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Abstract 
The difference between the rate of change of cerebral blood volume (CBV) and cerebral 
blood flow (CBF) following stimulation is thought to be due to circumferential stress 
relaxation in veins (Mandeville et al., 1999). In this paper we explore the visco-elastic 
properties of blood vessels, and present a dynamic model relating changes in CBF to changes 
in CBV. We refer to this model as the visco-elastic windkessel (VW) model. A novel feature 
of this model is that the parameter characterising the pressure-volume relationship of blood 
vessels is treated as a state variable dependent on the rate of change of CBV, producing 
hysteresis in the pressure-volume space during vessel dilation and contraction. The VW 
model is nonlinear time-invariant, and is able to predict the observed differences between the 
time series of CBV and that of CBF measurements following changes in neural activity. Like 
the windkessel model derived by Mandeville et al. (1999), the VW model is primarily a 
model of haemodynamic changes in the venous compartment. The VW model is 
demonstrated to have the following characteristics typical of visco-elastic materials: (1) 
hysteresis, (2) creep, and (3) stress relaxation, hence it provides a unified model of the visco-
elastic properties of the vasculature. The model will not only contribute to the interpretation 
of the Blood Oxygen Level Dependent (BOLD) signals from functional Magnetic Resonance 
Imaging (fMRI) experiments, but also find applications in the study and modelling of the 
brain vasculature and the haemodynamics of circulatory and cardiovascular systems.  
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Introduction 
 
The visco-elastic properties of blood vessels have been extensively investigated. The 
pressure-volume (P-V) relationships of blood vessels have been measured under static and 
dynamic conditions in vitro in many studies, e.g. (Alexander et al., 1953; Bergel, 1961; 
Linehan et al., 1986; Porciuncula et al., 1964; Remington and Alexander, 1955). The 
dynamic P-V relationship was characterised by hysteresis during cycles of vessel dilation and 
contraction.  
 
Many models of blood vessels are based on the windkessel theory (Frank, 1930). In the 
simplest form, the relationship between blood pressure and flow was modelled in electrical 
terms by a resistor and a capacitor connected in parallel. This was known as the two-element 
windkessel model. The capacitor models the blood vessel compliance and the resistor models 
the vessel resistance encountered by blood flowing through the vascular system. Extensions 
of the simple model into multi-element windkessel models were developed to better 
characterise systemic as well as pulmonary circulation systems (Fogliardi et al., 1996; Jones, 
1969; Molino et al., 1998; Orosz et al., 1999; Segers et al., 2008; Stergiopulos et al., 1999; 
Westerhof et al., 1971). The windkessel model was further extended into multi-compartment 
models (Linehan et al., 1986; Ursino et al., 2000) for circulation modelling.  
 
More recently the windkessel model has been incorporated in functional studies investigating 
the relationship between changes in cerebral blood flow (CBF) and cerebral blood volume 
(CBV) due to evoked changes in neural activity (Buxton et al., 2004; Buxton et al., 1998; 
Kong et al., 2004; Mandeville et al., 1999). Variants of such CBF-CBV models have been 
used by others to analyse Blood Oxygen Level Dependent (BOLD) functional Magnetic 
Resonance Imaging (fMRI) data and to infer neuronal activity (Deneux and Faugeras, 2006; 
Friston et al., 2000; Vakorin et al., 2007; Vazquez et al., 2006; Zheng et al., 2005; Zheng et 
al., 2002). It is often observed that after stimulus cessation, the time series of CBV returns to 
baseline more slowly than that of CBF (Herman et al., 2008; Jones et al., 2002; Kennerley et 
al., 2005; Kida et al., 2007; Mandeville et al., 1999). Some studies also showed that for long 
stimulus duration, the CBV response continues to increase during the stimulus onset period 
while CBF response has plateaued (Herman et al., 2008; Kida et al., 2007; Mandeville et al., 
1999). These differences in the time series of CBF and CBV are thought to be due to the 
visco-elastic properties of blood vessels, and the term ‘delayed compliance’ is often loosely 
used to refer to the mismatch between the time series of CBF and CBV. 
 
This paper presents a novel physiologically plausible model of the CBF-CBV coupling which 
incorporates the visco-elastic properties of blood vessels. The model not only exhibits the 
visco-elastic characteristics (i.e., creep loading, stress relaxation and hysteresis), but also can 
be used to predict time series of changes in physical quantities such as the transmural 
pressure. Furthermore, explicit expressions for static and dynamic compliances of blood 
vessels can be derived. A further distinguishing feature is that a parameter characterising the 
steady state P-V curve is treated as an additional state variable of the model. Based on the 
visco-elastic properties of blood vessels, this parameter has its static value on the steady state 
P-V curve at steady states, but during transient states (i.e., following changes in CBF) it takes 
on different values depending on the rate of change of CBV.  The assumptions made in 
deriving the model are more appropriate for the venous compartment of the vasculature 
although the arteries and arterioles also have visco-elastic properties and the concepts of 
static and dynamic compliances apply equally to the arterial compartment. We will 
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demonstrate that the model can predict the slow return-to-baseline characteristics of the CBV 
time series satisfactorily. The model will be referred to as the visco-elastic windkessel (VW) 
model throughout this paper. 
 
 
Materials and Methods 
Animal Preparation 
The experimental data used in this paper is from Martindale et al. (2003). The CBF and CBV 
data were obtained concurrently via laser Doppler flowmetry and optical imaging 
spectroscopy respectively. The experimental procedures for concurrent measurement of CBF 
and CBV were detailed in Jones et al (2001). They are briefly reviewed here.   
 
The animals used were female Hooded Lister rats weighing between 250 and 400 g, 
anaesthetised with urethane (1.25 g/kg, intraperitoneal injection), and atropine (0.4 mL/kg, 
subcutaneous injection). The whisker barrel was first located using single wavelength (~590 
nm) illumination. Then the slit spectrograph mounted on the camera was sited over the centre 
of the barrel region. This was followed by the placement of an LDF probe (Perimed, 
Stockholm, Sweden; fibre separation 0.25 mm) over the barrel region (< 1 mm from the skull 
surface) to measure CBF changes. The LDF spectrometer included a low-pass filter with a 
0.2 second time constant and 12 kHz bandwidth (Nilsson, 1984) to reduce errors caused by 
measurement noise. The LDF time series were collected concurrently with spectrographic 
data for the following experimental paradigms. 
 
Electrical stimulation of the whisker pad was delivered via tungsten electrodes inserted in an 
anterior direction each side of the D1 whisker and ~2 mm along the D barrel row. All stimuli 
were presented at 1.2 mA with a 0.3 ms individual pulse width. Stimuli of 1, 2, 3, 4 and 5 Hz 
were randomly interleaved and presented for 2 seconds, with stimulus onset at 8 seconds after 
the start of each trial, which lasted 23 seconds, and data were averaged over 30 trials. 
Experiments were conducted on six animals, one of which had missing data after 15 seconds  
of each trial and hence was excluded from the analysis. Also one animal had missing data for 
the 4 Hz stimulus condition, hence was excluded from the analysis under 4 Hz stimulation. 
 
Fig. 1 shows the CBF and CBV time series of one animal (representative) under the five 
stimulus conditions. To emphasise the difference between the CBF and CBV responses 
during the return-to-baseline phase, the time series are normalised between 0 and 1. The 
difference can be observed for all data with higher stimulus frequencies. However at lower 
stimulus frequencies (e.g., 1Hz and 2Hz), some data sets show no evidence of ‘delayed 
compliance’. This may partly be due to the relatively low signal-to-noise ratio of the LDF 
measurement, resulting in elevated CBF at low frequencies during stimulus cessation in some 
animals.  
 
The VW Model 
Mandeville’s windkessel model 
The VW model is based primarily on the windkessel model proposed by Mandeville et al. 
(1999). In their paper, Mandeville et al. modelled the venous compartment using a two-
element windkessel model so that the venous blood volume and flow are related by  
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where V  is the venous blood volume, F  is the inflow to the venous compartment, wP  is the 
pressure drop across the windkessel. The transmural pressure of the venous compartment was 
assumed to be the same as the pressure drop wP  because intracranial pressure and central 
venous pressure in the large veins are approximately the same. wR  is the windkessel 
resistance. α  and β  are coefficients, with 2=α  for lamina flow, and the constraint on 

1>β  to ensure diminished volume reserve at high transmural pressure. K  is constant 
dependent on the baseline values of V  and wR .  
 
In deriving the above model, Mandeville et al utilised two other models. One relates the 
windkessel resistance to the inverse power of the blood volume as ( )αVRw 1∝ , the other 

models the pressure-volume (P-V) relationship of the blood vessel as β1
wAPV =  where A  is 

a constant. After normalising each variable with respect to their baseline values, Mandeville 
et al showed that the delayed characteristics of the blood volume could be predicted if 
different venous transient times were used for specific time intervals of stimulus onset and 
cessation. To explore this further, Mandeville et al modified the P-V relationship so that the 
constant A  was modelled as an increasing exponential function of time, lasting for a short 
time interval beginning several seconds after stimulus onset and then again after stimulus 
cessation. A single time constant was found to be sufficient to account for the delayed 
characteristics observed in CBV (see the Appendix of Mandeville et al., 1999). 
 
Visco-elastic windkessel (VW) model 
The windkessel model proposed by Mandeville et al is effectively a ‘time-varying’ model 
because a parameter of the model (e.g. the time constant or the parameter A ) varies with time. 
Furthermore the variation is not only discontinuous in time, but the issue of the switching of 
the relevant parameter values was not addressed. This paper proposes a time-invariant 
dynamic model relating time series of CBF to CBV. We re-examine the P-V relationship of 
visco-elastic material using a version of the above P-V model slightly modified for notational 
convenience. The P-V relationship is modelled in this paper as ( ) β1

wAPV = , hence Eq.(1) 
above can be re-written as 
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The variable A  may be thought of as representing the vascular tone of a particular blood 
vessel type (Klabunde, 2005). By varying the parameter A , a family of P-V curved can be 
obtained, as depicted in Fig. 2. It is important to recognise that these curves model the steady 
state P-V relationships of blood vessels. During vessel dilation and contraction, however, the 
P-V curve forms a hysteresis loop around the steady state curve due to the visco-elastic 
properties of a blood vessel (Porciuncula et al., 1964). The directions of the hysteresis are 
shown in Fig. 2. This suggests that the hysteresis loop generated by vessel dilation and 
contraction may be modelled by modelling the parameter A  so that it decreases from its 
steady state value during vessel dilation, but increases during vessel contraction. Effectively 
the parameter A  is treated as a new state variable of the model. 
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Another important characteristic of visco-elastic material is that the shape of the hysteresis in 
the P-V plane is dependent on the rate at which a vessel dilates or contracts. For instance, for 
slow sinusoidal changes in transmural pressure, hysteresis in the P-V plane almost disappears 
(Porciuncula et al., 1964) and hence the trajectory of the dynamic P-V curve converges to the 
steady state P-V curve. Thus the state variable A  is dependent on the rate of change of the 
physical quantities in the system. We selected the following simple first order system to 
model the state variable A : 

 





−=+

dt
dVbAA

dt
dA

SSA 0expτ ,     00 >b  (3) 

where SSA  is the steady state value for A , Aτ  is the time constant of the model and 0b  
reflects the amount of influence the rate of change in blood volume  has on the parameter A .  
 
If the normalised quantities are used: 0FFf = , 0VVv = , ssAAw =  where the subscript 0 
denotes baseline values and the subscript ss  denotes steady state values, then eqn.s (2) and (3) 
result in the following VW model: 
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where vτ  is the venous transit time ( 00 FV ), the exponent βαφ +=  is a constant, 00Vbb =  

is the gain parameter modelling the degree of influence exerted by 
dt
dv  on w , and Aw ττ =  is 

the time constant of w . The state variable w  reflects the normalised changes in the muscle 
tone of blood vessels. The VW model captures several properties of visco-elastic material: 

(1) At any steady state, 0==
dt
dw

dt
dv , hence 1=w . This preserves the steady state P-V 

relationship of the blood vessel.  

(2) During vessel dilation, 0>
dt
dv , hence 






−

dt
dvbexp <1 (for 0>b ). This implies that w  

will decrease from its baseline value of unity, resulting in a P-V trajectory ‘below’ the steady 
state P-V curve during dilation. By the same reasoning, the P-V trajectory during vessel 
contraction is ‘above’ the steady state curve (Fig. 2), thus generating a hysteresis loop in the 
P-V plane as that observed by Poiciuncula et al. (1964). 
(3) The use of the exponential function provides desirable constraints on the range of values 

of w . As 
dt
dv  ranges from ∞−  to ∞+ , the exponential function varies from 0  to ∞+ . Since 

w  is modelled as a first order dynamic system driven by a non-negative exponential function, 
this ensures that w  will never become negative. Consequently the parameter A  will be 
guaranteed to lie within the range ( )∞+,0 , and the P-V trajectories predicted by the model 
will always lie within the first quadrant of the P-V plane. 
 
Furthermore by clamping 1=w  for all t , the VW model reduces to  
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 φτ vf
dt
dv

v −=  (5) 

This model is often referred to as the simple ‘balloon’ model (Friston et al., 2000; Kong et al., 
2004; Zheng et al., 2002), with the parameter φ  equal to the inverse Grubb exponent (Grubb 
et al., 1974). By clamping 1=w , the model effectively assumes that there is no hysteresis in 
the P-V plane and that the blood vessel has only elastic properties. Hence in this paper we 
will refer this model as the elastic windkessel (EW) model. The EW model is a special case 
of the VW model . 
 
Static and dynamic compliances 
The compliance of a blood vessel is determined by the amount of volume change per unit 
change in transmural pressure, and hence is the gradient of the P-V curve. If the curve is 
nonlinear, the vessel compliance varies at every steady state. During the transient period, the 
P-V relationship of a blood vessel forms a hysteresis loop in the P-V plane. Based on these 
observations, we classify the compliance of a blood vessel into two categories: one is static 
compliance given by the gradient on the steady-state P-V curve (Fig. 3a), the other dynamic 
compliance given by the gradient along the hysteresis loop in the P-V plane (Fig. 3b). 
Whereas the static compliance maybe used to model blood vessels with mainly elastic 
characteristics such that the hysteresis effect is minimum, the dynamic compliance reflects 
the visco-elastic properties of a blood vessel during dilation and contraction and is dependent 
on the rate at which it expands or contracts.  

From the steady state P-V model ( ) β1
wAPV = , it can be shown that the static compliance is 

given by 

 
P

V
dP
dVC

SS
S β

==  (6) 

Furthermore using eqn. (3) it can be shown that the dynamic compliance is given by: 
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Their normalised forms are 
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β 1
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respectively. Note that if a blood vessel behaves like (nonlinear) elastic material, there will be 
little hysteresis in the P-V plane during vessel dilation and contraction, hence the dynamic 
compliance as expressed above will converge to the static compliance. 
 
Data Analysis  
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Spectroscopic data were captured at 7.5 Hz and analysed using a path length scaling 
algorithm, as described in Mayhew et al. (1999). This algorithm used a modified version of 
the Beer-Lambert Law which included terms of differential path lengths over the range of 
wavelengths used. The LDF data were captured at 30 Hz and sub-sampled to 7.5 Hz. Baseline 
values were calculated from the first 8 seconds of each trial, yielding normalised changes in 
CBV and CBF as 0VVv =  and 0FFf =  respectively.  
 
The parameters of the VW model were estimated for each of the five animals and under each 
of the five stimulation frequencies (1,2,3,4 and 5Hz), with the exception of animal 4 which 
has only data for four stimulus frequencies (1,2,3 and 5Hz). Hence there are 24 data sets each 
with 173 data points. Parameter optimisation was carried out using a nonlinear least squares 
algorithm (Levenberg-Marquardt algorithm, MatlabTM

( )∑∑
==

−==
N

i
i

N

i
i vvSSE

1

2

1

2 ˆε

 function “lsqnonlin”). The 
performance of the VW model was compared with that of the EW model using the following 
three methods. 
(a) For each model, we computed the sum of squares of errors (SSE) for each data set: 

   (10) 

where v  and v̂  are the measured CBV time series and the model predicted CBV time series 
respectively, and N is the number of data points used. Then the difference scores for the SSE 

( ) ( )EWSSEVWSSESSE −=∆  
were computed. 
(b) The corrected Akaike’s information Criterion (AICc

( )
1
122log
−−
+

++





=

KN
KKK

N
SSENAICc

) was calculated for each model under 
each condition. This criterion provides a measure of goodness-of-fit of a model to empirical 
data, and offers a trade-off between model prediction and model complexity. The equation 
used for the calculation is: 

  (11) 

where K  is the number of parameters in the model, including the estimation of the SSE 
(Burnham and Anderson, 2002). Model selection was determined by the difference scores in 
AICc between models. Hence using the EW model as the reference model, we computed the 
difference scores  

( )EWAICVWAICAIC ccc −=∆ )(  
(c) In order to compare the predictive properties of the EW and the VW models, we re-
optimised the 4Hz data with the two compliance model parameters (b  and wτ ) clamped at 
values optimised for the 5Hz data. In other words we optimised the same model parameters 
φ  and vτ  for both models. This was done for each animal, and the model predicted CBV 
time series were compared. 
 
Results 
The VW model shows much improved performance compared to the EW model. Fig. 4 
shows the normalised CBV and the VW model predicted CBV, superimposed with the EW 
model predicted CBV for a representative subject, which clearly illustrates the improvement 
of model predictions provided by the VW model at higher stimulus frequencies. At lower 
stimulation frequencies, in this case at 1Hz, the predictions from both models are almost 
identical because there is little ‘delayed compliance’ in the data. 



 9 

 
The difference scores for SSE and AICc

cAIC∆

 for each animal under each stimulation frequency 
were calculated. All ∆SSE are negative, except one (animal 5, 1Hz) which has a difference 
score of zero.. A t-test on the SSE scores showed that the SSE for the VW model are 
significantly smaller than those of the EW model (p<0.01) , hence the VW model is better at 
predicting the CBV time series.  
 
The  scores are shown in Table 1. As a rule of thumb, a model is significantly better 
than other models if the corrected AIC score is at least 10 units lower than those of the other 
models (Burnham and Anderson, 2002). In 19 out of 24 data sets, cAIC∆  are negative with a 
magnitude much bigger than 10. In these cases the VW model is superior than the EW model. 
For the remaining five data sets, the cAIC∆  scores are within 10± , hence the performances 
of the two models are not significantly different. Note that these five data sets are all from 
conditions with lower stimulus frequencies: three of them from 1Hz, and one of each from 
the 2 and 3 Hz conditions. 
 
The two EW model parameters ( vτφ, ) and the four VW model parameters ( wv b ττφ ,,, ) were 
optimised for all 24 data sets and their values are displayed as histograms shown in Fig. 5. 
Also shown in Figure 5 are the means and standard deviations calculated for each histogram. 
The statistics for panel (f) of Figure 5 were calculated by excluding the outlier. It can be seen 
that the standard deviations of the two parameters common to both models ( vτφ, ), are 
smaller for the VW model than for the EW model. However the differences were not 
significant at the p<0.05 level. The issue of the outliers in the distributions for the two 
compliance model parameters ( wb τ, ) will be addressed in the Discussion section. 
 
Fig. 6 shows the normalised CBV data under the 4Hz stimulation frequency, the EW model 
predicted CBV and that using the VW model but with the compliance parameters ( wb τ, ) 
clamped at their values optimised for the 5Hz stimulation frequency. It can be seen that apart 
from subject 1, the VW model predictions for the other three subjects are significantly better 
than the predictions of the EW model. The data for subject 1 showed a large mismatch 
between the CBF and CBV time series at 5Hz, but only slight difference at 4Hz. Thus 
clamping the VW model compliance parameters optimised under the 5Hz condition did not 
produce good predictions for the 4Hz data for this subject. 
 
Discussion 
Using the Akaike’s Information Criterion, we have shown that the VW model is superior to 
the EW model, and the two additional model parameters ( wb τ, ) improved model predictions 
during the return-to-baseline phase of the CBV time series.  
 
There was one outlier in the distribution of the parameter wτ , with a value of 33=wτ . For 
this particular data set (2Hz, animal 2), there was little mismatch between the two time series 
of CBF and CBV, i.e., they returned to baseline at roughly the same rate. A large wτ  means 
that the state variable w  has very slow dynamics, or hardly varies during the time course of 
the stimulation. 
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The histogram of the parameter b  also highlights some cases in which much larger values of 
b were necessary in order to capture the data. Closer examination of the associated data 
revealed that these cases correspond to the time series of CBV remaining elevated throughout 
the post-stimulation period that the data was collected, while CBF did return to its baseline. 
The role of the parameter b  is to amplify the influence of dtdv  on the state variable w . In 
these cases, b  has to be sufficiently larger to prevent the state variable w  from returning to 
the steady state value of unity.  
 
In summary an important advantage of the VW model over the EW model is that the values 
of the two compliance model parameters ( wb τ, ) capture the variation of the difference 
between the CBF and the CBV time series as they return to baseline. 
 
Another important feature of the VW model is that it converges to the Grubb’s relationship 

Φ∝ CBFCBV  (Grubb et al., 1974) at steady state. The parameter φ  in the VW model is the 
inverse of the Grubb’s exponent Φ . As φ  is the summation of the two parameters: α  given 
by the blood vessel resistance-volume relationship, and β  given by the P-V curve, and both 
parameters have different values for different blood vessel types, it means that the Grubb’s 
exponent is unlikely to be the same across different vascular compartments. Furthermore, 
during transient phases of vessel dilation and contraction, the relationship between CBF and 
CBV is a dynamic one which is not simply governed by the power law described by Grubb et 
al (1974).  
 
The physiological basis of the CBF-CBV mismatch 
 In deriving the VW model, we have attributed the observed difference between the time 
series of CBF and CBV to the visco-elastic properties of the blood vessels. This is based on 
the following reasoning.  
 
During neural activation, dilation in the arterial compartment reduces the vascular resistance 
and hence blood flow increases. In the venous compartment, the increased flow from 
upstream increases the pressure inside the blood vessels. Assuming intracranial pressure 
remains constant during local hyperaemia (by replacement of the CSF), the transmural 
pressure in the venous compartment will be increased. Because the venous compartment is 
passive and the venous blood vessels are visco-elastic, the volume of the vessels increases 
quickly initially due to the elastic component of the vessel walls, but this expansion slows 
down considerably as the transmural pressure (and hence CBF) reaches a new steady state 
(Porciuncula et al., 1964). This is the ‘creep loading’ characteristic of a visco-elastic material. 
This process also occurs when there is a decrease in transmural pressure, hence there is a 
mismatch between the time series of CBF and CBV during both the inflation and deflation 
phases. A recent study by Royl et al. (2008) on the effect of elevated intracranial pressure on 
neurovascular coupling demonstrated that by increasing the intracranial pressure (hence 
decreasing the transmural pressure) within an activated region of the rat cortex the temporal 
mismatch between CBF and CBV was reduced. This suggests that transmural pressure plays 
an important part in the differences between the time courses of CBF and CBV. 
 
Although many optical imaging and MRI studies demonstrated the mismatch between the 
time series of CBF and CBV, this phenomenon is not always observed (Donahue et al., 2008; 
Jin et al., 2006). Some studies even showed no measurable changes of CBV in the venous 
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compartment with respect to evoked changes in neural activity (e.g. Hillman et al., 2007; Kim 
et al., 2007). This inconsistency across laboratories and across studies could be due to 
different modalities used for measuring the haemodynamic responses and different stimulus 
types. But this alone may not explain the considerable variability in the published 
physiological data. It is possible that other physiological mechanisms, such as changes in 
haematocrit, also affect the observed mismatch. This is still an area of active research. 
 
Comparison with other existing CBF-CBV models 
Two other models relating CBF to CBV are often used as part of an effort to establish a 
model linking changes in neural activity to the BOLD signal measured in fMRI experiments. 
One is similar to the EW model, except that the time constant vτ  took on different values 
during blood vessel dilation and constriction (Buxton et al., 2004). This model has been used 
in modelling and analysis of the BOLD fMRI data (Deneux and Faugeras, 2006; Vakorin et 
al., 2007; Vazquez et al., 2006). Like the original windkessel model by Mandeville et al. 
(1999), this model is time varying. A hidden switching function is required to track the sign 
of the changes of the CBV time series. A further weakness of the ‘Buxton’ model is that it 
effectively assumes that during vessel dilation, only the elastic response is present (hence the 
shorter time constant MTTτ ), and during vessel contraction, only the visco-elastic response is 
present (hence the longer time constant viscoMTT ττ + ). Data obtained from long stimulation 
studies (Herman et al., 2008; Kennerley et al., 2005; Kida et al., 2007; Mandeville et al., 1999) 
show that during stimulation, there are marked differences between the CBF and CBV time 
series, i.e., typically the CBF reaches a plateau while CBV is still increasing. However for 
short stimulation studies, this difference in the time series of CBF and CBV may not be 
observed because there is insufficient time during the onset phase before the return to 
baseline phase begins. During the return-to-baseline phase of the haemodynamic responses, 
the initial rate of decrease in CBF and CBV is in fact similar and the dominant observed 
mismatch between the CBF and CBV time series only occurs later   
 
To overcome the problem of the hidden switching function (in both the windkessel model and 
the Buxton’s model), Kong et al. (2004) extended Mandeville’s windkessel model by 
introducing a new state variable, which was a function of CBV (but not the rate of change of 
CBV), and captured some of the desired time varying characteristics of the dynamic 
compliance. This model was nonlinear time-invariant with four model parameters, much the 
same as the VW model in terms of model complexity. It was also able to predict well the 
slow return-to-baseline characteristics of the CBV time series. The model was used (Zheng et 
al., 2005) to develop a multi-compartmental model linking stimulus to the BOLD signal. 
However, because the model by Kong et al. (2004) was a formal model and not based on the 
mechanical properties of visco-elastic materials, it was difficult to relate the additional state 
and the parameters of the model to the known physiology. 
 
In contrast, the VW model presented here is capable of producing both elastic and visco-
elastic responses during stimulus onset and cessation because of the introduction of the state 
variable w which varies in time. The VW model is in the elastic phase when w is close to 
unity and transforms itself into the visco-elastic phase as w moves away from unity. Hence, 
there is no need to decide when to ‘manually’ switch to a different time constant. The 
compliance parameters (b and wτ ) determine the speed of this transformation and by doing 
so control the degree of the mismatch between the two time series CBF and CBV. 
Furthermore, the model is capable of predicting physiologically meaningful variables. For 
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instance, from the relationship ( ) β1
wAPV = , we can write the normalised expression 

( ) β1
wwpv = , thus predicting the normalised transmural pressure wp  across the vessel wall 

(assuming, say lamina flow with 2=α ). Fig. 7 shows the results of a simulation of the VW 
model whose parameters were selected as the mean values of their distributions given in Fig. 
5. The normalised CBF time series was the driving input to the model, and the model 
predicted time series of the normalised CBV and transmural pressure were computed. A step 
increase in CBF was chosen to demonstrate the visco-elastic properties of the VW model: the 
CBV response showed the creep loading characteristics, and the transmural pressure showed 
the stress relaxation characteristics of visco-elastic vessels.  
 
In addition, the VW model has the unique feature that both the static and dynamic 
compliances are emergent properties of the model. Although these compliances are not 
explicitly used in the VW model, they are important concepts and directly relevant in 
modelling the brain vasculature and the blood circulation network (Boas et al., 2008; Huppert 
et al., 2007; Linehan et al., 1986; Ursino et al., 2000). The use of static instead of dynamic 
compliance implies the assumption that blood vessels are elastic. This assumption may need 
to be examined when multi-compartment models are used, as the assumption may stand for 
the arterial compartment, but is less appropriate for the venous compartment. 
 
Nonlinear vs. linear models 
The VW model relates the normalised change in CBF to that of CBV. It is constrained by two 
nonlinear relationships: (1) the steady state relationship between the normalised CBF and 
CBV which is widely accepted as a power law relationship (Grubb et al., 1974) rather than a 
linear one, and (2) the steady state pressure-volume curve of blood vessels which is also well 
known to be nonlinear; with changes in volume diminishing at high transmural pressure. The 
VW model introduced a further nonlinearity by modelling the state variable w  with the term 






−

dt
dv

bexp  to ensure that within the theoretical range of ( )+∞∞−∈ ,
dt
dv , the state variable 

w  is always positive. 
 
On the other hand, many published data showed that the steady state relationship between the 
amplitude of changes in CBF and CBV is primarily linear (Ito et al., 2003; Ito et al., 2001; 
Lee et al., 2001; Risberg et al., 1969; Smith et al., 1971). The dynamic relationship between 
changes in CBF and CBV was explored (Wang et al., 2007) by linearising the modified 
windkessel model (Kong et al., 2004). They showed that within the range of changes tested 
(up to 25% change in CBF and 6% change in CBV), the linearised model was adequate at 
predicting the time series of changes in CBV from the CBF changes. More recently a linear 
system identification technique was used (Wei et al., 2009) which further demonstrated  that 
changes in CBF and CBV could be modelled by a linear dynamic system. The drawback of 
such techniques, however, is that the relationships between the model parameters and any 
physiological and biophysical constructs are unclear. 
 
Limitations of the VW model 
The VW model is guided by the mechanical properties of visco-elastic material, independent 
of the underlying physiological mechanisms coupling haemodynamic changes to evoked 
changes in neural activity. Its function is to account for the mismatch between the time series 
of CBF and CBV, not to model the temporal shape of the CBF itself due to evoked neural 
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activity. The model is most suited to relate the time series of changes in CBF and CBV in the 
venous compartment due either to evoked neural responses or as part of the circulation 
vascular network. Unlike the venous compartment which can be modelled as a passive leather 
bag (windkessel), the cerebral arterial network is actively involved in its role as a cerebral 
auto-regulation mechanism (Kontos, 1981; Paulson et al., 1990). It has been shown that 
cerebral arteries of certain diameter range will dilate with a drop in perfusion pressure but 
constrict with an increase in perfusion pressure in order to maintain cerebral blood flow 
(Kontos et al., 1978). This is in direct contrast to the P-V relationship of blood vessels 
measured in vitro. Thus the development of arterial models will be needed for detailed multi-
compartment modelling of the relationship between changes in blood flow and volume in the 
cerebral system.   
 
It is also worthwhile noting that the steady state P-V relationship ( ) β1APV =  is a qualitative 
description of the P-V curve of blood vessels rather than an optimal fit to experimental data. 
It seems appropriate for describing the P-V relationship of a vein (Porciuncula et al., 1964), 
but other studies showed that the P-V relationship of an arterial blood vessel maybe better 
described by a sigmoid function (Bergel, 1961; Roy, 1881). Notwithstanding, the strategy of 
modelling the parameter of the steady state P-V curve can be extended to other forms of P-V 
relationships.  
 
 
Conclusion 
 
This paper proposed a novel strategy for modelling the relationship between the CBF and the 
CBV time series. The strategy is based on the observation that the pressure-volume 
relationship of a visco-elastic tube at steady state differs from the relationship during 
transient states of dilation and contraction. The key point of the VW model is that a 
parameter characterising the steady state P-V curve becomes time varying during transient 
states, and the model predicted P-V trajectory form a hysteresis loop. This parameter is 
treated as a state variable and modelled by a simple first order nonlinear dynamic system 
driven by the rate of change of volume, and  the overall model is nonlinear time-invariant. 
 
Although the VW model has two more parameters than the simpler elastic balloon model, 
based on Akaike’s information criterion, it is superior. The values of these parameters 
account for the difference between the time series of CBF and CBV, thus capturing the 
‘delayed compliance’ phenomenon. 
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Titles and legends to figures  
 
Figure 1. The time series of the CBF (grey trace) and CBV (black trace) changes normalised 
between 0 and 1. The stimulation duration is indicated by the black bar on the time axis. The 
five data sets are from a representative subject (subject 3) under conditions of different 
stimulation. 
 
Figure 2. An illustration of the hysteresis loop on a family of steady state pressure-volume (P-
V) curves. The hysteresis is the P-V trajectory formed during vessel dilation and contraction.   
 
Figure 3. Steady state P-V curves. (a) Static compliance defined as the gradient on the steady 
state P-V curve. (b) Dynamic compliance defined as the gradient on the hysteresis loop of the 
P-V trajectory formed during dynamic phases of dilation and contraction. 
 
Figure 4. Comparison of the EW and VW model predictions of the CBV time series 
(normalised w.r.t. baseline values). The normalised CBV data (grey trace) is superimposed 
with the VW model predicted CBV (black broken trace) and the EW model predicted CBV 
(black trace). The stimulation duration is indicated by the black bar on the time axis. The five 
data sets are from a representative subject (subject 3) under conditions of different 
stimulation. 
 
Figure 5. Histograms of model parameters. The mean and the standard deviation of each 
histogram are displayed inside each subplot. (a) and (b) are histograms of the two parameters 
associated with the EW model. (c)-(f) are histograms of the four parameters associated with 
the VW model respectively. In panel (f), the symbol * is used to highlight the fact that these 
statistics were calculated excluding one outlier. 
 
Figure 6. Comparison of the EW and VW model predictions of the CBV time series using 
clamped parameters. The normalised CBV data (grey trace) is superimposed with the VW 
model predicted CBV (black broken trace) and the EW model predicted CBV (black trace). 
The four data sets are from four individual subjects (1,2,3 and 5) with 4Hz stimulation 
frequency. The VW model predictions were obtained by clamping the two compliance model 
parameters ( wb τ, ) at values optimised for the 5Hz condition. 
 
Figure 7. The visco-elastic properties of the VW model using a simulated step change in CBF 
(dotted trace). The computed CBV response (solid trace) shows creep loading characteristics, 
and the computed transmural pressure (broken trace) show characteristics of stress relaxation. 
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