
This is a repository copy of Listing Vertices of Simple Polyhedra Associated with Dual LI(2)
Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/92940/

Version: Accepted Version

Proceedings Paper:
Abdullahi, SD, Dyer, ME and Proll, LG (2003) Listing Vertices of Simple Polyhedra
Associated with Dual LI(2) Systems. In: Calude, CS, Dinneen, MJ and Vajnovszki, V, (eds.)
Discrete Mathematics and Theoretical Computer Science. 4th International Conference,
DMTCS 2003, 07-12 Jul 2003, Dijon, France. Lecture Notes in Computer Science (2731).
Springer-Verlag , Berlin, Germany , pp. 89-96. ISBN 978-3-540-40505-4

https://doi.org/10.1007/3-540-45066-1_6

© 2003 Springer-Verlag Berlin Heidelberg. This is an author produced version of a paper
published in Lecture Notes in Computer Science. The final publication is available at
Springer via http://dx.doi.org/10.1007/3-540-45066-1. Uploaded in accordance with the
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Listing Vertices of Simple Polyhedra Associated with

Dual LI(2) Systems

S D Abdullahi, M E Dyer and L G Proll

School of Computing,

University of Leeds, Leeds, LS2 9JT, UK

{sammani, dyer, lgp}@comp.leeds.ac.uk

Abstract. We present an O(nv) Basis Oriented Pivoting (BOP) algorithm for

enumerating vertices of simple polyhedra associated with dual LI(2) systems.

The algorithm is based on a characterization of their graphical basis structures,

whose set of edges are shown to consist of vertex-disjoint components that are

either a tree or a subgraph with only one cycle. The algorithm generates vertices

via operations on the basis graph, rather than by simplex transformations.

1 Introduction

The Vertex Enumeration (VE) problem is that of determining all the vertices of a con-

vex polyhedron described by a set of linear inequalities or equations. This problem,

together with its dual, that of finding the convex hull of a set of points, is of interest due

to its application to problems in optimization and computational geometry [8]. The VE

problem has been the object of substantial research effort and a considerable number

of algorithms have been proposed for its solution, (see [1, 8, 11, 15] for useful reviews).

The most successful empirically appear to be those of Avis and Fukuda [4], Chen et al.

[5] and Dyer [9].

Dyer [9] shows that, at least for simple polytopes, basis oriented pivoting (BOP)

algorithms have better worst-case time complexity bounds than do other approaches.

The main inspiration of BOP algorithms is the simplex method of linear programming

(see [7]). Starting from an arbitrary vertex, BOP methods examine the columns of the

associated simplex tableaux to discover new vertices adjacent to those found so far.

They proceed iteratively until a spanning tree of the edge-vertex graph of the polyhe-

dron has been constructed. Pivoting methods exploit the correspondence between the

vertices and basic feasible solutions (BFS); indeed what they actually list are BFS’s.

This correspondence is 1-1 for simple polytopes, and one-to-many for degenerate ones.

Hence degeneracy is an issue for pivoting methods.

Most VE algorithms are applicable to general constraint systems. However, optimi-

sation algorithms which take advantage of special structures in the coefficient matrix,

for example in network LP’s, can heavily outperform the simplex method, see for exam-

ple [13]. It is natural to explore whether this might also be the case for the VE problem.

Provan’s work on network polyhedra [17] suggests that this could be a useful line of

research. Provan has provided a VE algorithm for network polyhedra, which are inher-

ently degenerate, and shows that vertices can be listed in time O(Ev2), where E is the

number of edges in the network and v is the number of vertices, plus the time to find

the first vertex of the network polyhedron. An implementation of, and computational

experience with, his primal algorithm is discussed in [1].

Linear systems of inequalities with at most two non-zeros per constraint, called

LI(2), are known to be related to network systems. Several algorithms have been de-

veloped for the LI(2) feasibility problem, examples are [3, 6, 12, 18]. These algorithms

either show that the LI(2) system has no feasible solution or provide a single feasible

solution. It is not obvious that these methods can be extended to determine all basic

feasible solutions. However, some of these methods, such as Hochbaum and Naor’s

[12] whose backbone is the Fourier-Motzkin elimination method, provide a useful plat-

form to explore. For example, Williams [19] suggests one of such avenues, the dual

Fourier-Motzkin method, to enumerate vertices of polyhedra. An algorithmic descrip-

tion of Williams’ method and its implementation is discussed in [1]. This method is not

computationally promising or attractive performance-wise because the number of in-

termediate variables may grow exponentially in the process of eliminating constraints.

Also, a lot of energy can be wasted in eliminating constraints that may not be important

after all, i.e. redundant constraints.

In this paper we show that exploiting the properties of the coefficient matrix associ-

ated with linear system of inequalities with at most two non-zeros per columns (which

we call dual LI(2)) brings substantial advantage for vertex listing. We present an al-

gorithm that can be classified as a BOP method for simple polyhedra, (see [8]), whose

running time is O(nv) where n is the number of edges (variables) in the constraint graph

and v is the number of vertices, plus the time to find the initial vertex. The backbone of

our algorithm is a proposition which we present below:

2 Basis Structure for Dual LI(2)

Network programs have coefficient matrices with at most two non-zero coefficients per

column, both of magnitude 1 and if there are two, they are of opposite sign. It is well

known that the bases of such matrices can be represented as spanning trees of a related

graph [13]. This fact is at the core of Provan’s method for listing vertices of network

polyhedra. It seems reasonable to ask: what does a basis of a constraint system with no

more than two general coefficients per column look like?

Proposition: Let B = {x ∈ R
n : Ax = b, b ∈ R

m, x ≥ 0} be a linear program

with at most two non-zeros per column in A, where A is an m× n matrix; x an n × 1
matrix and b an m×1 matrix, with n > m. Let G be a graph on m vertices correspond-

ing to the rows of A, with an edge corresponding to each column of A (i.e. an edge

between i and j if these are the non-zero positions in the column). Then the set of edges

in G corresponding to any basis of A has vertex-disjoint components which are either:

1. A tree OR

2. Contain exactly one cycle.

Proof :
Suppose A is the matrix with 2 nonzeros per column. Each column of A can be

represented as follows:

ci,j =

























0
0
.

ai,j

.
di,j

0
0

























(1)

We can start building up components of the basis by rearranging rows and columns

(using only the edges that correspond to the basis). At each stage we add a column

which has one non-zero in a new-row, but may also have a non-zero in a row already

used. Obviously, the set of edges that form the basis in this case cannot have more than

2 edges (variables) that are connected to 2 adjacent nodes, otherwise we have 3 vectors

spanning R
2.

Rearranging the rows and columns of B we obtain a matrix of the form:

























a1,1 a1,2 . 0 0 . 0
d2,1 0 . 0 0 . 0
0 d3,2 . a3,9 0 . a3,n

0 0 . 0 0 . 0
0 0 . d5,9 a5,10 . d5,n

0 0 . 0 d6,10 . .
.
0 0 . 0 0 . 0

























(2)

As we can see from above matrix, we reach an upper triangular matrix with one

additional row as the component, when a stage is reached where one can add no more

columns.

If we have r rows, then we have r − 1 linearly independent vectors, and the struc-

tures of the arranged matrix yield a tree with r−1 edges plus (possibly) one edge giving

r spanning vectors. This is a component in G with one cycle (if we terminate with a

tree then these rows have rank deficiency 1). We can remove this component and start

again. We obtain a collection of vertex disjoint components, each having at most one

cycle.

Indeed, the basis corresponds to a collection of vertex disjoint components of G
each of which may be a tree or contains at most one cycle. �

Corollary: If i is the number of component trees for any basis, then the rank of the

matrix A is given by:

Rank(A) = m− i (3)

(i.e i components are missing rank 1).

Proof :

Follows from the proof of above Proposition.

3 The Algorithm

Suppose we have a system of the form:

Ax = b, x ≥ 0 (4)

where A is m × n matrix with no more than 2 nonzeros per column. The graph

G(A) associated with (4) has:

– m nodes, labelled R1, R2,...., Rm, each associated with a row of A;

– n (undirected) edges, labelled E1, E2,....,En, each associated with a column of A;

– each edge Ej connecting nodes Ri, Rk if aij 6= 0 and akj 6= 0 or forming a loop

at node Ri if aij 6= 0 and akj = 0, ∀k.

The algorithm as described here is valid for simple bounded polytopes, but is later

extended to deal with unbounded polyhedra. The description uses aj to represent the

jth column of A, B to represent a basis and β to represent its index set, G(B) to repre-

sent the subgraph of G(A) corresponding to B and V to represent a vertex of (4). We

use gamma sets to control the enumeration. These record the set of edges that may lead

from a vertex to previously unknown vertices. EnumerateVertices uses a subsidiary

routine SOLVE, whose purpose is to solve sets of linear equations via the components

of the basis graph. SOLVE is described separately.

EnumerateVertices

1. Compute a basic feasible solution to (4), by LP if necessary. Let,

β1 ← {indices of basic edges}, γ1 ← {indices of non− basic edges}

L← {(β1, γ1)}, p← 1, r ← 1

2. Construct G(Br) from βr and determine its components

3. Determine Vr using SOLVE(G(Br), b, x) and output it

4. ∀j ∈ γr,

– determine a
′

j using SOLVE(G(Br), aj , a
′

j)

– Perform the simplex ratio test, so that if k = argmin{Vri

a
′

ji

: a
′

ji > 0},

the basic edge xk leaves basis Br

– β ← βr ∪ {j} − {k}
– γ ← {1, 2, ..., n} − (β ∪ {k})
– γr ← γr − {j}
– If ∃t ∈ {1, 2, ..., p} such that β ≡ βt, γt ← γt − {k}
– else p← p + 1, L← L ∪ {(β, γ)}

5. r ← r + 1
If r ≤ p, goto 2

Stop. �

SOLVE(G, w, x)

Let G consist of nodes i = 1, 2, ...v labelled with wi and edges (i, j, k), i ≤ j,
associated with xk and labelled with (aik, ajk).

For each component of G:

(a) if the component is a simple loop comprising edge (i, i, k), xk ← wi/aik

(b) if the component is a tree

repeat until all tree edges deleted

if i is a leaf node with incident edge (i, j, k) or (j, i, k)
xk ← wi/aik, wj ← wj − ajkxk

delete incident edge

(c) if the component contains a cycle,

1. remove nodes of degree 1 as in (b)

2. if a simple loop remains, apply (a)

3. if a cycle (i1, i2, k1), (i2, i3, k2),, (it−1, it, kt−1), where it = i1, remains,

solve parametrically for xk1
, xk2

,, xkt−1
as follows:

xk1
← λ

for s = 2,t

wis
← wis

− aisks−1
xks−1

xks−1
← wis

/aisks−1

Solve xkt
= λ for λ, and hence determine xk2

,, xkt−1
. �

The algorithm enumerates vertices of the polyhedron associated with (4) in a similar

fashion to that of Dyer [9] for more general polyhedra. The principal differences are:

(a) vertices are generated via operations on the basis graph, rather than by simplex

transformations;

(b) the spanning tree of the feasible-basis graph of the polyhedron is constructed breadth-

first rather than depth-first;

(c) the adjacency test is performed via a hash table.

The advantage of using breadth-first search is that, for each basis, the components

of its associated graph need be determined once only. The empirical efficiency of any

VE algorithm depends on the accounting procedure, or adjacency test, used to ensure

that vertices are neither omitted nor repeated in the enumeration procedure. Dyer and

Proll [10] observed that approximately 90% of the execution time of their algorithm was

spent in this phase. Dyer’s algorithm [9] employs an AVL tree [14] to provide an ele-

gant method for checking adjacency. However Ong et al [16] have shown that a cruder

method based on a hash table data structure gives improved empirical performance. In

this context, hashing can be used within Step 4 of our algorithm to test equivalence of

bases. We use a binary encoding of the basis index set, i.e. i ∈ β ⇐ ri−1 = 1, (where

r is the encoding of the vertex v and ri is its ith bit) which can be hashed using, for

example, a function of modulo type h(r) = r mod p + 1 (where h is the hash value

of r and p is a prime number). Clearly if a basis hashes to an empty cell in the hash

table, it must represent an undiscovered basis. On the other hand, if a basis hashes to an

occupied cell, it may or may not represent a newly discovered basis. We can establish

this by comparing the basis index set with those of other bases occupying this cell.

4 Unbounded Polyhedra

EnumerateVertices as described above fails at Step 4 if ∃i ∈ γr such that a
′

ji ≤ 0,∀i
because there is then no valid primal simplex pivot. This characterises the existence of

an unbounded edge incident at Vr. We can deal with this by modifying Step 4 to be:

∀j ∈ γr,
determine a

′

j using SOLVE(G(Br), aj , a
′

j)

if {a
′

ji : a
′

ji > 0} = ∅ then

γr ← γr − j
output edge details

else

< as before >. �

The complexity analysis of above algorithm is described below:

5 Complexity Analysis

The complexity of EnumerateVertices, in the absence of degeneracy, can be analysed

as follows. In each loop, all computations are bounded by the number of edges in G(B),
i.e. O(m), except for the step which identifies the edge to enter the new basis. This

computation is O(n), since n is the number of edges in G(A). Assuming a good hash

function [2] for the test for adjacency, this step will also be O(m) at worst. Thus each

loop computation is O(n) (assuming n ≥ m). If there are υ nondegenerate vertices in

total, the complexity of the algorithm will therefore be O(nυ). As normal with this type

of analysis, we exclude the time to find an initial feasible basis.

6 Conclusion

In this paper we have proved an important proposition which characterizes the basis

structure of dual LI(2) systems. The proposition was used to develop a new BOP algo-

rithm for enumerating vertices of simple polyhedra associated with dual LI(2) systems.

We have shown that the running time of the algorithm is linear per vertex O(nv). This

has answered an open problem raised in [17]. Like all BOP algorithms, the algorithm

described here may experience difficulty with non-simple, or degenerate, polyhedra.

Explicit perturbation of the constraints can often provide a pragmatic solution to these

difficulties for mildly degenerate polyhedra but not for highly denerate ones. In [1], we

show how the algorithm can be modified to deal properly with the issues arising from

degeneracy.

References

1. S D Abdullahi. Vertex Enumeration and Counting for Certain Classes of Polyhedra. PhD

thesis, School of Computing, The University of Leeds, 2002.

2. A V Aho, J E Hopcroft, and J D Ullman. Data Structures and Algorithms. Addison-Wesley,

Reading, Mass, 1982.

3. B Aspvall and Y Shiloach. Polynomial time algorithm for solving systems of linear inequal-

ities with two variables per inequality. SIAM Journal on Computing, 9:827–845, 1980.

4. D Avis and K Fukuda. A pivoting algorithm for convex hulls and vertex enumeration for

arrangements and polyhedra. Discrete Computational Geometry, 8:295–313, 1992.

5. P-C Chen, P Hansen and B Jaumard. On-line and off-line vertex enumeration by adjacency

lists. Operations Research Letters, 10:403–409, 1991.

6. E Cohen and N Megiddo. Improved algorithms for linear inequalities with two variables per

inequality. SIAM Journal on Computing, 23:1313–1347, 1994.

7. G B Dantzig. Linear Programming and Extensions. Princeton University Press, N.J., 1963.

8. M E Dyer. Vertex Enumeration in Mathematical Programming: Methods and Applications.

PhD thesis, The University of Leeds, October 1979.

9. M E Dyer. The complexity of vertex enumeration methods. Mathematics of Operations

Research, 8:381–402, 1983.

10. M E Dyer and L G Proll. Vertex enumeration in convex polyhedra: a comparative computa-

tional study. In T B Boffey, editor, Proceedings of the CP77 Combinatorial Programming

Conference, pages 23–43, University of Liverpool, Liverpool, 1977.

11. M E Dyer and LG Proll. An algorithm for determining all extreme points of a convex

polytope. Mathematical Programming, 12:81–96, 1977.

12. D S Hochbaum and J Naor. Simple and fast algorithms for linear and integer program with

two variables per inequality. SIAM Journal of Computing, 23:1179–1192, 1994.

13. J L Kennington and R V Helgason. Algorithms for Network Programming. John Wiley and

Sons, Inc., 1980.

14. D E Knuth. The Art of Computer Programming Vol. 3: Sorting and Searching. Addison-

Wesley, 1973.

15. T H Mattheiss and D S Rubin. A survey and comparison of methods for finding all vertices

of convex polyhedral sets. Mathematics of Operations Research, 5:167–185, 1980.

16. S B Ong, M E Dyer, and L G Proll. A comparative study of three vertex enumeration

algorithms. Technical report, School of Computer Studies, University of Leeds, 1996.

17. J Scott Provan. Efficient enumeration of the vertices of polyhedra associated with network

LP’s. Mathematical Programming, 64:47–64, 1994.

18. R Shostak. Deciding linear inequalities by computing loop residues. Journal of the Associ-

ation for Computing Machinery, 28:769–779, 1981.

19. H P Williams. Fourier’s method of linear programming and its dual. American Mathematical

Monthly, 93:681–694, 1986.

