

This is a repository copy of Design and Performance of a Micro-Rectenna Focal Plane Array for Thermal Energy Harvesting.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/92932/

Version: Accepted Version

Proceedings Paper:

Balocco, C, Pan, Y, Rosamond, MC et al. (1 more author) (2015) Design and Performance of a Micro-Rectenna Focal Plane Array for Thermal Energy Harvesting. In: Radio Science Conference (URSI AT-RASC), 2015 1st URSI Atlantic. Radio Science Conference (URSI AT-RASC), 2015 1st URSI Atlantic, 16-24 May 2015, Gran Canaria, Spain. IEEE , ? - ? (1). ISBN 9789090086286

https://doi.org/10.1109/URSI-AT-RASC.2015.7302974

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Design and Performance of a Micro-Rectenna Focal Plane Array for Thermal Energy Harvesting

C. Balocco(1), Y. Pan(1), M. C. Rosamond (2) and E. H. Linfield (2)

(1) School of Engineering and Computer Sciences, Durham University, Durham, DH1 2PN, UK

(2) School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK

In this paper, we present the design and experimental implementation of a thermal energy harvesting device. Each energy-harvesting unit cell functions as an individual micro-rectenna and, collectively, as a focal plane array (FPA). The FPA is fabricated out of a twodimensional electron gas (2DEG) in GaAs/AlGaAs quantum well using electron beam lithography (EBL) and photolithography methods, and consists of micro-rectenna unit cells arranged on a square lattice of 11 by 11 elements. The micro-rectenna, consisting of a highspeed diode (self-switching diode) and a broadband bowtie antenna, can convert thermal radiation into dc electric power (Y. Pan, C. V. Powell, A. M. Song and C. Balocco, Applied Physics Letter, 105, 253901, 2014). We also present an analytical model for our rectenna based on Feynman's ratchet and pawl which extract useful work from Brownian motion. The radiation from a blackbody source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuation from the antenna in the sub-millimeter wave region. Good agreement for the open-circuit voltage and short-circuit current is obtained with the experimental results for the electromagnetic radiation (equivalent blackbody temperatures from 600 to 1000 K) suggesting that the model can be applicable to our device. We characterize the FPA conversion efficiency and angular dependence. The measured half-beam width is approximately 1400 that demonstrates the rectenna operating as a wide angle antenna. We also design and manufacture a dielectric micro-lens array. By integrating the lens array with our energy harvesting FPA, we improve the coupling efficiency of the incident power into the micro-rectennas and thus the power conversion efficiency. Our device holds potential for efficient and practical electromagnetic energy harvesting, notably for wasted heat recovery applications.