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Abstract

The bistable Swift-Hohenberg equation possesses a variety of time-independent spatially localized

solutions organized in the so-called snakes-and-ladders structure. This structure is a consequence

of a phenomenon known as homoclinic snaking, and is in turn a consequence of spatial reversibility

of the equation. We examine here the consequences of breaking spatial reversibility on the snakes-

and-ladders structure. We find that the localized states now drift, and show that the snakes-and-

ladders structure breaks up into a stack of isolas. We explore the evolution of this new structure

with increasing reversibility breaking and study the dynamics of the system outside of the snaking

region using a combination of numerical and analytical techniques.
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I. INTRODUCTION

The so-called 23 Swift-Hohenberg equation takes the form

∂tu = ru −
(

1 + ∂2
x

)2
u + b2u

2 − u3 (1)

and admits multiple stationary spatially localized states on the real line within the so-called

snaking or pinning region [1, 2]. These are organized in a structure that has been called the

snakes-and-ladders structure, shown in Fig. 1. The snaking or pinning region rP1 < r < rP2

is defined by the asymptotic location of the saddle-nodes high up the snaking structure.

The point r = rM corresponds to the Maxwell point for this system, determined by the twin

conditions F = H = 0 [2, 3]. At this point the energy F [up(x)] of the spatially periodic

state up(x) with wavelength λM is equal to the energy F [0] = 0 of the trivial state u = 0,

where

F [u(x)] =

∫ ∞

−∞

dx

{

−
1

2
ru2 +

1

2

[

(1 + ∂2
x)u

]2
−

1

3
b2u

3 +
1

4
u4

}

. (2)

The wavelength λ(r) of the localized states high up the snaking structure is determined

from the requirement that any steady state asymptotic to u = 0 as |x| → ∞ must lie in the

hypersurface H = 0 containing u = 0, where

H ≡ −
1

2
(r − 1)u2 + [∂xu]2 −

1

2
[∂2

xu]2 + ∂xu∂3
xu −

1

3
b2u

3 +
1

4
u4 (3)

is the Hamiltonian conserved by the time-independent version of Eq. (1) written as a dynami-

cal system in space. These two conditions together determine both r = rM and λ(rM) ≡ λM .

The structure summarized in Fig. 1 may be thought of as the result of broadening of the

classical Maxwell point between a pair of homogeneous equilibria in a variational system

due to the pinning of the fronts bounding the localized state to the periodic structure

within [1, 2, 4, 5]. Mathematically, it is a consequence of spatial reversibility, i.e., the

invariance of Eq. (1) under

R : x → −x, u → u, (4)

as discussed in Refs. [5, 6, 7, 8]. It is therefore of interest to examine the consequence of weak

breaking of the symmetry (4). In this paper we examine the effect of adding a dispersive

term to Eq. (1), and study the equation

∂tu = ru −
(

1 + ∂2
x

)2
u + γ∂3

xu + b2u
2 − u3 (5)
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FIG. 1: (a) Homoclinic snaking in Eq. (1) when b2 = 2. Stable (unstable) states are indicated by

thick (thin) lines. N is the L2 norm per unit length. (b) Sample localized profiles u(x). States

(i)-(iv) are located at successive saddle-nodes on the L0 branch; (v)-(vi) lie on Lπ.

for b2 = 2 and small values of the coefficient γ.

II. NUMERICAL RESULTS

Steadily drifting localized states can be obtained as solutions of the time-independent

ordinary differential equation

ru −
(

1 + ∂2
ξ

)2
u + v∂ξu + γ∂3

ξ u + b2u
2 − u3 = 0, (6)

subject to u → 0 as |ξ| → ∞. Here ξ ≡ x − vt and the drift speed v is computed as part of

the solution, i.e., it is a (nonlinear) eigenvalue.
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FIG. 2: The breakup of the snakes-and-ladders structure into a stack of isolas when γ = 0.05 (solid

line). The underlying snakes-and-ladders structure (γ = 0) is shown for comparison (dashed line).

Parameter: b2 = 2.

The loss of reversibility symmetry destroys the pitchfork bifurcations responsible for the

rung states present near each saddle-node, resulting in a stack of isolas as shown in Fig. 2.

The drift speed of the pattern at onset (r = 0) is given by v = γ, and remains of order γ for

larger amplitudes (Fig. 3). Figure 4 shows that the isolas gradually shrink towards r = rM1

as γ increases, and disappear completely near γ = 0.4 (for b2 = 2). Throughout this process

the drift speed remains O(γ) as shown in Fig. 5.

Different cuts through parameter space result in different morphologies. With γ = 0.4+r

the sign of the dispersive term changes across the pinning region resulting in a pair of

intertwined snakes instead of a stack of isolas (Fig. 6).
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FIG. 3: Drift speeds (normalised against γ) along the three isolas shown in Fig. 2. The drift speed

decreases with increasing width (solid to dashed to dotted) of the localized state. Parameter:

b2 = 2.

III. DEPINNING

We now examine the dynamics outside of the pinning region. When γ = 0 and r > rP2 the

fronts bounding the localized state unpin, and since the periodic state has lower energy than

u = 0 the fronts move apart allowing the periodic state to invade the entire domain. The

opposite occurs when r < rP1 and the fronts move so as to eliminate the localized structure.

The growth/decay of the localized state takes place via successive nucleation/destruction

of structures at either front region. When γ = 0 these processes take place symmetrically,

maintaining the overall reflection symmetry of the localized state as it grows or decays.

Figures 7(a) and 7(b) show that this is no longer the case when γ 6= 0: for small δ ≡ r− rP2

(long nucleation time) the localized state grows only at the leading front while for larger δ

it grows at both ends, albeit asymmetrically. However, at yet larger values of γ nucleation
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FIG. 4: Isolas formed within a pair of rungs of the snakes-and-ladders structure when γ =

0.05, 0.10, 0.20 and 0.35. The underlying snakes-and-ladders structure is indicated by a short-

dashed line. As γ increases the size of the isola decreases. Parameter: b2 = 2.

is again restricted to the leading front (Fig. 7(c)).

IV. ANALYSIS

The time to nucleate a new wavelength can be computed by projecting the dynamics

near the boundary of the pinning region onto the neutral modes of the localized structure

present at r = rP1 or r = rP2 [2, 9]. This procedure can be extended to the case γ 6= 0, as

we now show.

We anticipate that when γ 6= 0 all patterns will drift; this drift is a consequence of

the excitation of the translation mode U ′
0 and takes place on the timescale γ−1. We set

r = rP2 + δ, |δ| ≪ 1, and write

u(x, t) = u0(x + θ(T )) + |δ|1/2u1(x + θ(T ), τ) + |δ|u2(x + θ(T ), τ) + . . . , (7)
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FIG. 5: Drift speeds along the isolas in Fig. 4, as indicated by the corresponding line type.

where θ(T ) is the spatial phase of the pattern, τ = |δ|1/2t and T = |δ|t. Finally, we take

γ = σ|δ|, σ = O(1), to include γ in the expansion at the correct order.

The leading order problem is given by

rP2u0 −
(

1 + ∂2
x

)2
u0 + b2u

2
0 − u3

0 = 0, (8)

with solution u0 = U0(x + θ(T )). In the following we pick the solution at the fourth saddle-

node on branch L0 (Fig. 8) for all explicit computations.

At order O(|δ|1/2) we obtain

Lu1 = 0, (9)

where L ≡ rP2 − (1 + ∂2
x)

2 + 2b2U0 − 3U2
0 and is self-adjoint. At a saddle-node high up

the snaking branches L possesses two null eigenfunctions, a symmetric mode ũ10 and the

antisymmetric translation mode ũ12 ≡ U ′
0. In addition, there is a third nearly neutral

antisymmetric mode, ũ11, responsible for the branching of asymmetric states exponentially

close to each saddle-node (Fig. 1). These eigenfunctions are also shown in Fig. 8. Since the
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FIG. 6: Reconnection of the snakes-and-ladders structure when γ = 0.4 + r. Parameter: b2 = 2.

translation mode is already included in the phase θ we have

u1 = a(τ)ũ10(x + θ(T )) + b(τ)ũ11(x + θ(T )), (10)

where a(τ), b(τ) and θ(T ) are to be determined.

At order O(|δ|) we obtain

U ′
0θT + u1τ = Lu2 + sgn(δ)U0 + σU ′′′

0 + (b2 − 3U0) u2
1. (11)

Solvability conditions for u2 follow on multiplying Eq. (11) in turn by ũ10, ũ11 and U ′
0, and

integrating over the real line. For the profile in Fig. 8 the U ′
0 solvability condition yields, to

leading order,

θT = −0.9663σ. (12)

Thus the drift speed, θt = −0.9663γ in unscaled variables, increases (at leading order)

linearly with γ. The resulting prediction for γ = 0.001 agrees very well with the measured

speed 0.0009589. Measurements show that the drift speed is almost independent of δ, i.e.,
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FIG. 7: Space-time evolution of solutions of Eq. (5). (a) γ = 0.001 and r = rP2 + 0.00015: the

patterned region grows at the leading front only. (b) γ = 0.001 and r = rP2 + 0.00065: the

patterned region grows on both ends, but at different rates. (c) γ = 0.01 and r = rP2 + 0.00065:

nucleation again occurs at the leading front only. Parameter b2 = 2 throughout.
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ũ
1
0

ũ
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FIG. 8: Steady solution U0 at the fourth saddle-node on the L0 branch (r = −0.33101564). Lower

panels show the three neutral eigenfunctions.

at leading order the drift speed is not related to the asymmetry of the pattern. On the

other hand in writing Eq. (12) we have dropped two terms with O(10−5) coefficients. These

terms involve the overlap of ũ12 ≡ U ′
0 and ũ11 but these peak at different locations and their

product is already small (Fig. 8). As a result two very small terms reflecting the effect of

asymmetric nucleation of new cells fore and aft on the drift speed has been omitted.

The remaining solvability conditions yield the coupled equations

aτ = α1sgn(δ) + α2a
2 + α3b

2 (13)

bτ = −βσ + 2α4ab. (14)

The coefficients in this equation depend on the length 2L of the localized state. High up the

snaking structure, 2L is large and the eigenfunctions ũ10, ũ10 consist, up to exponentially

small terms, of pairs of nonoverlapping neutral modes localized at the bounding fronts [1, 8].

Consequently we may write ũ10 = v(x+L)+v(x−L), ũ11 = v(x+L)−v(x−L) for a suitable

function v(x), cf. Fig. 8. It follows that, up to exponentially small terms, α2 = α3 = α4. This
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expectation is confirmed by a computation of the required integrals using the numerically

generated profile U0 in Fig. 8, together with the corresponding eigenfunctions. We obtain

α1 = 0.8411, α2 = α3 = α4 = 0.3904 and β = 0.2980. These results are independent of

which saddle-node is selected for the numerical evaluation provided the corresponding profile

is sufficiently long that the instabilities at the front and back of the structure interact only

exponentially weakly.

We now take linear combinations of the above equations,

(a ± b)τ = α1sgn(δ) ∓ βσ + α2 (a ± b)2 , (15)

and define the nucleation time at the leading front as the time [1]

Tleading ≡

∫ ∞

−∞

dτ

a − b
=

π

α
1/2

2 (α1δ + βγ)1/2
. (16)

This time diverges (i.e., nucleation ceases) when δleading
c = −βγ/α1 = −0.3543γ. The

nucleation time at the trailing front is computed similarly, using a + b instead of a − b (see

Fig. 8), and yields δtrailing
c = 0.3543γ. Thus the distance between the saddle-node of the

drifting localized state and the boundary of the pinning region, |rSN − rP2|, is predicted

to be 0.0003543 when γ = 0.001, a result consistent with the value 0.000356 obtained by

numerical continuation. Moreover, the predicted leading and trailing nucleation times away

from the saddle-node are also in excellent agreement with the results of direct numerical

simulation (Fig. 9).

Observe that when σ = 0 (no dispersion), the amplitude b = 0 and Eqs. (13)-(14) reduce

to those in [1]. Thus the asymmetry in the nucleation process is the result of excitation of

the antisymmetric mode ũ11 whenever σ 6= 0, and not of the translation mode.

V. DISCUSSION AND CONCLUSIONS

We have described the effects of weak breaking of the reversibility required for the presence

of a snaking or pinning region in bistable systems with competing homogeneous and spatially

periodic steady states, and the associated snakes-and-ladders structure. We have shown that

for weak dispersion this structure breaks up into a stack of isolas of slowly drifting localized

states and that these isolas shrink and eventually vanish as dispersion increases. Stacks

of isolas are characteristic of multipulse homoclinic orbits as well [10, 11]. We have also
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FIG. 9: Predicted leading (left curve) and trailing (right curve) nucleation times as a function of δ ≡

r − rP2 when γ = 0.001. When δ = 0.00015 growth takes place at the leading front only (Fig. 7a);

when δ = 0.00065 it takes place at both front and back (Fig. 7b). The analytical predictions

(continuous lines) are in excellent agreement with direct numerical simulation (superposed data

points).

examined the effects of dispersion on the motion of fronts just outside the pinning region, and

showed by means of numerical simulations and analysis that for small dispersion nucleation

occurs at the leading front but with increasing distance from the upper boundary of the

pinning region two-sided nucleation takes over. Our analytical prediction of this transition

matches almost perfectly the numerical results. Analogous results are obtained near the

lower boundary of the pinning region, although here the localized structure is gradually

eroded as the domain fills with the trivial state.

As shown in Fig. 7(c) increasing the dispersion for fixed distance from the pinning region

arrests the growth at the trailing front and restores one-sided nucleation. This transition is

a manifestation of the transition from nonlinear absolute instability to nonlinear convective

12



instability [12] and so is distinct from the transition studied in this article.
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