60 0.95 31.00

LLER 1% K=29, d=25 15.55 31.50 0.97 24.63
derivative

LLER GDBPF K=33, d=20, 14.92 27.80 0.98 18.34

¢=0.03f, w=0.04f
LLER CDBPF K=55, d=23 17.80 27.12 0.99 14.03

C=0.02f, w=0.01f




*=(units are in mg/dL);GDBPF=Gaussian digital bandpass filter,CDBPF=Chebyshev

digital bandpass filter.

5. Conclusions

In this paper, the use of the LLER methadnvestigated for the prection of glucose
concentration from near infrared spectra. The prediction capability of the proposed model
has been evaluated and validated to generate and predict the glucose concentration of
agueous solutions composed of urea, triacetin and glucose. The results show that the LLER
model outperforms PCR, PLSR and SVR models without pre-progemsd show that the

digital bandpass filter pre-processing could improve the giedi performance of the

PCR, PLSR, SVR and LLER models in Comparison to the first derivative pre-treatment.
The prediction capability of the LLER model is quite sensitive to the dimension of the
embedded data (d) and the number of nearest neighbor points (K). Hence the selection of
these parameters is very important to get the optimum results.

In future work, the proposed model will be evaluated using blood plasma data.
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