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Direct bandgap GeSn alloys for laser application
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Abstract: Efforts towards development of monolithically integrated silicon-compatdders
have been revitalized since the demonstration of optically pumped GeSn waviegeid. Here
we investigate the laser emission of GeSn alloys by means of waveguideniarudlisk
photoluminescence.

OCIS codes:140.0140140.5960

1. Introduction

Group IV photonics, i.e., silicon based Electronic Photonic Integrated CircU&CgE provides a viable
solution to address the emerging interconnect bottleneck in data centers lasmerifidigmance computing with
power efficient and cost effective optical interconnedtsst of the required components such as waveguides or
modulators are already availaliegroup IV materials [1,2]The key missing component for monolithic EPICs is an
efficient and CMOS compatible laser source. The major obstacle in this respleetindirect bandgap nature of
group IV semiconductors such as Si and Ge, making them ineffikggdrt emitters that do not yield room
temperature stimulated emissidtowever, despite having an indirect bandgap, Ge has been identified agbeposs
link between electronic and light-emitting photonic applicatibmdeed, the 140 meV difference between the direct
(") and indirect (L) conduction band minima can be reduced via straimeenigg, resulting im fundamental direct
gap semiconductor. In this context two approaches have yielded encouregiftg: epitaxial growth of Ge on
larger lattice constant GeSn buffers [3], and micro-processing of uhyasiedined Ge bridges [4].

The latest approacloif producinga fundamental direct bandgap in group IV materials is the alloying of Ge with
Sn [5]. In this contribution we will discuss the light emission properties of Gda@rnvapor Deposition (CVD) -
grown GeSn layers with Sn-contents of up to 14% based on pmitelscence (PL) and reflection spectroscopy
Special emphasis is put on the laser emission with different resonatoetgies.

2. Band engineering and photoluminescence study

The transition from a fundamental indirect to a fundamental directgapan@eSn alloy was shown to occur for
cubic crystals (zero strain) at about 8.5 a&ftconcentration (Fig. 1a) [BHowever, the pseudomorphic growth of
GeSn on Ge buffers results in a large compressive strain, on the otdl8fwfor a Sn content of 12 at.%, which
pustesthe required Sn content to very large values. Fortunately, the diregdpatrdnsition can be reaahfor
partially relaxed films at Sn contents and residual compressive strain vadlids ave experimentally accessible
Fig. 1a shows the indirect and direct bandgap regions as a functoncohtent and compressive strain in the alloy.
Even if the formal direct-indirect transitide reacted, for instance for a 50% strain relaxedo@€Smn. 125 layer,
further relaxation, and thuslarger directnesaEr.. defined as the energy difference betweernthend L- valleys,
would be highly beneficial in order to increase the temperature statfitite laser.

Thermal annealing, the most common technique for elastic strain relaxationitéd for Sn-based systems due
to thermal budget constrainse to Sn diffusion On the other hand, strain relaxation can be obtained hip-tigu
epitaxial growth of thick layers exceediagew 100nm. Although considerable progress has been made concerning
the CVD of GeSn alloys [67], the growth of high quality thick layers is still very challengifige ability to grow
0.5 um thick layers was only shown recently, resulting in #raahstration of the fundamental direct bandgap for
partially relaxed GeSn alloys with 12.5 at.% Sn [8]. Here we present two apesosx further increase the
directness of the alloy, which are i) epitaxial growthihick and, therefore, highly strain relaxed GeSn layers and ii)
increasing the Sn content in the alloys up to 14 at.%.
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Fig. 1: (a) Experimentally determined indirect to direct transites a function of Sn content and compressive straimeitayer [8]. (h Energy

levels from band structure calculations (left @xisd directness, AEr = E-E (right axis), for GgszsSm.125 layers as a function of the relaxation
degree/residual compressive strain.

Concerning the first approach, band structure calculations for a @lfynwith 12.5 at.% Sn concentration,
shown in Fig. 1(b), indicate a high directness of about 80 melia fully relaxed alloy. This increased energy
separation between I" and L leads to a suppression bf to L-valley carrier transfer which would otherwise reduce
theT - valley population. As shown in Fig. 1(b), the biaxial strain in theyafl@oupled to its bandgatherefore, an
increased relaxation also translates into a reduction of the bandgap. Roomaterapeflection spectroscopy
measurements, shown in Fig. R(&ature a shift of the absorption band-edge down to about 0.48r&V970nm
thick layer at room temperaturéurthermore, the room temperature PL signal associated with a 9#ticknGeSn
layer is25 times more intense than that fo2 55 nm thick layer of identical alloy composition (e.g. 12.5%).

The second approach for enhancing light emission is to increaSa tentent in the alloy. Low temperature PL
measurements performed at 50 K, where nonradioactive recombinaticrysial defects are reduced, show the
benefit of this approach in Fig. 2(& huge PL intensity increase is observed for the higher Snrtoaitey (e.g.
14%), although the layer thickness and therefore the strain relaxaioaduced compared to alloys with a lesser

Sn content. A similar trend is also seen at room temperdtheestrong PL emission from these layers makes them
attractive for the fabrication of lasing devices.
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Fig. 2: (a) Reflection and (b) room-temperature phwhinescence (PL) spectroscopy measurements for differeknéssesGe) s7sSm 125
layers. (c) Low temperature PL for GeSn alloys wiffecent Sn contents.

3. Germanium-tin lasers

Waveguide structures can serve as Fabry-Perot laser cavities and supmpeadasicently demonstrated in [8].
They can also serve as waveguide photodetectors in which the long (edgorption length) allows the efficient
collection of photons [9]. Meanwhile, microdisk type devices are attractiMader integration with plan&i or Ge
based photonics. They indeed provide an integration path without thelegical challenges associated with the
fabrication of Distributed Bragg Reflector (DBR) mirrors. The heterogenetegration of I1I-V microdisk lasers
and waveguide detectors with SOl CMOS has been intensely purstezkimt years10]. The use of GeSn alloys
will allow monolithic integration with group IV planar photonics and coeign pave a path towards a fully



integrated technology combining light generation with the current capabilitiegraafp IV photonics and
monolithically integrated electronics.
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Fig. 3 Scanning Electron Microscopy (SEM) images of GeSn FabrgtRa) and microdisk (b) resonators fabricated witstandard Si
technology. (c,d) laser emission of 560 nm thBgk 5755 125 Waveguides grown on Ge buffers on Si substratesfunction of the excitation
power at different temperatures. (c) un-passivated @nti)(nm A}O; passivated structures.

Fabry-Perot and microdisk resonators were fabricated for the stunjytioélly pumped GeSn lasers (see Fig.
3a,b). GeSn layers with thicknesses between 300 and 800 nm awht&nts between 8&% and 14 a¥% were
investigated. Lasing at temperatures below 100K was achieved for all reggemaiwetries by optical pumping with
apulsed Nd:YAG lase(5 ns pulse duration).

For 560 nm thiclGe s7sSh. 125 layers undea compressive strain of about -0.4% modal gain values up tariil0
1 were measured at T20K andat the photon emission energy of 558 meV via the variable stripe lengtlvaneth
(VSL); optically pumped lasing was demonstrated [Bje gain increases linearly with the excitation intensity,
resulting in a differential gain of approx. 0.40 cm/kW arldsing threshold of 325 kW/cinThe emission collected
as a function of the excitation intensity from the waveguide famfett 5 pm wide and 1 mm lonGe s7sShy.125
Fabry-Perot resonatds displayed in Fig. 3c,d for different temperatures. A clear |#¥eshold behaviour is
observed in the emission intensity at aror@dmwW pump power at T 20K. The output intensity vs. optical
excitation curves for different temperatures gives us the temperapendence of the lasing threshold. Devices
without (Fig 3c) or with a 10 nmthick Al,Os; passivation layer deposited on top of the stripe.(B@) were
compared Passivation reduces the carrier surface recombination. The lasing thresti@d definitely improved
(e.g. reduced) at temperatures above 40K. The temperature dependencesgighbrieshold is also much reduced
for passivated devices

The use of GeSn alloys with a larger directness, as presented above, andiytbé thtel role of interface defects
in under-etched and passivated GeSn microdisk resonators will providgdantposights towards the fabrication of
room temperature, electrically pumped lasers with a fully group IV téogyo
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