
This is a repository copy of Throughput/Area-efficient ECC Processor Using Montgomery 
Point Multiplication on FPGA.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/92952/

Version: Accepted Version

Article:

Khan, Z-U-A. and Benaissa, M. (2015) Throughput/Area-efficient ECC Processor Using 
Montgomery Point Multiplication on FPGA. IEEE Transactions on Circuits and Systems II: 
Express Briefs, 62 (11). pp. 1078-1082. ISSN 1549-7747 

https://doi.org/10.1109/TCSII.2015.2455992

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS < 
 
 
 

1 

 
Abstract—High throughput while maintaining low resource is a 

key issue for Elliptic Curve Cryptography (ECC) hardware 
implementations in many applications. In this paper, an ECC 
processor architecture over Galois Fields is presented that 
achieves the best reported throughput/area performance on FPGA 
to date.  A novel segmented pipelining digit serial multiplier is 
developed to speed up ECC point multiplication. To achieve low 
latency, a new combined algorithm is developed for point addition 
and point doubling with careful scheduling. A compact and 
flexible distributed RAM based memory unit design is developed 
to increase speed while keeping area low. Further optimisations 
were made via timing constraints and logic level modifications at 
the implementation level. The proposed architecture is 
implemented on Virtex4 (V4), Virtex5 (V5) and Virtex7 (V7) 
FPGA technologies and respectively achieved throughout/slice 
figures of 19.65, 65.30 and 64.48 (106/ (Seconds x Slices)).  
 

Index Terms—Elliptic Curve Cryptography (ECC), Point 
Multiplication (PM), Field Programmable Gate Array (FPGA), 
Throughput per Area (throughput/area), Efficiency. 
 

I. INTRODUCTION 

UBLIC  key based information security networks use 
cryptography algorithms such as Elliptic Curve 

Cryptography (ECC) and RSA. ECC has emerged recently as 
an attractive replacement to the established RSA due to its 
superior strength-per-bit and reduced cost for equivalent 
security [1].  

High speed ECC is a requirement for matching real-time 
information security, however, in many applications the 
hardware resource implications may be prohibitive and the 
required high speed performance would need to be achieved 
within a restricted resource performance.  

FPGA based Hardware acceleration of ECC has seen a surge 
of interest recently. There are several state of the art FPGA 
implementations aimed at the high speed end of the design 
space [7 -13]. Most of these however use increased hardware 
resource to achieve the speed improvements sacrificing overall 
efficiency in terms of the throughput/area metric; such 
efficiency is desirable in many emerging low resource 
applications in particular in wireless communications. Area 
optimised high speed ECC design is challenging; there are 
requirements of algorithmic optimisation, careful scheduling to 

 
Z. Uddin-Ahamed-Khan and M. Benaissa are with the Department of Electronic 
and Electrical Engineering, The University of Sheffield, Sheffield, S1 3JD, UK, 
(e-mail: elp10zuk@sheffield.ac.uk or m.benaissa@sheffield.ac.uk).                                                                                                        

reduce clock cycles, size of multiplier, critical delay of the 
logic, and pipelining issues [7], [9]. 

In ECC, scalar point multiplication (PM) is the main 
operation. The PM can be implemented over either prime fields, 
GF(p) or binary extension fields, GF(2m) adopting either 
projective coordinates or  affine coordinates. Binary extension 
fields called also finite fields (FFs) are more suited to hardware 
implementation due to their lower complexity FF multipliers, 
simple FF adder and single clocked FF squaring circuits.  
Projective coordinates are suited to throughput/area efficient 
ECC designs,  where the  costly inversion operation is avoided 
and  the inversion operation required to convert projective into 
affine coordinates can be achieved by multiplicative inversion 
[2], [6].  

ECC computations in the projective coordinates system are 
based on large operand finite field operations of which 
multiplication is the most frequently performed. The high speed 
performance of ECC designs therefore would depend mainly on 
the performance of the FF multipliers. Digit serial FF 
multipliers are often used to reduce latency; popular multipliers 
here include the direct method based multipliers and Karatsuba 
[7], [10]. If the field size is m and the digit size is w of a digit 
serial multiplier, then the number of clock cycles for each FF 
multiplication is s + c, where s = m/w, and c is for clock cycles 
due to data read-write operations. Thus, large digit multipliers 
can reduce clock cycles (latency) with increasing complexities 
of area and critical path delay. The critical path delay can be 
reduced using pipelining with some extra latency [9].    

In this paper, we present an area-time (throughput/slice) 
efficient ECC processor over binary fields in projective 
coordinates on FPGA. We implement the Lopez-Dahab (LD) 
modified Montgomery algorithm for fast PM. We demonstrate 
a new “no idle cycle” [7] combined point operations (point 
addition and point doubling) algorithm to remove idle clock 
cycles in between two successive point operations. We schedule 
point operations very carefully to avoid the idle clock cycles 
due to data dependency, read-write operations, and pipelining. 
In addition, our efficient arithmetic circuit includes a digit serial 
multiplier, an adder and a square circuit. The presented 
arithmetic unit can support on- the-fly addition and square 
operations while performing FF multiplication.  Moreover, we 
present an improved Most Significant Digit (MSD) serial 
multiplier utilizing segmented pipelining similar to the Least 

Copyright (c) 2015 IEEE. Personal use of this material is permitted. 
However, permission to use this material for any other purposes must be 
obtained from the IEEE by sending an email to pubs-permissions@ieee.org 

 

Throughput/Area Efficient ECC Processor using 
Montgomery Point Multiplication on FPGA  

Zia-Uddin-Ahamed Khan, Student Member, IEEE, Mohammed Benaissa, Senior Member, IEEE 

P 

mailto:pubs-permissions@ieee.org


>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS < 
 
 
 

2 

Significant Digit (LSD) multiplier presented in [2], [4]. We 
develop an optimized distributed RAM based memory unit for  
flexible data access to support reduced data dependency in the 
arithmetic operations. We adopt the Ithoh-Tsujii   inversion 
algorithm for inversion to save area [5], [6]. Finally, we use a 
dedicated finite state machine based control unit to speed up the 
control operations. The proposed architecture is implemented 
on different FPGA technologies, Virtex4 (V4), Virtex5 (V5) 
and Virtex7 (V7), and compared to state of the art in terms of a 
throughput/slices metric. The throughput/area performance in 
(1x106/s)/(slices) of our proposed design (19.65 on V4, 65.30 
onV5 and 64.70 on V7) outperforms state of art designs on 
FPGA to date. 

The rest of the paper is organized as follows. Section II 
discusses preliminaries of PM, and the Lopez-Dahab modified 
Montgomery point multiplication in projective coordinates. 
Section III reviews resource constraints in high throughput 
ECC. Section IV illustrates the proposed design. Section V 
presents the results of the FPGA implementation and a 
comparison with recently published state of art designs on 
FPGAs, followed by conclusions in section VI. 

II. PRELIMINARIES 

A. ECC over GF(2m)  

Elliptic Curve Cryptography over binary extension field (2m) 
is suitable for hardware implementation. The main operation of 
ECC is scalar point multiplication ܳ ൌ ݇Ǥ ܲǡ where ݇  is a scalar 
(integer), ܲ  is a point on the elliptic curve, and ܳ is a new point 
of the curve after ݇Ǥ ܲ [2]. 

Let E be an elliptic curve in the binary extension field. E is 
defined by a set of points (ݔ and ݕ), and a point at infinity ∞, 
which satisfy the equation below: 

ܧ                         ׷ ଶݕ ൅ ݕݔ ൌ ଷݔ  ൅ ଶݔܽ ൅ ܾǡ                    (1)               
Where ܽ  and ܾ  are elements of the finite field, GF(2m) and ܾ ്Ͳ [2]. The point multiplication (݇Ǥ ܲ) is accomplished by point 
addition and point doubling depending on݇ ௜, the ݅ th value of ݇ . 
The Lopez-Dahab (LD) modified Montgomery point 
multiplication algorithm, as shown in Algorithm I, has been 
adopted by many designs  in the high performance ECC design 

[7-13] space due to its speed, side-channel attack resistance, 
suitability of parallelisation and is low resource friendly.   

III.  RESOURCE CONSTRAINED HIGH THROUGHPUT ECC 

For a high throughput ECC implementation in the low area 
end of the design space, there are requirements of optimization 
of the critical path of the logic, the area of the design, and 
number of clock cycles (latency) for the PM. Throughput is 
usually improved via the adoption of large digit size 
multiplication and parallel operation of multiplications to 
decrease the latency. However, these steps result in an increased 
area and critical path delay and therefore affect the throughput 
per area metric figure. The critical path delay can be minimised 
via pipelining [9] at the expense of an increase in area and 
number of clock cycles with the number of pipeline stages 
inserted in the design. Also, the pipeline stages can generate 
idle cycles in the data dependable field operations [7]. The 
number of pipeline stages is an important consideration for area 
optimized high speed design often requiring a latency versus 
clock frequency trade-off. The latency due to pipelining can 
affect the merits of the use of a large digit size multiplier and 
the parallelisation of multiplication. In general, the area 
complexity of a high speed ECC design would depend on the 
digit size of the multipliers used and the level of parallelism 
adopted, on the size and sophistication of the memory unit, and 
on the control unit.  

IV.  PROPOSED THROUGHPUT/AREA EFFICIENT ECC 

PROCESSOR 

Our proposed area optimized high throughput architecture is 
presented in Fig.1. The design consists of an efficient arithmetic 
unit, an optimised memory unit and a dedicated control unit. 

A. Segmented Pipelining Based Digit Serial Multiplier 

The arithmetic unit design consists of a novel most 
significant digit (MSD) serial multiplier, a square and adder 
circuit as shown in Fig.1.  

The performance of ECC depends mainly on the 
performance of the Digit serial multiplier in particular the speed 

Algorithm 1 LD Montgomery Point multiplication over GF(2m)[3] 
INPUT: ݇ ൌ ሺ݇௧ିଵǡ ǥ ǡ ݇ଵǡ ݇଴ሻଶ with ݇ ௧ିଵ ൌ ͳǡ ܲ ൌ ሺݔǡ ሻݕ ג  ଶ೘ሻܨሺܧ
OUTPUT: ݇  ݌

Initial Step:  ܲሺ ଵܺǡ ܼଵሻ ՚ ሺݔǡ ͳሻǡ ʹܲ ൌ  ܳሺܺଶǡ ܼଶሻ ՚ ሺݔସ ൅ ܾǡ  ଶሻݔ
For ݅  from ݐ െ ʹ downto 0 do 
If ݇௜ ൌ ͳ then 
Point addition:ܲ ൫ ଵܺǡܼଵ൯ ൌܲ൫ ଵܺǡܼଵ൯ ൅  ܳ൫ܺଶǡܼଶ൯ 

Point Doubling: ܳ ሺܺଶǡ ܼଶሻ ൌʹܳሺܺଶǡ ܼଶሻ 
1. ܼଵ ՚ ܺଶǤ ܼଵ 
2. ଵܺ ՚ ଵܺǤ ܼଶ 
3. ܶ ՚ ଵܺ ൅ ܼଵ 
4. ଵܺ ՚ ଵܺǤ ܼଵ 
5. ܼଵ ՚ ܶଶ 
6. ܶ ՚ Ǥݔ ܼଵ 
7. ଵܺ ՚ ଵܺ ൅ ܶ 
8. Return ܲ ሺ ଵܺǡ ܼଵሻ 

1. ܼଶ ՚ ܼଶଶ 
2. ܶ ՚ ܼଶଶ 
3. ܶ ՚ ܾǤ ܶ 
4. ܺଶ ՚ ܺଶଶ 
5. ܼଶ ՚ ܺଶǤ ܼଶ 
6. ܺଶ ՚ ܺଶଶ 
7. ܺଶ ՚ ܺଶ ൅ ܶ 

Return ܳ ሺܺଶǡ ܼଶሻ 
Conversion Step: ݔଷ ՚ ଵܺȀܼଵ Ǣ ଷݕ ՚ ቀ௫ା௑భ௓భ ቁ ሾሺ ଵܺ ൅ ଵሻሺܺଶܼݔ ൅ܼݔଶሻ ൅ ሺݔଶ ൅ ሻሺܼଵܼଶሻሿ(xܼଵܼଶሻିଵݕ ൅  Ǥݕ

 

 
Fig. 1. Proposed throughput/area efficient ECC architecture for n =2 



>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS < 
 
 
 

3 

of the multiplier for a targeted level of latency. Digit serial 
multiplication for the high speed ECC implementation end 
tended to be either in direct form (i.e. MSD serial Multiplier) 
[10] or in bit parallel form (i.e. Karatsuba multiplier) [8], [9]. 
There are some advantages of Karatsuba multiplication over 
MSD multiplication. A Karatsuba FF multiplication takes s-1 
cycles, where s = m/w, and is suitable for pipelining. An MSD 
FF multiplication takes m + 1 cycles where the extra clock cycle 
delay is due to the  reduction register [2], [5] [9], and [10]. 
However, a pipelined Karatsuba multiplier based ECC 
implementation has been shown to achieve a lower clock 
frequency than a direct digit serial multiplier based 
implementation [7-8], [10].  
For large MSD digit serial based ECC, pipelining is required 
which can affect latency in the point multiplications. In this 
work, we apply segmented pipelining to improve performance 
in MSD multiplication. In the segmented pipelining approach, 
a wxm digit serial multiplication is broken into sub digit serial 
multiplications called segmented multiplications w1xm, 
w2xm,...,wnxm, where w=w1+w2+ …+ wn. The segmented 
multiplication product is first saved in the register (Reg) before 
reduction into m bits using an interleaved reduction similar to 
that in the bit serial multiplier in [2]. The reduced m bit output 
of the reduction unit is saved in another Reg to use in the next 
cycles reduction or output. Thus, the proposed multiplication 
takes s +2 clock cycles where 1 extra clock cycle is due to the 
segmented pipelining, and the other additional  clock cycle  for 
pipelining after the reduction unit. A new input of the multiplier 
is inputted in every s clock cycles. Thus, a real time reset is 
required in every s cycles. We use multiplexers to select zero 
for reset and save one clock cycle for the FF multiplication. 
Finally, the segmented pipelined multiplier takes one clock 
cycle for n segmentations without increasing area (slices) on the 
FPGA. The unused flip flops (FFs) in the combinational circuit 

of the multiplier are utilized in the pipelining [8]. 
To evaluate our proposed segmented multiplier,  area and 

time complexity analysis is performed and presented in Table 1 
which also includes comparison to state of the art digit serial 
multipliers reported in [15],[16], and [17]. For ݏ ൌ  Ͷ or less, 
our proposed multiplier shows same or better latency using 
similar or less resources. However, a key advantage of our 
proposed architecture is that we are able to achieve higher speed 
for the same (or less) area and the same (or less) latency; this is 
because our critical path delay can be modulated by the number 
of segmentations (n) with extra Flip Flop (FFs). The value of n 
defines the critical path delay of the multiplier. The path delay 

is either  ܶ ஺ ൅ ሺlogଶሺ ௗ௡ሻሻ ௑ܶ  for the GF2MUL (M) or ܶ ெ௎௑ ൅ሺlogଶሺ݊ ൅ ݇ሻሻ ௑ܶ for the reduction part (Rd).  Thus, our critical 
path delay can be optimised (to achieve the desirable high 
speed) by choosing an optimum number of segmentations (n). 
To generalise, from Table 1, the best figure latency for a field 

multiplication [15, 17] is 2඄ට௠ௗ ඈ,  our multiplier’s latency is ቒ௠ௗ ቓ. 
As a rule of thumb, therefore as long as m<4d, our multiplier 
would achieve comparable or better latency figure. But what is 
crucial is that for comparable (less or higher) latency say and 
same digit size, our design can achieves improved critical path 
delay ܶ ஺ ൅ ሺlogଶሺ ௗ௡ሻሻ ௑ܶ in our case (due to GF2MUL) compared 
to  ஺ܶ ൅ ሺ logଶ ݀ሻ ௑ܶ  in [15.17] using an optimum segment size 
without increasing the latency of the multiplier. Thus, utilising 
similar area, our multiplier can achieve higher speed. At the 
extreme, the use a full precision multiplier ( ݀ ൌ ݉) with an 
optimised segmentation would thus lead to the highest speed. 

B. Optimized Memory Unit. 

High speed and flexible design for the memory unit can 
improve performance. We consider an optimised distributed 
RAM based memory unit. There is an 8xm size register file in 
a unit, one m bit register (accumulator) and one shift register 
(Shiftreg).  The 8xm register file consists of one m bit input that 
can load data in any location of the register file, two m bit output 
buses (A bus and B bus) that can access data from any location 
of the register file. The shift register can store data from any 
location of the register file to provide w size digit (bi) multiplier 
for the FF multiplication. The accumulator can save a result 
from the arithmetic unit or new data from the register file to do 
a square operation. The accumulator and square circuit are 
connected such that repeated squaring can be done without 
saving in the register file. The repeated squaring improves 

Algorithm 2 Proposed combined loop operation of the   LD 
Montgomery point multiplication with careful scheduling 
For ݅  from ݐ െ ʹ down to 0 do If ݇ ௜ ൌ ͳ then 
If ݇௜ିଵ ൌ ͳ then If ݇௜ିଵ ൌ Ͳ then 
Point addition:ܲ ൫ ଵܺǡܼଵ൯ ൌ ܲ൫ ଵܺǡܼଵ൯ ൅  ܳ൫ܺଶǡܼଶ൯ and Point Doubling: ܳሺܺଶǡ ܼଶሻ ൌ ʹܳሺܺଶǡ ܼଶሻǤ 
St1: ܼ ଵ ՚ ܺଶǤ ܼଵǤ  
St2: ܺ ଵ ՚ ଵܺǤ ܼଶ, ܼଶ ՚ ܼଶଶǡ ܶ ՚ܼଶସǤ  St1: ܼ ଶ ՚ ଵܺǤ ܼଶǡ ܼଶ ՚ ܼଶଶǡ ܶ ՚ ܼଶସǤ    

St2: ܺ ଶ ՚ ܺଶǤ ܼଵǤ 
St3: ܺଶ ՚ ܾǤ ܶ ൅ ܺଶସ, ܺଶ ՚ ܺଶଶǤ  St4: ܼଶ ՚ ܺଶǤ ܼଶ.   
St5:  ଵܺ ՚ ଵܺǤ ܼଵ,  ܶ ՚ ሺ ଵܺ ൅ ܼଵሻଶǡ ܼଵ ՚ ܶ. St6:  ଵܺ ՚ Ǥݔ ܶ ൅  ଵܺ. 
Conversion Step: same as Algorithm 1. 

 TABLE I  
LATENCY, CRITICAL PATH DELAY  AND  RESOURCES OF DIGIT SERIAL MULTIPLIERS OVER GF(2m) 

Ref Latency, cc Critical path delay #XOR #AND #FFs #Mux 
ሺʹ ൅ logଶ ܥʹ [15] ݀ሻ ௑ܶ ݉ ൅ ݀ʹሺܥ ൅ ଵܵ  ൅ ܵଷሻ ൅ ݀ ൅ ܵଶ Cܵଷ ሺܥ ൅ ʹሻ݉ ൅  --- ଷܵܥ
[16] ݉୪୭୥ర ଶ ஺ܶ ൅ ሺʹ ൅ ͵logସ ݉ሻ ௑ܶ ͸ͻʹͲ ݉୪୭୥ర ଺ െ ʹ݉ െ ͳͶ ݉୪୭୥ర ଶ െ ͳͷ ൅ ʹ݉ െ ʹ 

݉୪୭୥ర ଺ --- --- 

஺ܶ ܥʹ  [17]  ൅ ሺ logଶ ݀ሻ ௑ܶ ݀ሺܥሺ݀ ൅ ݉ሻ ൅ ͵ሻ ݉݀ܥ --- --- 
Ours ቒ݉݀ቓ ஺ܶ ൅ ሺlogଶሺ ௗ௡ሻሻ ௑ܶ or 

 ெܶ௎௑ ൅ ሺlogଶሺ݊ ൅ ݇ሻሻ ௑ܶ 

M part:݀ ݉ ൅Rd part:ሺ ݊݉ ൅ ݇݀ሻ,M=GF2MUL, 
Rd=Reduction Unit, and k  is the  second higher 

order of irreducible polynomial 

M part:  ݀݉ 
M part: n(m+d-
1)+Rd part: m, 

Rd part: 
m 

݊ ൌ ݏ ൌ  ͓segments, d= digit size, ଵܵ ൌ ቒ௠ௗ ቓ ൫ʹǤͷ ݀୪୭୥మ ଷ െ ͵݀ ൅ ͲǤͷ൯ ൅  ݀୪୭୥మ ଷ െ ݀ǡ ܵଶ ൌ ቒ௠ௗ ቓ ൫ʹ ݀୪୭୥మ ଷ െ ʹ݀൯ǡ ܵଷ ൌ ቒ௠ௗ ቓ ൫ʹ ݀୪୭୥మ ଷ൯ǡ ܥ ൌ  ඄ට௠ௗ ඈ. ܶெ௎௑ ൌ  .ͳ Mux delayݔʹ



>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS < 
 
 
 

4 

latency of multiplicative inversion as proposed in [6]. The 
memory unit is smartly accessible to write, read shifting 
operation in any location. The easy accessibility of the memory 
reduces the number of temporary registers for the PM. The 
memory unit consumes very low area to provide high speed 
data access.   

C. Scheduling for point operations   

In this paper, we propose new scheduling in the combined 
LD Montgomery point multiplication as shown in algorithm 2.   
To schedule for no idle cycles, we combine the point addition 
and point doubling algorithms for the current value of Ki=1 as 
shown in Algorithm 2. We observe that the product of the last 
multiplication is ܺ ଵ if  ݇௜ ൌ ͳ or ܺ ଶ  if  ݇௜ ൌ Ͳ. Thus, the first 
multiplication of the loop should be independent of the last 
multiplication. For example, if the last product is ଵܺ   then the 
next operands of multiplication are ܺଶ  and ܼ ଵ. Otherwise, the 
next operands will be ܺଵ  and ܼ ଶ. Thus, the first multiplication 
depends on the last  ݇௜ which means the  ݇௜ାଵ bit as shown in 
Algorithm 2.  

Fig.2 illustrate the proposed no idle state schedule using a 41-
bit digit size FF multiplier. The 41 bit digit size FF multiplier 
takes M = 4 cycles for actual multiplication, and  c = 4, with 2 
clock cycles for pipelining and 2 clock cycles for unloading 
from and loading to the memory unit. In a loop, the point 
operation in the projective coordinates system requires 6 
multiplications. To ensure no idle state in the multiplication, a 
new multiplication is started at every 4 clock cycles. Thus, two 
consequent but independent multiplications are overlapping 
each other as shown in Fig. 2 for  ݇௜ ൌ ͳ and ݇௜ିଵ ൌ ͳ. 

Again, the adder circuit placed in the common data path is 
capable of doing addition concurrently. The square operation 
takes three cycles with 1 cycle to save in the accumulator, 1 
clock cycle for squaring, and 1 clock cycle for loading. 
Repeated squaring can be done without storing in the register 
file. Thus, double squaring takes 4 clock cycles. Total Latency 
of the ECC is shown in the Table II. 

V. IMPLEMENTATION ON FPGA AND RESULTS 

Our proposed efficient ECC processor is implemented over 
GF(2163), GF(2233), GF(2283), GF(2409), and GF(2571), on 
different FPGA technologies namely Virtex4 (LX25_12 for 
f163, and LX100_12 for f233 to f571)),  Virtex5 
(XC5VLX50_3 for f163), and Virtex7 (Vx550T_3 for f163, 
and V585_T for f233 to f571  ) using Xilinx tools versions 13.2 
and  14.5 respectively. The design was implemented on Virtex4 
and Virtex5 technologies to allow for a fair comparison to most 
relevant works, and on the Virtex7 to evaluate the performance 
on the newer technology. We present the implementation 
results after place and route in Table III.  The Xilinx tools were 
used to set high speed properties and put subsequent timing 
constraints to improve the area-time product. The 
implementation results after place and route of our ECC designs 
are summarized in Table III. Table IV also includes area-time 
performance and comparison to state of the art. 

As shown in Table IV, the main contribution of the 
segmentation in the multiplier is an increase in the clock 
frequency while utilizing very small resources (FFs). The clock 
frequency for 3 segmented (3 Seg.) pipelined multipliers based 
ECC design is 290 MHz on the Virtex4- that is 38 MHz- more 
than the respective implementation of non-segmented (No Seg.) 
multiplier based ECC. Again, the 2 segmented (2 Seg.) 
pipelined multiplier based ECC shows the best throughput per 
slice (65.30) is implemented on Virtex5 the 3 segmented 
multiplier based ECC on Virtex7 shows the highest 
performance (only 10.51 µs for an ECC point 
multiplication).The  optimum size of the segments  is subject to 
a trial-error method to achieve high throughput.  

Table IV shows comparisons with relevant high performance 
ECC designs on FPGAs in term of efficiency metric 
throughput/area (( 1x106/s)/slices) over GF(2163) and GF(2571). 
For GF(2163) , the previous best optimised work was reported in 
[7] where one 41bit pseudo-pipelined Karatsuba multiplier was 
used with a so called “no-idle cycles” point multiplication 
approach to achieve 11.92 throughput/area figure on Virtex4. 
Our no-segment based ECC design consumes less area (3623 
slices) and achieves higher clock frequency (252 MHz) than [7] 
(4080 slices, 197 MHz) and therefore has a  40% higher 

 
Fig. 2. Proposed careful scheduling (4 Clock cycles/multiplication) 

TABLE II  
LATENCY OF ECC FOR ݉ڿȀۀݓ ൌ Ͷ, MUL  ଻, ADD =1, SQR = 2ܯସȀܯ== 
Algorithm Initial + point operations + Conversion GF(2163) 
 [2] ͷ ൅ ሺ͸ܯ଻ ൅ ͳ͵ሻሺ݉ െ ͳሻ ൅ ሺͳͲܯ଻ + Inv) 9211 
Algorithm2  ͷ ൅ ሺ͸ܯସሺ݉ െ ͳሻ ൅ ሺ͹ܯସ ൅ ସܯ ଻ + Inv) 4168ܯ͵ ൌ Ͷ ǡ ܯ଻ ൌ ͹, Inversion (Inv)  = (#Mul for Inversion ൈ ଻ܯ ൅  ݉ሻ 

TABLE II I  
FPGA IMPLEMENTATION RESULTS AFTER PLACE &  ROUTE IN VIRTEX7  

m(segments 
size) 

Slices 
(Sls) 

LUTs FFs Fq.,
MHz 

 Time, 
µs 

(106/s) 
/Sls 

163(3x14) 1476 4721 1886 397 10.51 65 
233(4x14+3) 2647 7895 2832 370 16.01 24 
283(5x14+1) 3728 11593 3973 345 20.96 13 
409(7x14+5) 6888 20881 6038 316 32.72 4.4 
571(10x14+1) 12965 38547 10066 250 57.61 1.3 



>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS < 
 
 
 

5 

throughput/area efficiency. Particularly, our 3 segmented based 
design shows 65% better efficiency than [7]. Our f571 achieves 
180 MHz speed while the work in [7] operates at a max speed 
of 107 MHz. One potential option of improving the area 
performance of [7] is to deploy an area efficient Karatsuba 
multiplier [16]; however, this would be at the expense of 
increased critical path delay. Another optimized  ECC  in [8] 
used full length (164 bit) word serial Karatsuba multiplier with 
pipelining and implemented on Virtex4 and Virtex5. The work 
in [8] uses four times bigger multiplier than ours to achieve 
11.55 and 29.96 throughput/area on Virtex4 and Virtex5, 
respectively. Our 3 segmented 41 bit multiplier based design on 
virtex4 is 70% and the 2 segmented 41 bit multiplier based 
design on Virtex5 is 118% better than [8]. In [10], the reported 
best throughput/area efficiency is based on three 33 bit 
multipliers based ECC on Virtex5 shows 9.86 in 
throughput/LUTs ((1x106/s)/LUTs).  Our 2 segmented 
multiplier based ECC shows 17.9 in (1x106/s)/LUTs is 82% 
better than the reported most efficient design in [10]. The 
hardware results presented in [11], [12], [13], and [14] use 
parallel multipliers to speed up their ECC designs show poor 
throughput/area efficiency due to the large area consumed. 
Finally, our single multiplier (41 bit) based ECC 
implementation on Virtex7 takes 10.51 µs for point 
multiplication is faster than the reported  high speed work in 
[7],  [9],  [13],  [14], and the work on the Virtex4 reported in 
[8], and is comparable to the work in [12] while of course using 
much lower resources. 

VI.  CONCLUSION 

We proposed a highly efficient FPGA ECC processor design 
for high speed applications over GF(2m). Key contributions 
include a novel high performance segmented pipelining MSD 
multiplication, a smart no-idle state scheduling that enables the 
clock cycles for loop operations in the point multiplication to 

depend only on the actual clock cycles of the FF 
multiplications, and a highly optimized memory unit design. 

To our knowledge, our design achieves the best 
throughput/area efficiency figure on FPGA reported to date.  
The  best throughput/area design achieved a figure of  65.30 
(1x106/s)/(slices)  that is performing an ECC point 
multiplication in  14.06 µs time whilst utilising only 1089 slices 
of area.  The fastest design achieved 10.51 µs for a point 
multiplication using only 1476 slices.  

REFERENCES 

 
[1] N. Koblitz, A. Menezes, and S. Vanstone, “The State of Elliptic Curve 

Cryptography,” Des. Codes Cryptography, vol. 19, no. 2-3, pp. 173-193, 
Mar. 2000. 

[2] R. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve 
Cryptography. New York: Springer-Verlag, 2004. 

[3] J. Lopez and R. Dahab, “Fast Multiplication on Elliptic Curve Over 
GF(2m) Without Precomputation,” in Proc. 1st Int. Workshop 
Cryptograph. Hardw. Embedded Syst., 1999, pp. 316-327. 

[4] S. Kummar, T. Wollinger, and C. Par, “Optimum digit serial GF(2m) 
multiplier for curve based cryptography,” IEEE Trans. Comput., vol. 55, 
no. 10, pp. 1306-1311, Oct. 2006.  

[5]  Z. Khan and M. Benaissa, "Low area ECC implementation on FPGA," in 
Proc. IEEE 20th ICECS, Dec. 8-11, 2013, pp.581-584. 

[6] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative 
inverses in GF (2m) using normal bases,” J. Inf. Comput., vol. 78, no. 3, 
pp171-177, 1988. 

[7] B. Ansari, M. Hasan, “High-Performance Architecture of Elliptic Curve 
Scalar Multiplication,” IEEE Trans. Computers, vol.57, no. 11, pp. 1443-
1453, Nov. 2008. 

[8] S. Roy, C. Rebeiro, and D. Mukhopadhyay, “Theoretical Modeling of 
Elliptic Curve Scalar Multiplier on LUT-Based FPGAs for Area and 
Speed,” IEEE Trans.  VLSI Syst., vol. 21, no. 5, pp. 901–909, May. 2013. 

[9] W. Chelton and M. Benaissa, “Fast Elliptic Curve Cryptography on 
FPGA,” IEEE Trans.  VLSI Syst., vol. 16, no. 2, pp. 198–205, Feb. 2008. 

[10] G. Sutter and J. Deschamps and J. Imana, “Efficient Elliptic Curve Point 
Multiplication Using Digit Serial Binary Field Operations,” IEEE Trans. 
Ind. Electron., vol. 60, no. 1, pp. 217-225, 2013. 

[11] Y. Zhang, D. Chen, Y. Choi, L. Chen and S. -B. Ko, “A high performance 
ECC hardware implementation with instruction-level parallelism over 
GF(2163),” Microprocessors and Microsystems, vol. 34, no. 6, pp. 228–
236, Oct. 2010. 

[12] H. M. Choi, C. P. Hong and C. H. Kim “High Performance Elliptic Curve 
Cryptographic Processor Over GF(2163),” in proc. 4th IEEE Intl. Symp. on 
Electronic Design, Test & Applications, DELTA, 2008, pp. 290 – 295. 

[13] H. Mahdizadeh, and M. Masoumi, “Novel Architecture for Efficient 
FPGA Implementation of Elliptic Curve Cryptographic Processor 
Over GF(2163),”  IEEE Trans.  VLSI Systems, vol. 21, no. 12, pp. 2330-
2333, Dec. 2013. 

[14] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA 
implementations of point multiplication on binary Edwards and 
generalized Hessian curves using Gaussian normal basis,” IEEE Trans.  
VLSI Systems, vol. 20, no. 8, pp. 1453-1466, Aug. 2012.  

[15] J.-S. Pan, R Azarderakhsh, M. M. Kermani, C.-Y Lee, W.-Y. Lee, C. W. 
Chiou, and J.-M Lin, "Low-Latency Digit-Serial Systolic Double Basis 
Multiplier Over GF(2m) Using Subquadratic Toeplitz Matrix-Vector 
Product Approach," IEEE Trans. on Comput., Vol. 63, no. 5, pp.1169-
1181, 2014. 

[16] C.-Y. Lee, C.-S. Yang, B. K. Meher, P. K. Meher, and J.-S. Pan, "Low-
Complexity Digit-Serial and Scalable SPB/GPB Multipliers over Large 
Binary Extension Fields using (b,2)-Way Karatsuba 
Decomposition,"  IEEE Trans. Circuits and Syst.-I, vol.. 61, no. 11, pp. 
3115 - 3124, 2014. 

[17] C.-Y. Lee, "Super Digit-Serial Systolic Multiplier over GF(2m)," The 
Sixth ICGEC., Aug.25-28, 2012, pp. 509-513. 
 
 
 

TABLE IV  
COMPARISON TO STATE OF ART AFTER PLACE AND ROUTE ON FPGA 

Ref. 
(n, FPGA) 

Slices 
(Sls) 

LUTs, FFs Clk Cs.,Fq. 
        (MHz) 

kP  
(µs) 

(106/s) 
/Sls 

GF163 
[7](V4) 4080 7719, 1502 4050, 197 20.56 11.92 
[8](V4) 8095 14507,- 1414, 131 10.70 11.55 
[9](V4) 16209 26364,7962 3010, 154 19.55 3.16 
[11](V4) 20807 -, - 1428, 185 7.72 6.23 
[12](V4) 24363 -, -  1446, 143 10.00 4.11 
[13](V4) 14203 26557, - 3404, 263 11.60 6.07 
[14](V4) 12834 22815, 6683 3379, 196 17.20 4.53 
Ours(no, V4)  3623 6793,1348 4168, 252 16.51 16.71 
Ours(2, V4) 3444 6516,1701 4168, 276 15.08 19.25 
Ours(3, V4)  3536 6672, 1870 4168, 290 14.39 19.65 
[10] (V5) 6150 22936, - 1371, 250 5.48 29.67 
[8] (V5) 3513 10195, -  1414, 147 9.50 29.96 
[14] (V5) 6536 17305, 4075 3379, 262 12.90 11.86 
Ours(2, V5) 1089 3958, 1522 4168, 296 14.06 65.30 
Ours(3, V7) 1476 4721, 1886 4168, 397 10.51 64.48 

GF571 
[7](V4) 34892 66594,6445 14250,107 133 0.22 
[10] (V5) 11640 324332,- 44047,127 348 0.25 
Ours(11, V4) 35195 61673,10692 14396, 180 79.80 0.36 

 



>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS < 
 
 
 

6 

 
 


