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Abstract 

Selfish routing, represented by the User-Equilibrium (UE) model, is known to be inefficient when 

compared to the System Optimum (SO) model. However, there is currently little understanding of 

how the magnitude of this inefficiency, which can be measured by the Price of Anarchy (PoA), varies 

across different structures of demand and supply. Such understanding would be useful for both 

transport policy and network design, as it could help to identify circumstances in which policy 

interventions that are designed to induce more efficient use of a traffic network, are worth their 

costs of implementation. 

This paper identifies four mechanisms that govern how the PoA varies with travel demand in traffic 

networks with separable and strictly increasing cost functions. For each OD movement, these are 

expansions and contractions in the sets of routes that are of minimum cost under UE and minimum 

marginal total cost under SO. The effects of these mechanisms on the PoA are established via a 

combination of theoretical proofs and conjectures supported by numerical evidence. In addition, for 

the special case of traffic networks with BPR-like cost functions having common power, it is proven 

that there is a systematic relationship between link flows under UE and SO, and hence between the 

levels of demand at which expansions and contractions occur. For this case, numerical evidence also 

suggests that the PoA has power law decay for large demand. 

Keywords 

Selfish Routing, Price of Anarchy, User-Equilibrium, System Optimum 

1 Introduction 

Experimental studies have shown that when choosing routes in traffic networks, network users tend 

to act selfishly and select routes that minimise their individual travel costs (Rapoport et al., 2009, 

Selten et al., 2007). This is the basis for the User Equilibrium (UE) routing principle (Wardrop, 1952). 

It is well established that selfish routing does not, in general, result in an optimal use of the supply 

network (Pigou, 1920), such as that which is achieved under System Optimal (SO) routing. The best 

ŬŶŽǁŶ ŝůůƵƐƚƌĂƚŝŽŶ ŽĨ ƚŚŝƐ ŝŶĞĨĨŝĐŝĞŶĐǇ ŝƐ PŝŐŽƵ͛Ɛ EǆĂŵƉůĞ; in which it is shown, for a network of two 

parallel routes, that a UE assignment of traffic flow produces a total network travel cost that, whilst 

optimal for individuals, is suboptimal for society overall (Roughgarden, 2005). However, it is 

unknown how or why the extent of this inefficiency varies across different demand and supply 

structures; such as those that are known to exist in the traffic networks of cities from across the 
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world (Barthelemy, 2011). Such understanding would be useful for transport policy and network 

design; for example, it could be used to help identify circumstances in which policy interventions, 

which are designed to induce a more efficient use of a traffic network, are worth their costs of 

implementation (Mak and Rapoport, 2013). 

The extent of the inefficiency of selfish routing can be quantified by the Price of Anarchy 

(Papadimitriou, 2001). This measure is defined as the ratio of the total network travel cost under UE 

to the total network travel cost under SO (Roughgarden, 2005). The Price of Anarchy was first 

proposed by Koutsoupias and Papadimitriou (1999), and it has been the subject of considerable 

study since its inception. The main focus of such studies has been on producing upper bounds for 

the worst-case value of the measure across broad families of traffic networks. The earliest result, in 

this respect, was by Roughgarden and Tardos (2002), who demonstrated that the Price of Anarchy 

has an upper bound of Ͷ ͵Τ  in traffic networks with affine link cost functions. Generalisations and 

extensions of this result have since followed to families of traffic networks with separable, 

polynomial link costs (Roughgarden, 2003, Dumrauf and Gairing, 2006); non-separable, symmetric 

costs (Chau and Sim, 2003); and non-separable, asymmetric costs (Perakis, 2007). Upper bounds 

have also been produced in the context of elastic demand assignment for traffic networks with non-

separable, symmetric cost maps (Chau and Sim, 2003); and non-separable, asymmetric and non-

linear costs (Han et al., 2008). In each instance, the upper bounds that have been presented depend 

only on characteristics of the cost functions, such as the value of the highest power across all 

network links or the degree of link cost asymmetry. For example, for traffic networks with separable, 

polynomial link costs, Roughgarden (2003) showed that the Price of Anarchy is bounded above by 

equation (1), where  is the value of the highest power across all network links. 

 ൣͳ െ ሺ  ͳሻିሺାଵሻ Τ ൧ିଵ (1)   

More recent upper bounds include characteristics of demand. For example, for traffic networks with 

separable, polynomial link costs, Correa et al. (2008) showed that tighter upper bounds than those 

presented by Roughgarden (2003) can be derived provided the free-flow travel cost on each network 

link is at least a non-zero, fixed proportion of its travel cost under a UE assignment of travel demand. 

Englert et al. (2010) also showed that the maximum increase in the Price of Anarchy, due to an 

increase in demand, can be bounded for traffic networks with separable, polynomial link costs and a 

single origin-destination (OD) pair.  

This focus on worst-case values of the Price of Anarchy is a pattern that is also evident in recent 

transport literature; for example, in the establishment of upper bounds for the maximum efficiency 

gains of road pricing (Han and Yang, 2008, Yang et al., 2010) and car number plate based traffic 

rationing schemes (Han et al., 2010). The Price of Anarchy has also been used to establish upper 

bounds on the maximum efficiency loss; for example, in competitions between providers of private 

road infrastructure (Liu et al., 2011, Xiao et al., 2007), in traffic networks where only a minority of 

travellers have access to advanced traveller information (Liu et al., 2007), and in traffic networks 

where some travellers choose to follow shortest paths, oblivious to the effects of congestion 

(Karakostas et al., 2011). 

However, in focussing on the worst-case value of the Price of Anarchy across broad families of traffic 

networks, the above studies neglect the variation that occurs within families of traffic networks, 

between traffic networks that may have very different demand and supply structures. Evidence of 
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this variation is revealed by numerical studies, such as those of Wu et al. (2008) and Youn et al. 

(2008), which illustrate how the Price of Anarchy varies with travel demand in a range of real and 

synthetic traffic networks. An example of this variation is shown in Figure 1, which displays how the 

Price of Anarchy changes as travel demand is increased in three, single Origin-Destination (OD) sub-

networks of the Boston, London and New York road networks (Youn et al., 2008). 

In each city, it can be seen that there are broadly three identifiably distinct regions of behaviour: an 

initial region in which the Price of Anarchy is one; an intermediate region of fluctuations; and a final 

region of decay, which has a similar characteristic shape across all three networks. The similarities in 

this general behaviour across the three cities suggests that there may be common mechanisms that 

drive this variation. Yet, focussing on the detail of the individual graphs, the patterns are obviously 

different. For example, the graphs for Boston and New York have single dominant peaks, which are 

both higher than the peak reached in London. Whereas, the graph for London remains closer to its 

maximum value for a longer interval of demand than in either Boston or New York. It is also evident 

that the Price of Anarchy is not a smooth function of demand; the peak in Boston is a prominent 

example of this feature. 

 
Figure 1 ʹ Price of Anarchy against Demand for three Single OD Networks (Youn et al., 2008) 

Figure 1 is only an illustration of how the Price of Anarchy has different values, at different levels of 

demand, in different traffic networks. However, the study from which it is taken does not provide a 

comprehensive explanation for the variation shown. The findings of theoretical studies, such as 

those of Roughgarden (2003) and Correa et al. (2008), are of little explanatory use here. This is 

because these studies reveal only the maximum value that the Price of Anarchy could reach, and this 

value is often significantly higher than the maximum value that is achieved across the demand 

range. For example, each network in Figure 1 has polynomial link cost functions, for which the the 

highest power  ൌ ͳͲ. Equation (1) therefore provides an upper bound for the Price of Anarchy in 

these networks of approximately 3.5, which is significantly larger than the highest value of the Price 

of Anarchy of 1.3 in Figure 1. An explanation for this variation in the Price of Anarchy is required if 

we are to understand how different combinations of demand and supply, such as those that exist in 

real traffic networks, yield different magnitudes of the inefficiency of selfish routing. 

Addressing this gap in the literature, this paper identifies and characterises four mechanisms that 

govern how the Price of Anarchy varies as travel demand is increased in a traffic network. Focussing 

on the general setting of traffic networks with multiple OD pairs and continuous, differentiable, 

separable and strictly increasing link cost functions, this paper reveals the source of the variations 

seen in Figure 1: namely that as demand increases there are expansions and contractions in the set 

ŽĨ ƌŽƵƚĞƐ ;ĨŽƌ ĞĂĐŚ ODͿ ƚŚĂƚ ĂƌĞ ŽĨ ŵŝŶŝŵƵŵ ĐŽƐƚ ƵŶĚĞƌ UE ;ƐŚŽƌƚŚĂŶĚ͗ ͚UE ƌŽƵƚĞ ƐĞƚ͛Ϳ͕ Žƌ ŽĨ 
minimum marginal total cost under SO ;ƐŚŽƌƚŚĂŶĚ͗ ͚SO ƌŽƵƚĞ ƐĞƚ͛Ϳ͘ TŚĞ ĚĞŵĂŶĚƐ at which such 
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expansions and contractions occur, under UE or SO, are defined as route transition points. As 

demand increases through these four different kinds of transition points, there are specific impacts 

on the Price of Anarchy. These are characterised through a combination of theoretical results and 

computational experiments.  

 Finally, in the special case of traffic networks with BPR-like cost functions (with common power), 

this paper proves that there is a systematic relationship between link flows under UE and SO, and 

that, consequently, there is also a systematic relationship between levels of demand at which route 

transition points occur under UE and SO. We also conjecture that, in this special case, the Price of 

Anarchy has power law decay for large demand; this claim is supported by numerical evidence. 

The remainder of the paper is structured as follows. Section 2 defines notation and describes the UE 

and SO models. Section 3 then characterises the existence of expansions and contractions in 

minimum (marginal total) cost route sets under UE and SO, and proves that these are equivalent, 

under the condition of proportionality, to expansions and contractions in the sets of OD specific links 

that have non-zero flow. Section 3 also describes the systematic relationship between link flows 

under UE and SO for the special case described above. Section 4 presents theoretical results and 

conjectures, which characterise the effects of expansions and contractions on Total Network Travel 

Cost under SO, Total Network Travel Cost under UE and the Price of Anarchy. Section 5 then 

presents four numerical examples, which illustrate the theory of the preceding sections and also 

provide numerical evidence to support the proposed conjectures. Finally, section 6 presents 

conclusions and our outlook for future work. 

2 Mathematical Preliminaries and Notation 

In this paper, the topology of a traffic network is represented by a directed graph ܩሺܸǡ  ,ሻܣ

comprising a set of nodes ܸ and a set of directed links ܣ. The costs of travel on each link ݅ א  are ܣ

represented by cost functions ܿ. Travel demand is represented by an Origin-Destination (OD) vector ܳ with entries ݍ denoting the volume of travel on OD movements ݎ ൌ ͳǡǥ ǡ ܴ. Each OD movement ݎ is served by a finite number ݇ ൌ ͳǡǥ ǡ ߢ  of acyclic routes ܭ. 

Using this notation, the UE principle is characterised in equation (2) (Patriksson, 1994). 

 

݂  Ͳ ֜ ܥ ൌ  ݂ߨ ൌ Ͳ ֜ ܥ  ݇ ߨ א ǡܭ ݎ ൌ ͳǡǥ ǡ ܴ 

(2)   

Here, ݂ denotes the flow and ܥ ൌ ሺܥ ݂ሻ denotes the cost of travel on a route ݇ א  . The cost ofܭ

travel on each route ݇ א ܥ : is assumed to be the sum of link costsܭ ൌ σ ܿሺݔሻ ǡߜ , where ߜǡ ൌ ͳ, if link ݅ is part of route ݇ א ݇ , and zero otherwise. The set of links that comprise a routeܭ א ܫ  is denotedܭ ൌ ൛݅ א ǡߜหܣ ൌ ͳൟ ؿ ǡߜ The .ܣ  terms form a link-path incidence matrix, 

which is denoted by ȟ. The minimum OD travel cost under UE, for the ݎth
 OD movement is 

represented in this paper by ߨ ൌ    אೝ  .ܥ

Subject to the above conditions and the assumption that link costs ܿ are continuous, positive, 

separable and strictly increasing functions of link flows ݔ, it can be shown that there exist unique 

link flows ݔா satisfying the UE conditions (2) and which solve (Sheffi, 1985): 
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   ௫ ሻݔሺݖ  ൌ න ܿሺ߱ሻ݀߱௫א  

subject to the constraints: 

 

 ݂ ൌ ݎ ݍ  

ݔ ൌ   ݂ߜǡאೝ  ݅ 
݂  Ͳ ݇ א ǡܭ ݎ ൌ ͳǡǥ ǡ ܴ 

(3)   

Under the same conditions, unique link flows ݔௌை satisfying the SO principle also exist, and solve a 

minimisation program with the same constraints (3) but with objective function ݖǁሺݔሻ ൌ σ אܿݔ . 

Under the assumption that link costs ܿ are also differentiable, the SO objective function is 

equivalent to the UE objective function under a transformation of link costs ǁܿ ൌ ܿ  ݔ ൈ ݀ܿ Τݔ݀ . 

In comparison with ܿ, the cost functions ǁܿ include the additional cost burden that each unit of flow 

imparts on all other units of flow on each link (Sheffi, 1985). Sheffi (1985, p71-74) refers to ǁܿ as 

͞ŵĂƌŐŝŶĂů ƚƌĂǀĞů ĐŽƐƚƐ͟ and defines the ͞marginal total travel cost͟ on a route ݇ א ሚܥ  asܭ ൌσ ǁܿሺݔሻ ǡߜ . The minimum marginal total travel cost for the ݎth
 OD movement is represented in this 

paper by ߨ ൌ    אೝ  .ሚܥ

In order to guarantee the existence and uniqueness of link flows under UE and SO, the following 

assumption is presumed to hold throughout the paper: 

Assumption A1: For each link ݅ א  ,the cost function ܿ is a continuous ,ܩ in a traffic network ܣ

differentiable, positive, separable and strictly increasing function of link flow ݔ. In order to 

guarantee the uniqueness of the SO link flow solution, it is also assumed that ݀ଶܿ ଶΤݔ݀  Ͳ. 

In addition to link flows, the above programs also guarantee the uniqueness of route costs under the 

UE and SO principles. However, route flows ݂ are, in general, not unique. In fact, there are typically 

an infinite number of possible route flow solutions ܨ ൌ ሼ ݂ሽ that satisfy the above constraints.  

For a given network, having computed the UE and SO solutions, the difference between them can be 

measured by the Price of Anarchy, which is formally defined as follows (Roughgarden, 2005): 

Definition 2.1: For a traffic network ܩ, with cost functions ܿ and demand vector ܳ, the Price of 

Anarchy ߩ is defined as: 

ߩ ൌ ௌைܥாܶܶܥܶܶ ൌ σ σאா൯ݔாܿ൫ݔ אௌை൯ݔௌைܿ൫ݔ  

The Price of Anarchy is therefore unique (under Assumption A1) and does not depend on the 

particular equilibrium route flow solution considered. 

3 The Existence of Expansions and Contractions in Minimum Cost Route Sets 

This section characterises how the set of routes for an OD movement, which are of minimum cost 

under UE, or minimum marginal total cost under SO, can expand or contract in response to a 

perturbation in travel demand. This section begins with two network examples to illustrate this 

behaviour, and then provides definitions and notation to characterise the different types of 

expansions and contractions that can occur in general traffic networks. It is then shown that, under 
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the condition of proportionality, an expansion (contraction) in the minimum cost route set (under 

UE or SO), for an OD movement, is equivalent to an expansion (contraction) in the set of links that 

have non-zero flow for that OD movement. 

In the special case of traffic networks with cost functions ܿ ൌ ܽ  ܾݔఉ for which all links share a 

common power ߚ, it is shown that there is a systematic relationship between link flows under UE 

and SO, and that, consequently, there is also a systematic relationship between the levels of demand 

at which expansions and contractions occur in minimum cost route sets under UE and SO. 

3.1 Illustrative Examples 

3.1.1 Example 1: Expansions in the Minimum Cost Route Sets under UE and SO 

Consider a traffic network of ܰ parallel links, serving a single OD pair with increasing demand ݍ  Ͳ, 

and with affine link cost functions of the form ܿ ൌ ܽ  ܾݔ, where ܽǡ ܾ  Ͳ and ܽ ൏ ܽାଵ ݅ ൌ ͳǡǥ ǡܰ. In such a network, under UE and at sufficiently low levels of demand ݍ, all flow uses 

only the cheapest route, which is provided by link 1. This holds for all values of ݍ  Ͳ for which: ܿଵሺݔଵா ൌ ሻݍ  ܿଶሺݔଶா ൌ Ͳሻ   ܽଵ  ܾଵݍ  ܽଶ   ݍ  ሺܽଶ െ ܽଵሻܾଵ  

For values of ݍ  ሺܽଶ െ ܽଵሻ ܾଵΤ , link 2 activates and ܿଵሺݔଵாሻ ൌ ܿଶሺݔଶாሻ. Both links therefore carry 

flow at UE and the set of minimum cost routes comprises links 1 and 2. As ݍ increases from this 

threshold the set of minimum cost routes remains unchanged provided: 

 

ܿଵሺݔଵாሻ ൌ ܿଶሺݔଶாሻ  ܿଷሺݔଷா ൌ Ͳሻ  ܽଵ  ܾଵݔଵா  ܽଷ   ڮ ܽଵ  ܾଵ ቆሺܽଶ െ ܽଵሻ  ܾଶܾݍଵ  ܾଶ ቇ  ܽଷ  ݍ  ܽଷ െ ܽଶܾଶ  ܽଷ െ ܽଵܾଵ  
(4)   

For values of ݍ above the threshold shown in equation (4), link 3 activates and ܿଵሺݔଵாሻ ൌܿଶሺݔଶாሻ ൌ ܿଷሺݔଷாሻ; i.e. the set of minimum cost routes comprises links 1, 2 and 3. 

As demand continues to increase, the minimum OD cost of travel continues to increase and further 

links become members of the minimum cost route set. This process continues until, at a sufficiently 

large level of demand, all links in the network belong to this set. It can be shown that under UE, for a 

given ܯ ൏ ܰ, the set of minimum cost routes comprises ܯ links for all values of ݍ satisfying 

equation (5). 

  ܽெ െ ܾܽெିଵ
ୀଵ ൏ ݍ  ܽெାଵ െ ܾܽ

ெ
ୀଵ  (5)   

A similar pattern emerges under SO: increasing demand causes a sequence of links to be added to 

the set of minimum cost routes. Although, as travellers consider the marginal link travel costs ǁܿ, 
rather than ܿ, when choosing routes; it is the set of routes of minimum marginal total cost that 

changes. For the above parallel link network the cost transformation ǁܿ yields equation (6). 

 ǁܿ ൌ ܿ  ݀ܿ݀ݔ ݔ ൌ ሺܽ  ܾݔሻ  ሺܾሻݔ ൌ ܽ  ʹܾݔ (6)   

The pattern of changes in the minimum marginal total cost route set under SO can therefore be 

obtained by redefining ܾǣ ൌ ʹܾ in the above UE derivation. It follows that under SO, for a given 
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ܯ ൏ ܰ, the set of routes that are of minimum marginal total cost comprises ܯ routes for all values 

of ݍ satisfying equation (7). 

  ܽெ െ ܽʹܾெିଵ
ୀଵ ൏ ݍ   ܽெାଵ െ ܽʹܾெ

ୀଵ  (7)   

It follows from the above that as demand increases, the order in which routes become minimum 

cost under UE is exactly the same as the order in which routes become minimum marginal total cost 

under SO. This follows for general multiple OD networks from the cost function transformation ǁܿ. 
This example illustrates how the set of minimum cost routes under UE, and the set of minimum 

marginal total cost routes under SO, can expand in response to an increase in demand. This example 

could also be used to demonstrate that the sets of minimum cost routes under UE and SO can also 

contract. This could be achieved by starting with high demand ݍ, such that all ܰ links belong to the 

minimum cost route set, and by gradually decreasing ݍ towards zero. The example that follows in 

section 3.1.2 demonstrates, perhaps counter-intuitively, that the set of minimum cost routes, under 

UE and SO, can also contract in response to an increase in demand. 

3.1.2 Example 2: Contractions in the Minimum Cost Route Sets under UE and SO 

Consider the five link traffic network shown in Figure 2, which serves two OD pairs ܱ ՜ ܱ ͳ andܦ ՜ as shown. Further suppose that the five links have the following affine link cost functions: ܿଵ ʹܦ ൌ ʹ  ଵ, ܿଶݔ ൌ ͵  ଶ, ܿଷݔ ൌ ͻ  ଷ, ܿସݔ ൌ ͳ  ସ and ܿହݔ ൌ ͳ  ܱ ହ; and that demand on theݔ ՜ ை՜ଶݍ movement is fixed at ʹܦ ൌ ͳ. There are two routes for each OD pair: for ܱ ՜  ͳ, theܦ

routes are link ሼͳሽ and links ሼʹǡͶሽ; for ܱ ՜  .the routes are links ሼʹǡͷሽ and link ሼ͵ሽ ,ʹܦ

 
Figure 2 - Five Link Network with Two OD Pairs 

Consider demand ݍை՜ଵ increasing from zero under SO. The variation of marginal total route costs 

under SO, for each of the four routes, with respect to ݍை՜ଵ, is shown in Figure 3. In addition to 

providing further examples of expansions in the minimum cost route set; it can also be seen that, for ݍை՜ଵ ൏ ͳͳǤͷ, route ሼʹǡͷሽ is part of the minimum marginal total cost route set for OD movement ܱ ՜ ை՜ଵݍ but that, for demand ,ʹܦ  ͳͳǤͷ, this route ceases to be a member of this set. This 

example therefore demonstrates that the set of minimum marginal total cost routes under SO can 

contract due to an increase in travel demand. Furthermore, this example also demonstrates that the 

set of minimum marginal total cost routes for one OD pair; in this case ܱ ՜  can change due to ,ʹܦ

an increase in demand on a different OD movement; in this case ܱ ՜  ͳ. This latter observationܦ

demonstrates the potential complexity of possible dependencies that may exist between expansions 

and contractions on different OD movements. 
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Figure 3 - Route Costs under SO against increasing demand on O->D1 for the network in Figure 2 

It can be shown that exactly the same pattern of expansions and contractions also occurs under UE 

for this network example; although at different levels of demand ݍை՜ଵ. 

3.2 Definitions, Notation and Limiting Conditions 

The examples presented in sections 3.1.1 and 3.1.2 illustrate that the set of minimum cost routes 

under UE, and the set of minimum marginal total cost routes under SO, for an OD movement, can 

expand or contract due to a perturbation in travel demand. The examples also demonstrated that an 

increase (or decrease) in demand on one OD movement has the potential to cause an expansion or a 

contraction in the route sets of another OD movement. In section 4 it is shown that expansions and 

contractions in these sets, under UE and SO, have a significant influence on how the Price of Anarchy 

varies with travel demand. As such, the following definitions and notation are proposed in order to 

characterise these phenomena. 

Definition 3.1: The set of minimum cost routes under UE, for an OD movement ݎ, at a demand ܳ is 

defined as ܭ ൌ ሼ݇ א ܥȁܭ ൌ ܭ ሺܳሻሽ. To track changes inߨ  with respect to perturbations in 

demand, a vector function ȯாሺܳሻ is defined for each OD movement ݎ, which has entries ݑ for 

which ݑ ൌ ͳ, if ܥ ൌ ݑ ሺܳሻ, andߨ ൌ Ͳ, if ܥ   .ሺܳሻߨ
Definition 3.2: A demand vector ܳ is defined as a route transition point under UE if there exist 

vectors ݃ǡ ݄ א Թோ̳ሼͲሽ for which, for at least one OD movement ݎ: 

    ఒభ՜ȯሺܳ െ ଵ݃ሻߣ ്    ఒమ՜ȯሺܳ     ଶ݄ሻ (8)ߣ

where ߣଵǡ ଶߣ  Ͳ.  
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Individual route transition points are denoted by ߟா, and the set of all such demand vectors for a 

given network ܩ is denoted Ȣா. As shorthand, in the remainder of the paper, we refer to the limit 

on the left-hand side of equation (8) as ܳ ՜ ாିߟ  and the limit on the right-hand side of equation (8) 

as ܳ ՜ ாାߟ . The SO equivalent definitions 3.1 and 3.2 can be obtained with appropriate changes to 

superscripts and notation. For example, the set of minimum marginal total cost routes under SO, for 

an OD movement ݎ, is defined as ܭ෩ ൌ ൛݇ א ሚܥหܭ ൌ ܭ ሺܳሻൟ. Bothߨ  and ܭ෩  are uniquely 

defined under Assumption A1. Individual SO route transition points are denoted by ߟௌை, and the set 

of all transition points is denoted Ȣௌை. 

In the case of a network with only one OD movement, the limits in definition 3.2 (equivalently, the 

directional derivatives of ȯா) simply correspond to increasing/decreasing the scalar OD demand. In 

the multiple OD case, at a particular ܴ-dimensional demand vector ܳ, there are many directional 

derivatives. Overall, as demand increases new routes will activate. However, complex scenarios are 

conceivable; for example a route transition point could occur at some given ܳ, with an expansion in 

the minimum cost route set for one OD movement, a contraction in the minimum cost route set for 

a different OD movement, and no change in the minimum cost route sets for a third OD movement. 

Analysis of route transition points and the existence/non-existence of directional derivatives at such 

points is a significant focus of attention in the UE Sensitivity Analysis literature (Josefsson and 

Patriksson, 2007, Patriksson, 2004)
1
. In this paper we are subject to the same analytical difficulties 

identified in such works. For example, Josefsson and Patriksson (2007) remark that directional 

derivatives cannot be guaranteed for the BPR cost functional form because it has zero cost 

derivative at zero flow. 

We will show the importance of these route transition points in determining the PoA. However, we 

will only consider the cases where one or more routes activate for one or more OD movements, or 

one or more routes deactivate for one or more OD movements. We wish to exclude the complex 

scenarios noted above where routes simultaneously activate on one OD movement and deactivate 

on a different OD movement (at the same OD demand). We restrict our attention to changes that 

occur at route transition points ߟ (satisfying conditions C1-C3 below) when travel demand ܳ 

increases (as in definition 3.3). 

Definition 3.3: Consider two demand vectors ܳଵǡ ܳଶ א Թோ with ܳ ൌ ሾݍଵ ǡ ǥ ǡ ோݍ ሿ. Demand is said to 

have increased from ܳଵ to ܳଶ if and only if ݍଵ  ݆ ଶݍ ൌ ͳǡǥ ǡ ܴ, and ݆Ԣ for which ݍᇱଵ ൏ ᇱଶݍ . 

Route Transition Point Conditions: 

Conditions C1-C3 hold when they are satisfied for both UE and SO transition points. We therefore 

use generic notation e.g. Ȣ to indicate Ȣ or Ȣୗ as appropriate.  

C1. Demand vectors ݃ and ݄ in (8) satisfy ݃  Ͳ and ݄  Ͳ, ݎ ൌ ͳǡǥ ǡ ܴ 

C2. For the vectors ݃ǡ ݄ in C1, ߣଵǡ ଶߣ  Ͳ such that ߠଵ א ሾͲǡ ܳ ,ଵሿߣ െ ଵ݃ߠ ב Ȣ and ߠଶ א ሾͲǡ ܳ ଶሿߣ  ଶ݄ߠ ב Ȣ 

C3. At each route transition point ߟ, either: 

(i) ݎ ൌ ͳǡǥ ǡ ܴ; for each ݇ א ,    ொ՜ఎషܭ ݑ     ொ՜ఎశ   in ȯݑ  for entriesݑ

                                                           
1
 This literature is covered in more detail in section 4.3.2. 
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(ii) ݎ ൌ ͳǡǥ ǡ ܴ; for each ݇ א ,    ொ՜ఎషܭ ݑ     ொ՜ఎశ   in ȯݑ  for entriesݑ

Condition C1 is the most restrictive of the three conditions, as it excludes all cases in which a route 

transition occurs as demand decreases on one or more OD movements. Condition C2 excludes cases 

in which two route transition points are adjacent to each other. Condition C3 excludes cases at 

which there is an expansion in the minimum cost route set for at least one OD movement that 

occurs simultaneously with a contraction in the minimum cost route set for at least one different OD 

movement.  

3.3 An Alternative Characterisation of Minimum Cost Route Sets under UE and SO 

When conducting numerical experiments it would be convenient if route transition points could be 

identified by examining the unique UE (and SO) link flows, rather than requiring explicit computation 

of route flows. To this end, before moving on to explain how route transition points affect the Price 

of Anarchy, the next sections describe a link-flow characterisation of expansions and contractions in 

the minimum cost route set. In addition, for a specific family of traffic networks, a systematic 

relationship between route transition points under UE and SO is shown to exist that allows quick 

calculation of one set of transition points from the other. 

As already noted, the UE and SO route flows are not typically unique. A uniquely identifiable route 

flow solution כܨ can be defined using the condition of proportionality, which was first proposed by 

Bar-Gera and Boyce (1999). 

Definition 3.4: ͞TŚĞ ĐŽŶĚŝƚŝŽŶ ŽĨ ƉƌŽƉŽƌƚŝŽŶĂůŝƚǇ Ɛtates that the same proportions apply to all 

travellers facing a choice between a pair of alternative segments (PASs), regardless of their origins 

ĂŶĚ ĚĞƐƚŝŶĂƚŝŽŶƐ͕ ǁŚĞƌĞ Ă ƐĞŐŵĞŶƚ ŝƐ ĚĞĨŝŶĞĚ ĂƐ Ă ƐĞƋƵĞŶĐĞ ŽĨ ŽŶĞ Žƌ ŵŽƌĞ ůŝŶŬƐ͟ (Bar-Gera et al., 

2012). 

This route flow solution has the useful property that ͞ĂŶǇ ƌŽƵƚĞ ƚhat can be used under the UE 

ĐŽŶĚŝƚŝŽŶƐ ǁŝůů ďĞ ƵƐĞĚ͟ (Bar-Gera et al., 2012). Lu and Nie (2010) have shown that route flows under 

the condition of proportionality vary continuously with respect to travel demand ܳ. As the SO 

problem can be transformed into an equivalent UE problem, it follows that there also exists a unique 

SO route flow solution, which we denote by ܨ෨כ, that satisfies the condition of proportionality. In 

networks with only a single origin, the route flow solutions כܨ and ܨ෨כ can be derived from the 

approach proportions produced by the Origin Based Assignment (OBA) algorithm (Bar-Gera, 2002, 

Bar-Gera et al., 2012). In networks with multiple origins, these route flow solutions cannot be 

derived using OBA; the Traffic Assignment by Paired Alternative Segments (TAPAS) algorithm can be 

used instead (Bar-Gera, 2010, Bar-Gera et al., 2012). 

The results that follow prove that, for each OD movement ݎ, an expansion (contraction) in the set ܭ  or ܭ෩ , is equivalent, under the condition of proportionality, to an expansion (contraction) in 

the set of links, under UE or SO, that have non-zero flow for that OD movement. These sets are 

referred to as the Origin Specific Active Network for an OD movement ݎ and are formally defined in 

definition 3.5 as follows. 

Definition 3.5: The OD Specific Active Network under UE and Proportionality, for an OD movement ݎ, 

at a demand ܳ is the set ܺா ൌ ൛݅ א ݇ሃܣ א ǡܭ Ǥݏ Ǥݐ ݅ א  Ƭ ݂ܫ  Ͳൟ ك where ݂ ,ܣ א  the ,כܨ

route flow solution that satisfies the condition of proportionality. To track changes in ܺா  with 

respect to perturbations in demand, a vector function Ȱாሺܳሻ is defined for each OD movement ݎ, 
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which has entries ݒ for which ݒ ൌ ͳ, if ݇ א ݅  for whichܭ א  and ݂ܫ  Ͳ, and ݒ ൌ Ͳ, if ݇ א ݅  for whichܭ א , ݂ܫ ൌ Ͳ. 

An equivalent version of definition 3.5 is also defined for SO, with appropriate changes to 

superscripts and notation. The sets ܺா  and ܺௌை are both uniquely defined under the condition of 

proportionality. Levels of demand at which these sets change are referred to as link transition points, 

which are formally defined in definition 3.6. 

Definition 3.6: A demand vector ܳ is defined as a link transition point under UE if there exist vectors ݃ǡ ݄ א Թோ̳ሼͲሽ for which, for at least one OD movement ݎ: 

    ఓభ՜Ȱሺܳ െ ଵ݃ሻߤ ്    ఓమ՜Ȱሺܳ     ଶ݄ሻ (9)ߤ

where ߤଵǡ ଶߤ  Ͳ. Individual link transition points are denoted by ߱ா, and the set of all such 

demand vectors for a given network ܩ is denoted ȳா. Again, an equivalent version of definition 3.6 

is also defined for SO. Note that, since the link flows are unique, the link transition points do not 

depend on the particular route flow solution considered.  

This alternative characterisation of the changing nature with which demand is assigned to a traffic 

network is useful because it is often significantly easier to identify the set of active links in the route 

flow solution produced under the condition of proportionality, for each OD movement, than it is to 

identify the set of routes that are of minimum cost. This is because there are often many more 

routes than there are links, especially in large traffic networks, and the enumeration of routes is a 

computationally expensive procedure. Accordingly, these results are used in the examples in section 

5 to track expansions and contractions in ܭ  and ܭ෩ . 

Proposition 3.1 and corollary 3.2 characterise the relationship between the sets ܭ  and ܺா , and 

the sets ܭ෩  and ܺௌை for an OD movement ݎ. 

Proposition 3.1: Consider a traffic network ܩ for which Assumption A1 holds, and let כܨ ൌ ሼ ݂ሽ 
represent the route flow solution under UE that satisfies the condition of proportionality. Suppose 

that ܳ represents a demand vector that is not a route transition point, i.e. ܳ ב Ȣா. For a given OD 

movement ݎ, further suppose that ܳ does not correspond to a level of demand at which ܺா  

changes. Then, for that OD movement ݎ: 

(i) A link ݅ א ܺா  if and only if ݇Ԣ א ܭ  for which ݅ א ᇱܫ . 

(ii) A route ݇Ԣ א ܭ  if and only if ܫᇱ ؿ ܺா . 

Part (i) describes how, for an OD movement ݎ, the OD Specific Active Network under UE and 

Proportionality can be constructed from the set of minimum cost routes for the OD movement ݎ. 

Part (ii) describes how, for an OD movement ݎ, the set of minimum cost routes under UE can be 

constructed from the OD Specific Active Network for the OD movement ݎ. 

Proof: For parts (i) and (ii), the only if and if statements are addressed in turn. 

(i) Only if statement: For a given link ݅ א ݅ suppose that ܣ א ܺா  for an OD movement ݎ. Then by 

equation (3) ݇Ԣ א  for which ݂ᇱܭ  Ͳ. For this ݇Ԣ, the UE conditions (2) imply that ܥᇱ ൌ   andߨ

that therefore ݇Ԣ א ܭ . 
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(i) If statement: For a given link ݅ א Ԣ݇ suppose that ,ܣ א ܭ  for which ݅ א ᇱܫ . By definition 3.1, 

for this route ݇Ԣ, it follows that ܥᇱ ൌ  . Under the condition of proportionality, a route flowߨ

solution כܨ can be constructed for which ݂  Ͳ ݇ for which ܥ ൌ  . By equation (3) this routeߨ

flow solution provides that link ݅ has positive flow for the OD movement ݎ. It therefore follows that ݅ א ܺா . 

(ii) Only if statement: For a given route ݇Ԣ א  suppose that ݇Ԣܭ א ܭ . Then, by definition 3.1, ܥᇱ ൌ  can be constructed for ܨ . Under the condition of proportionality, a route flow solutionߨ

which ݂ᇱ  Ͳ. As ݂ᇱ  Ͳ and, by equation (3), all links ݅ א ᇲܫ  contain the flow ݂ᇱ  as part of their 

summation, it follows that each such link ݅ has positive flow for the OD movement ݎ. In other words, ݅ א ܺா ݅ , א ᇱܫ  and therefore ܫᇱ ؿ ܺா . 

 (ii) If statement: For a given route ݇Ԣ א ᇱܫ , suppose thatܭ ாܺ ؿ . Suppose, for a contradiction, 

that ݇ᇱ ב ܭ . Then by equation (2), ܥᇱ  ݅ . By starting assumption, all linksߨ א ᇱܫ  carry flow for 

this OD, i.e. ݅ א ܺா . Hence each such link must lie on at least one route ݇כ א כ̳ሼ݇Ԣሽ for which ݂ܭ  Ͳ and hence, from equation (2), ܥכ ൌ כ݇ . Therefore, eachߨ א ܭ  and it follows, from the 

only if statement of part(ii), which has just been proven, that ܫכ ாܺ ؿ . 

Therefore both ܫᇱ ؿ ܺா  and ܫכ ؿ ܺா . Consider the pair(s) of alternative segments defined by 

the set of links ሺܫᇱ  כܫ ሻ̳ሺܫᇱ ת כܫ ሻ ؿ ܺா  i.e. both alternative segments (in each pair) are used. 

Under the condition of proportionality, it follows from Bar-Gera (2006) that ͞ĨŽƌ ĞǀĞƌǇ ƵƐĞĚ ƉĂŝƌ ŽĨ 
alternative segments and every used route that contains one of the segments, there will be a similar 

ƵƐĞĚ ƌŽƵƚĞ ĐŽŶƚĂŝŶŝŶŐ ƚŚĞ ĂůƚĞƌŶĂƚŝǀĞ ƐĞŐŵĞŶƚ͟ (Bar-Gera et al., 2012). In this statement, the ͞ƐŝŵŝůĂƌ 
ƵƐĞĚ ƌŽƵƚĞ͟ refers to a route that only differs from the ͞ƵƐĞĚ ƌŽƵƚĞ͟ in the pair of alternative 

segments; i.e. the ͞ƵƐĞĚ ƌŽƵƚĞ͟ and the ͞ƐŝŵŝůĂƌ ƵƐĞĚ ƌŽƵƚĞ͟ overlap each other in the rest of their 

composition. This proportionality implies that ݂ᇲ  Ͳ, which implies that ܥᇱ ൌ  . This contradictsߨ

the assumption that ݇ᇱ ב ܭ  ז .

The equivalent statement of proposition 3.1 for SO is stated as follows. 

Corollary 3.2: Consider a traffic network ܩ for which Assumption A1 holds, and let ܨ෨כ ൌ ሼ ݂ሽ 
represent the route flow solution under SO that satisfies the condition of proportionality. Suppose 

that ܳ represents a demand vector that is not a route transition point, i.e. ܳ ב Ȣௌை. For a given OD 

movement ݎ, further suppose that ܳ does not correspond to a level of demand at which ܺௌை 

changes. Then, for that OD movement ݎ: 

(i) A link ݅ א ܺௌை if and only if ݇Ԣ א ෩ܭ  for which ݅ א ᇱܫ . 

(ii) A route ݇Ԣ א ෩ܭ  if and only if ܫᇱ ؿ ܺௌை. 

Proof: Traces that of proposition 3.1 with appropriate changes in notation from UE to SO. ז 

The following results prove that the sets ܭ ෩ܭ)  ) and ܺா  (ܺௌை) expand and contract at 

identical levels of demand. 

Proposition 3.3: Consider a traffic network ܩ for which Assumption A1 holds, and let כܨ ൌ ሼ ݂ሽ 
represent the route flow solution under UE that satisfies the condition of proportionality. There is a 

one-to-one correspondence between route transition points ߟா and link transition points ߱ா. 
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Proof: This statement is proved by contradiction. 

There are four cases to consider: i) ߟா corresponding to an expansion in ܭ  for which ߱ா 

corresponding to an expansion in ܺா , ii) ߱ா  corresponding to an expansion in ܺா  for which ߟா corresponding to an expansion in ܭ , iii) ߟா corresponding to a contraction in ܭ  for 

which ߱ா corresponding to a contraction in ܺா , iv) ߱ா corresponding to a contraction in ܺா  

for which ߟா corresponding to an contraction in ܭ . Proofs are provided for cases i) and ii); the 

proofs of iii) and iv) are similar. 

Case i) Suppose, for a contradiction, that there exists an instance of demand ߟா, at which ܭ  

expands for some OD movement ݎ, but for which there does not exist a corresponding point ߱ா, at 

which ܺா  expands for the same OD movement. Therefore, there is a perturbation of demand for 

which ݇ א ܳ , such that asܭ ՜ ாିߟ , ݇ ב ܭ , but that as ܳ ՜ ாାߟ , ݇ א ܭ . It follows, from 

proposition 3.1(ii), that as ݇ ב ܭ  as ܳ ՜ ாିߟ ݅ , א ݅  for whichܫ ב ܺா . It also follows, from 

proposition 3.1(ii), that as ݇ א ܭ  as ܳ ՜ ாାߟ , ݅ א ܺா ݅ , א ݅ . Henceܫ א that is added to ܺா ܣ  at ߟா. This contradicts our starting assumption. 

Case ii) Now suppose, for a contradiction, that there exists an instance of demand ߱ா, at which ܺா  expands for some OD movement ݎ, for which there does not exist a corresponding point ߟா, at 

which ܭ  expands for the same OD movement. Therefore, there is a perturbation of demand for 

which ݅ א ܳ such that as ,ܣ ՜ ߱ாି , ݅ ב ܺா , but that as ܳ ՜ ߱ாା , ݅ א ܺா . It follows, from 

proposition 3.1(i), that as ݅ ב ܺா  as ܳ ՜ ߱ாି , ݇ ב ܭ ݇ , א ݅  for whichܭ א  ,. It also followsܫ

from proposition 3.1(i), that as ݅ א ܺா  as ܳ ՜ ߱ாା ݇ , א ܭ  for which ݅ א ݇ . Henceܫ א  ܭ

that is added to ܭ  at ߱ா. This contradicts our starting assumption. ז 

Corollary 3.4: Consider a traffic network ܩ for which Assumption A1 holds, and let ܨ෨כ ൌ ሼ ݂ሽ 
represent the route flow solution under SO that satisfies the condition of proportionality. There is a 

one-to-one correspondence between route transition points ߟௌை and link transition points ߱ௌை. 

Proof: Traces that of proposition 3.3 with appropriate changes in notation from UE to SO. ז 

3.4 A Systematic Relationship between UE and SO Link Flows and Route Transition Points 

This section establishes two results for the special case
2
 of traffic networks with link cost functions of 

the form ܿ ൌ ܽ  ܾݔఉ for which the coefficients ܽ ǡ ܾ  Ͳ ݅ and ߚ  Ͳ is common to all links. 

This set of cost functions includes, but is not limited to, the well-known BPR cost function ݐ ൌ ሾͳݐ  ͲǤͳͷሺݔ Τܽܿ ሻସሿ, for which ݐ represents the free-flow travel time and ܿܽ represents 

link capacity. 

In this narrower context, it is proven, in theorem 3.5, that there is a systematic relationship between 

link flows under UE and SO. As a consequence of this, it is proven, in corollary 3.6, that there is also a 

systematic relationship between the levels of demand under UE and SO at which expansions and 

contractions occur in the minimum cost route sets ܭ  and ܭ෩ . This systematic relationship can 

be observed in the parallel link example of section 3.1.1, for which the cost functions ܿ belong to 

the cost function set considered here. A comparison of equations (5) and (7) reveals that the level of 

                                                           
2
 Elsewhere in the paper link cost functions are assumed separable and monotonic as stated in Section 2. 
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demand at which each route ݇ א ܭ  is added toܭ  is exactly half the level of demand at which 

the same route ݇ is added to ܭ෩ . Corollary 3.6 proves that this indicative of a result that applies 

more generally to networks with multiple OD pairs. 

Theorem 3.5: Consider a traffic network ܩ that serves a demand matrix ܳ with entries ݍ  Ͳ, and 

that has cost functions of the form ܿ ൌ ܽ  ܾݔఉ (ܽǡ ܾǡ ߚ  Ͳሻ, which satisfy Assumption A1. Let ݔாሺܳሻ and ݔௌைሺܳሻ denote UE and SO link flows respectively, which are defined as functions of the 

demand vector ܳ. Then, under these conditions, ݅ א  :ܣ

ௌைݔ  ൭ ܳඥߚ  ͳഁ ൱ ൌ ͳඥߚ  ͳഁ    ாሺܳሻ (10)ݔ

Proof: Consider a traffic network ܩ, with demand matrix ܳ and link cost functions ܿ ൌ ܽ  ܾݔఉ 

has a UE link flow solution ݔாሺܳሻ. The proof begins by noting that we can define a different traffic 

assignment problem on ܩ, with demand matrix ܳ ൌ and link cost functions Ƹܿ ܳߣ ൌ ܽ  ܾሺݔȀߣሻఉ, 

which has a UE link flow solution ݔොா൫ ܳ൯ ൌ  ாሺܳሻ. In other words, the traffic assignmentݔߣ

problem has been rescaled by ߣ. 

Now consider the problem of finding an SO link flow solution ݔௌை ቀܳ ඥߚ  ͳഁΤ ቁ for a given road 

network ܩ serving a demand matrix ܳ ඥߚ  ͳഁΤ  with link costs ܿ ൌ ܽ  ܾݔఉ as defined in the left 

hand side of equation (10). 

As noted in section 2, this problem is equivalent to finding a UE link flow solution ݔா ቀܳ ඥߚ  ͳഁΤ ቁ 

on ܩ for a demand matrix ܳ ඥߚ  ͳഁΤ  with transformed cost functions (Sheffi, 1985, p73):     ǁܿ ൌ ܿ  ݀ܿ݀ݔ ݔ ൌ ቀܽ  ܾݔఉቁ  ቀܾݔߚఉିଵቁݔ ൌ ܽ  ܾሺߚ  ͳሻݔఉ ൌ ܽ  ܾ ቀඥߚ  ͳഁ  ቁఉݔ

Setting ߣ ൌ ͳ ඥߚ  ͳഁΤ  to simplify notation, this problem can be restated as one of finding a UE link 

flow solution ݔாሺܳߣሻ on ܩ for a demand matrix ܳߣ with cost functions ܿ ൌ ܽ  ܾሺݔȀߣሻఉ. 

Applying the earlier scaling note, the UE link flow solution ݔாሺܳߣሻ in this restated problem is 

equivalent to a rescaled UE problem on ܩ, which has link flow solution ݔߣොாሺܳሻ with demand matrix ܳ and link cost functions ܿ ൌ ܽ  ܾݔఉ. However, this scaled problem is exactly the problem on the 

right hand side of equation (10), and it therefore follows that: ݔௌை ቀܳ ඥߚ  ͳഁΤ ቁ ൌ ͳඥߚ  ͳഁ  ז   ாሺܳሻݔ

The following corollary describes the relationship between route transition points under UE and SO. 

Corollary 3.6: Consider a traffic network ܩ that serves a demand matrix ܳ with entries ݍ  Ͳ, and 

that has cost functions of the form ܿ ൌ ܽ  ܾݔఉ (ܽǡ ܾǡ ߚ  Ͳሻ, which satisfy Assumption A1. 

Suppose that the condition of proportionality holds and that ݂ǡா א and ݂ǡௌை כܨ א  represent כ෨ܨ

the uniquely defined route flow for each route ݇ א  ா andߟ , under UE and SO respectively. Letܭ



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

15 

 

݇ the same routes ,ݎ ௌை represent instances of demand ܳ at which, for some OD movementsߟ א  ܭ

are added to or removed from the sets ܭ  and ܭ෩ , respectively
3
. Then: 

ௌைߟ  ൌ ͳඥߚ  ͳഁ    ா (11)ߟ

Proof: Consider a given level of demand ߟா at which the set ܭ  expands for some OD movement ݎ. Therefore, ݇ א ݇ for which ,ݎ , for some OD movementܭ ב ܭ  as ܳ ՜ ாିߟ , but for which ݇ א ܭ  as ܳ ՜ ாାߟ . As route flows, under the condition of proportionality, are uniquely defined 

and vary continuously with respect to ܳ, it follows, from theorem 3.5, that ݂ǡாሺܳሻ ൌ ඥߚ  ͳഁ כ
݂ǡௌை ቀܳ ඥߚ  ͳഁΤ ቁ. 

Now, if ݇ ב ܭ  as ܳ ՜ ாିߟ , such that ݂ǡா ൌ Ͳ under the condition of proportionality, then it 

follows that ݂ǡௌை ൌ Ͳ and that ݇ ב ෩ܭ  as ܳ ՜ ቀͳ ඥߚ  ͳഁΤ ቁ ாିߟ . In addition, if א ܭ  as ܳ ՜ ாାߟ , such that ݂ǡா  Ͳ under the condition of proportionality, then it follows that ݂ǡௌை  Ͳ 

and that ݇ א ෩ܭ  as ܳ ՜ ቀͳ ඥߚ  ͳഁΤ ቁߟாା . This implies that ܭ෩  expands under SO at ܳ ൌ ቀͳ ඥߚ  ͳഁΤ ቁ ௌைߟ ா, i.e. thatߟ ൌ ቀͳ ඥߚ  ͳഁΤ ቁߟா . 

A similar argument works for when ߟா corresponds to a contraction of ܭ , for some OD 

movement ז .ݎ 

It is important to note that corollary 3.6 does not predict the levels of demand at which the sets ܭ  or ܭ෩  will change; rather, it provides a method to identify the levels of demand at which, for 

example, ܭ  changes, given the levels of demand at which ܭ෩  changes. 

4 The Variation of the Price of Anarchy with Travel Demand 

This section presents theory that describes how the Price of Anarchy varies with travel demand. In 

order to provide motivation and context for this theory, this section begins, in section 4.1, by 

illustrating how the Price of Anarchy varies with travel demand in the network examples presented 

in section 3.1. Sections 4.2, 4.3 and 4.4 then present theory to describe the mechanisms that govern 

how the Price of Anarchy varies in general networks for low, intermediate and high levels of travel 

demand respectively. 

For intermediate levels of demand, it was established in section 3 that as travel demand ܳ changes, 

the sets ܭ  (ܺா) and ܭ෩  (ܺௌை) can expand and contract, for one or more OD movements ݎ. 

The points at which these expansions and contractions occur were defined as route transition points 

and several types were identified. The theory presented in this section applies to route transition 

points that occur under increasing demand and which satisfy conditions C1-C3, which were set out in 

section 3.2. 

The behaviour of the Price of Anarchy is dependent, by construction, on Total Network Travel Cost 

under SO (ܶܶܥௌை) and Total Network Travel Cost under UE (ܶܶܥா). This is important for the 

analysis that follows. 

                                                           
3
 For such traffic networks, the existence of instances of demand, under UE and SO, at which the same routes ݇ א ܭ  are added to or removed fromܭ  and ܭ෩  follows from the relationship described in theorem 3.5. 

In general traffic networks, this statement can be shown to follow from the SO cost transformation ǁܿ. 
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4.1 Illustrative Examples 

4.1.1 Example 1: Parallel Link Network - Single OD Example 

Recalling the example of section 3.1.1; consider increasing demand ݍ in nine versions of a parallel 

link network with total links ܰ ൌ ʹǡ͵ǡǥ ǡͳͲ and coefficients ܽ ൌ ݅, ܾ ൌ ͳ for ݅ ൌ ͳǡǥ ǡͳͲ. Figure 4 

displays the variation of the Price of Anarchy ߩே for each of these nine networks, and also identifies 

the levels of demand under UE (green vertical lines) and SO (red vertical lines) at which expansions 

occur in the sets ܭ and ܭ෩ respectively. These levels of demand correspond to those identified 

in equations (5) and (7) respectively. 

For levels of demand ݍ up to the first route transition point under SO, the Price of Anarchy is 1. 

Beyond this level of demand, Figure 4 illustrates, for each ܰ, that levels of demand at which ܭ 

expands coincide with all levels of demand at which the Price of Anarchy is non-differentiable. 

Furthermore, there is also a decrease in the gradient of the Price of Anarchy at each of these points. 

In contrast the Price of Anarchy appears to be differentiable at all levels of demand at which there is 

an expansion in ܭ෩. However, it is also evident, for each ܯ ൌ ʹǡǥ ǡͳͲ, that the graphs of ߩெିଵ 

and ߩெ depart from each other at each of these points. This demonstrates that the new routes that 

are available in the ܯ parallel link case have a material effect on the trajectory of the Price of 

Anarchy. Overall, Figure 4 suggests that expansions under UE lead to decreases in the Price of 

Anarchy whereas expansions under SO lead to increases in the Price of Anarchy. 

 
Figure 4 - The Variation of the Price of Anarchy against Demand in ࡺ ൌ ǡǥ ǡ  Parallel Link Network 

As demand increases the Price of Anarchy eventually begins to decay back towards 1. The start of 

this decay coincides with the last route transition point under UE. An explicit formula for the Price of 

Anarchy in this region, for each network ܰ, is shown in equation (12). This formula was derived 

analytically. The parameters ߙ and ߛ are constants that depend on the coefficients ܽ  and ܾ. This 
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equation reveals that the leading order term of this decay is ܱሺͳ ଶΤݍ ሻ, which suggests that the 

similar characteristic shapes of decay, observed for the networks in Figure 1, are a systematic and 

more general feature of the behaviour of the Price of Anarchy for high demand. 

ߩ  ൌ ͳ  ͳݍߙଶ  ݍߛ െ ͳ (12)   

4.1.2 Example 2: Five Link Network - Two OD Example 

Now recall the five link network example of section 3.1.2, and consider increasing demand on OD 

movement ݍை՜ଵ. The variation of the Price of Anarchy with demand ݍை՜ଵ is shown in Figure 5. 

The vertical lines signify levels of demand under UE (green) and SO (red) at which ܭ and ܭ෩ 

expand (solid lines) and contract (dashed lines). 

As was observed in Figure 4, this figures shows that the Price of Anarchy is 1 for all levels of demand ݍை՜ଵ up to the first route transition point under SO. Figure 5 also illustrates that at expansions in ܭ , the Price of Anarchy is non-differentiable and that there is a decrease in gradient; this is the 

same as the behaviour in Figure 4. Figure 5 also illustrates that the Price of Anarchy is non-

differentiable at the single demand level corresponding to a contraction in ܭ , and that this 

coincides with an increase in gradient. Under SO, the Price of Anarchy is differentiable at both points 

of expansion and also the point of contraction in ܭ෩ ; the former leads to an increase in the 

gradient of the Price of Anarchy whereas the latter leads to a decrease in the gradient of the Price of 

Anarchy. Therefore, this example suggests that the effects of expansions in ܭ  and ܭ෩ , on the 

Price of Anarchy, are the opposite of the effects of contractions in ܭ  and ܭ෩ . 

Finally, for demand beyond the final route transition point under UE, the Price of Anarchy again 

decays back towards 1. Although not included here, this rate of decay also satisfies ܱሺͳ ଶΤݍ ሻ 
behaviour. 
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Figure 5 - The Variation of the Price of Anarchy against Demand in the Five Link Network of Figure 2 

4.2 The Variation of the Price of Anarchy for Low Travel Demand 

In traffic networks in which demand ݍ ՜ Ͳ on all OD movements ݎ, the cost of travel on each route ݇ א  is dictated by the free-flow travel cost component. In such cases, for such small levels of ,ݎ ,ܭ

demand, the routes that are of minimum cost for each OD movement correspond to the shortest 

path or paths for each OD movement. This is true under both UE and SO; to see this, consider the 

cost function transformation ǁܿ ൌ ܿ  ݔ כ ݀ܿ Τݔ݀  for the SO problem. When ݔ ՜ Ͳ, the 

additional marginal cost term disappears and the cost of travel on each link is identical under UE and 

SO. In such cases, it follows that ݔா ൌ ݅ ௌைݔ א ாܥܶܶ that ,ܣ ൌ  ௌை and that the Price ofܥܶܶ

Anarchy ߩ ൌ ͳ. As demand ݍ increases from zero, the shortest path(s) for each OD movement ݎ still 

provide the minimum (marginal total) cost routes under UE and SO, provided that the second 

shortest routes have greater free-flow travel cost for each OD movement. The Price of Anarchy 

remains ߩ ൌ ͳ until, for some OD movement ݎ, the second shortest route in ܭ becomes minimum 

cost, at which point there is a route transition point under SO. This discussion provides an 

explanation for the initial intervals of demand shown in Figure 1, Figure 4 and Figure 5. 

4.3 The Variation of the Price of Anarchy for Intermediate Regions of Travel Demand 

It is known that ܶܶܥா and ܶܶܥௌை are continuous and increasing functions of travel demand 

(Dafermos and Nagurney, 1984). As ݔா ൌ ௌைݔ ݅  א  ௌை both increase at the same rates, at least until a route transition point occurs. Thisܥܶܶ ா andܥܶܶ for very low demand regions, it follows that ,ܣ

section describes the effects of route transition points, of the types described in conditions C1-C3, 

on the rates of change of ܶܶܥௌை (section 4.3.1), ܶܶܥா (section 4.3.2) and the Price of Anarchy 

(section 4.3.3). 
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4.3.1 The Sensitivity of Total Network Travel Cost under SO to Route Transition Points 

The first result in this section proves that ܶܶܥௌை is also differentiable with respect to all demand ܳ, 

which, in particular, includes all demands ܳ א Ȣௌை that correspond to route transition points. 

Proposition 4.1: Consider a traffic network ܩ for which Assumption A1 holds. ܶܶܥௌை is 

differentiable with respect to all demand movements ݎ for which ݍ  Ͳ. 

Proof: Proof follows from the Envelope Theorem, which is stated as follows. For the constrained 

extremum problem: ܸሺݖሻ ൌ    ௫భǡ௫మǡǥǡ௫ ݂ሺݔଵǡ ଶǡݔ ǥ ǡ ǡݔ ଵǡݔሻ  Ǥ Ǥ݃ሺݖ ଶǡݔ ǥ ǡ ǡݔ ሻݖ  Ͳ     ݆ ൌ ͳǡʹǡ ǥ ǡ݉ 

the Envelope Theorem states that, if the constraints satisfy the Slater condition and if ݔሺݖሻ solve the 

first-order and complementary slackness conditions for the above problem, ݅, then: ߲ܸ߲ݖ ൌ ߲݂ሺݔଵǡ ଶǡݔ ǥ ǡ ǡݔ ݖሻ߲ݖ ߣ
ୀଵ

߲߲݃ݖ  

where ߣ are Kuhn-Tucker multipliers. The Slater condition requires that there exists a point ሺݔଵǡ ଶǡݔ ǥ ǡ ଵǡݔሻ for which ݃ሺݔ ଶǡݔ ǥ ǡ ሻݔ  Ͳ ݆. 
The SO minimisation problem has objective function ݖǁሺݔଵǡ ଶǡݔ ǥ ǡ ሻݔ ൌ  ௌை and is subject toܥܶܶ

constraints set out in equation (3). For this problem to satisfy the Slater condition, requires that 

there exists a link flow vector ሺݔଵǡ ଶǡݔ ǥ ǡ  ሻ satisfying the equality constraints in (3) and whichݔ

produces route flows ݂  Ͳ, ݇ א  In other words a vector of link flows .ݎ , for all OD movementsܭ

is required that satisfies the equality constraints and which produces positive route flows on all 

routes between all OD pairs. This can easily be achieved by setting ݂ ൌ  where Ͳݍߛ ൏ ߛ ൏ ͳ 

and such that σ ߛ ൌ ͳ ݎ, i.e. a link flow vector produced by assigning demand flows ݍ to all 

routes ݇ א  . such that all routes receive a non-zero proportion of flowܭ

The SO minimisation problem therefore satisfies all of the conditions of the Envelope Theorem, 

which guarantees that the objective function ݖሺݔଵǡ ଶǡݔ ǥ ǡ ǡݔ  ሻ is differentiable with respect toݍ

demand ݍ. As ݖǁሺݔଵǡ ଶǡݔ ǥ ǡ ǡݔ ሻݍ ൌ  ௌை is a differentiable functionܥܶܶ ௌை, this guarantees thatܥܶܶ

of ݍ  Ͳ. ז 

The next result considers the effect on ܶܶܥௌை of an increase in demand through a route transition 

point ߟௌை of the type described in condition C3(i); at which, for each OD movement ݎ, either: 

a) ܭ෩  remains unchanged as demand passes through ߟௌை; or 

b) ܭ෩  expands to include one or more additional routes ݇. 

Proposition 4.2: Consider a traffic network ܩ with link path incidence matrix ȟ and for which 

Assumption A1 holds. Let ߟௌை represent a route transition point satisfying conditions C1, C2 and 

C3(i); as described in a) and b) above. Denote the OD movements ݎ that satisfy b) by ݎԢ. Label routes ݇ א ݇ ᇱ such that: for routesܭ ൌ ͳǡǥ ǡ ݊ᇱ ݇ א ෩ᇱܭ  for all demand values ܳ ՜ ܳ ௌைି andߟ ՜ ௌைାߟ ; 

and for routes ݇ ൌ ݊ᇱ  ͳǡǥ ǡ ݇ ,ᇱߢ ב ෩ᇱܭ  for demand ܳ ՜ ݇ ௌைି, butߟ א ෩ᇱܭ  for demand ܳ ՜ ௌைାߟ . 
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Suppose that ܩ denotes an adjusted version of the network ܩ, which has an identical link path 

incidence matrix ȟ, except that for the OD movements ݎԢ, all routes ݇ ൌ ݊ᇱ  ͳǡǥ ǡ  ᇱ are omittedߢ

from ȟ. Then for demand ܳ ՜ ௌைାߟ ܥܶܶ : ீௌைሺܳሻ  ܥܶܶ ௌீைሺܳሻ 
Proof: Let Ȳீכሺܳሻ ൌ ൛ܥሚሺܳሻห݇ א ෩ܭ ǡ  ൟ represent the unique set of route costs with minimumݎ

marginal total cost under SO, at demand ܳ. The route costs Ȳீכሺܳሻ are therefore associated with the 

vector of link flows ݔ כீ ሺܳሻ, which produce the minimum value of the objective function ݖǁீሺܳሻ in the 

SO minimisation program defined in section 2. Note that ݖǁீሺܳሻ ൌ ܥܶܶ ௌீைሺܳሻ. 
By the starting assumptions; for demand levels ܳ ՜  ǁீሺܳሻ, suchݖ ሺܳሻ uniquely minimisesכௌைି, Ȳீߟ

that all routes ݇ ൌ ݊ᇱ  ͳǡǥ ǡ ݇ Ԣ, satisfyݎ ᇱ for the OD movementsߢ ב ෩ᇱܭ . Whereas, for demand 

levels ܳ ՜ ௌைାߟ , Ȳீכሺܳሻ uniquely minimises ݖǁீሺܳሻ, such that all routes ݇ ൌ ݊ᇱ  ͳǡǥ ǡ  ᇱ for the ODߢ

movements ݎԢ, satisfy ݇ א ෩ᇱܭ . All other feasible route cost sets Ȳீሺܳሻ, satisfy ݖǁ൫Ȳீሺܳሻ൯ ݖǁ൫Ȳீכሺܳሻ൯. In particular, all route cost sets Ȳீሺܳሻ, for demand levels ܳ ՜ ௌைାߟ , in which routes ݇ ൌ ݊ᇱ  ͳǡǥ ǡ ෩ᇱܭ Ԣ, are restricted fromݎ ᇱ for the OD movementsߢ ,, satisfy this condition. 

Now consider the network ܩ. For demand levels ܳ ՜ ሺܳሻכௌைି, Ȳீߟ ൌ Ȳ ீכሺܳሻ and therefore ܶܶܥ ௌீைሺܳሻ ൌ ܥܶܶ ீௌைሺܳሻ. However, for demand levels ܳ ՜ ௌைାߟ , Ȳீכሺܳሻ ് Ȳ ீכሺܳሻ. This is because, in Ȳீכሺܳሻ, the routes ݇ ൌ ݊ᇱ  ͳǡǥ ǡ ݇ Ԣ, satisfyݎ ᇱ for the OD movementsߢ א ෩ᇱܭ . Whereas, in Ȳ ீכሺܳሻ, the same routes are not in ܭ෩ᇱ  because they were omitted from the link path incidence 

matrix ȟ for ܩ by starting assumption. However, Ȳ ீכሺܳሻ is still feasible for the network ܩ. It 

therefore follows that ݖǁ ቀȲ ீכሺܳሻቁ  ܳ ሺܳሻ൯ for demand levelsכǁ൫Ȳீݖ ՜ ௌைାߟ . This equation is 

equivalent to ܶܶܥ ீௌைሺܳሻ  ܥܶܶ ௌீைሺܳሻ. ז 

A visualisation of this result is provided in Figure 6. In this figure, it is assumed that at ߟௌை, the sets ܭ෩ , for one or more OD movements ݎ in a network ܩ, expand such that the total number of 

minimum marginal total cost routes over all OD movements increases from ܰ to  ܰ. Under the 

terms of the assumptions of proposition 4.2, the traffic network ܩ does not contain any of these 

additional routes. It can be seen, in Figure 6, that as ܳ ՜ ܥܶܶ ,ௌைିߟ ௌீைሺܳሻ ൌ ܥܶܶ ீௌைሺܳሻ. However, at ܳ ൌ ܥܶܶ .ௌை, these functions divergeߟ ீௌை represents what would have happened to ܶܶܥ ௌீை if the 

routes that were added to the minimum cost route sets for the OD movements ݎ, did not exist in ܩ. 

As demand ܳ ՜ ௌைାߟ ܳ ௌை does not continue to follow the trajectory that it was on forܥܶܶ , ՜  ,ௌைିߟ

for which there were ܰ minimum cost routes in total; but instead shifts onto a lower trajectory for 

which there are  ܰ minimum cost routes in total, thereby slowing the rate of increase in ܶܶܥௌை. 
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Figure 6 - The effect on ࡻࡿࢀࢀof one or more expansions in ࡷ෩࢘ , for some OD movements ࢘ 

The final result of this subsection describes the effect on ܶܶܥௌை of an increase in demand through a 

route transition point ߟௌை of the type described in condition C3(ii); at which, for each OD movement ݎ, either: 

c) ܭ෩  remains unchanged as demand passes through ߟௌை; or 

d) ܭ෩  contracts as one or more routes ݇ are no longer of minimum marginal total cost. 

Proposition 4.3: Consider a traffic network ܩ with link path incidence matrix ȟ and for which 

Assumption A1 holds. Let ߟௌை represent a route transition point satisfying the conditions C1, C2 and 

C3(ii); as described in c) and d) above. Denote the OD movements ݎ that satisfy condition d) by ݎԢ. 
Label routes ݇ א ݇ ᇱ such that: for routesܭ ൌ ͳǡǥ ǡ ݊ᇱ ݇ א ෩ᇱܭ  for all demand values ܳ ՜  ௌைିߟ

and ܳ ՜ ௌைାߟ ; and for routes ݇ ൌ ݊ᇱ  ͳǡǥ ǡ ݇ ,ᇱߢ א ෩ᇱܭ  for demand ܳ ՜ ݇ ௌைି, butߟ ב ෩ᇱܭ  for 

demand ܳ ՜ ௌைାߟ . 

Suppose that ܩ denotes an adjusted version of the network ܩ, which has an identical link path 

incidence matrix ȟ, except that for the OD movements ݎԢ, all routes ݇ ൌ ݊ᇱ  ͳǡǥ ǡ  ᇱ are omittedߢ

from ȟ. Then for demand levels ܳ ՜ ܥܶܶ :ௌைିߟ ෨ீௌைሺܳሻ  ܥܶܶ ௌீைሺܳሻ 
Proof: This proof uses similar arguments to those used to prove Proposition 4.2. ז 

A visualisation of this result is provided in Figure 7. In this figure, it is assumed that at ߟௌை, the sets ܭ෩ , for one or more OD movements ݎ in a network ܩ, contract such that the total number of 

minimum marginal total cost routes over all OD movements decreases from  ܰ to ܰ. Under the 

terms of the assumptions of proposition 4.3, the traffic network ܩ does not contain any of the 

routes that leave the minimum marginal total cost route set at ߟௌை. To understand the implication of 

this graph, it is easiest to visualise what happens as demand decreases from the right hand side. It 

can be seen that for demand values ܳ ՜ ௌைାߟ ܥܶܶ , ௌீைሺܳሻ ൌ ܥܶܶ ீௌைሺܳሻ. At ܳ ൌ  ௌை, these functionsߟ

diverge. For demand values ܳ ՜  ௌை does not continue to follow the trajectory that it wasܥܶܶ ,ௌைିߟ

on for ܳ ՜ ௌைାߟ , because, in the direction of decreasing demand, the set of routes of minimum 

marginal total cost expands from ܰ to  ܰ routes in total, which leads to a lower value of ܶܶܥௌை. 
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The effect of this behaviour, when considering increasing demand, is that as demand moves through 

a route transition point of type C3(ii), ܶܶܥௌை transfers onto a higher trajectory. There is, therefore, 

an acceleration in the rate of increase of ܶܶܥௌை. 

 
Figure 7 - The effect on ࡻࡿࢀࢀof one or more contractions in ࡷ෩࢘ , for some OD movements ࢘ 

4.3.2 The Sensitivity of Total Network Travel Cost under UE to Route Transition Points 

Similarly to section 4.3.1, this section begins by characterising the existence of derivatives of ܶܶܥா 

with respect to demand. These derivatives depend, by construction, upon the sensitivity of link flows ݔா with respect to increases in demand. 

In the context of the UE traffic assignment problem, Patriksson (2004) provides a characterisation of 

the existence of directional derivatives and full derivatives of links flows. This is achieved through 

the derivation of a sensitivity problem, which yields directional derivatives of links flows provided 

that it has a unique solution. Josefsson and Patriksson (2007) built on Patriksson (2004) to show that, 

in traffic networks with separable link cost functions, a sufficient condition for the existence of a 

directional derivative of a link flow ݔா, is that the corresponding cost function ܿ has a strictly 

positive derivative. For demands ܳ at which directional derivatives of link flows do exist, it follows 

from theorem 10 of Patriksson (2004) that full derivatives of those link flows also exist; provided it 

can be shown that ߲ ݂ Τݍ߲ ൌ Ͳ, ݇ א  for which ݂ܭ ൌ Ͳ in every possible route flow solution ܨ, 

and for any perturbation of demand. Within this statement, the derivatives ߲ ݂ Τݍ߲  must be 

consistent with the set of derivatives ߲ݔ Τݍ߲ , which uniquely solves the sensitivity problem. 

The following result proves that ܶܶܥா is differentiable for ܳ ് ̱ܭ ா. In this proofߟ  denotes 

the set of routes ݇ א ܥ  for whichܭ   .ߨ

Proposition 4.4: Consider a traffic network ܩ for which Assumption A1 holds. ܶܶܥாሺܳሻ is 

differentiable ܳ ב Ȣா. 

Proof: Suppose, for a traffic network ܩ, that a demand ܳ ב Ȣா is given. By definition 3.2 it follows 

that    ொ՜ఎೆಶష ሺܳሻߓ ൌ    ொ՜ఎೆಶశ  ா. It therefore followsߟ ሺܳሻ, for all trajectories of demand aboutߓ

that there exists a neighbourhood of demand about ܳ for which, ݇ א  ,ݎ  for each OD movementܭ

either (a) ݇ א ܭ  for all ܳ in this neighbourhood, or (b) ݇ א ̱ܭ  for all ܳ in this neighbourhood. 

In other words, the set ܭ  of routes that are of minimum cost, for each OD movement ݎ, and the 
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set ̱ܭ of routes that have costs strictly greater than minimum cost, for each OD movement ݎ, do 

not change due to a small perturbation of demand. 

By the UE conditions (2), it follows that ݇ א ̱ܭ  that ݂ ൌ Ͳ, for each OD movement ݎ. It also 

follows from the above argument that, for any small perturbation of demand, ݂ ൌ Ͳ will remain 

true. It consequently follows, from theorem 10 of Patriksson (2004), that link flows ݔா are 

differentiable for each link ݅ for which ݔா  Ͳ. As all link flows ݔா are differentiable functions of ܳ 

for all links ݅ for which ݔா  Ͳ, and all other links, for which there is no information about 

differentiability, have ݔா ൌ Ͳ, it follows that ܶܶܥா is differentiable at ܳ. This is by construction of ܶܶܥா, because it is a sum of products of differentiable functions. ז 

The contrapositive result of proposition 4.4 is that all instances of demand ܳ, at which ܶܶܥா is not 

differentiable, must correspond to route transition points ߟா. 

Conjectures 4.5 and 4.6 present claims for the behaviour of ܶܶܥா at route transition points of the 

types described in conditions C3(i) and C3(ii) respectively. 

Conjecture 4.5: Consider a traffic network ܩ for which Assumption A1 holds, and let ߟா represent a 

route transition point of type C3(i). Then:    ொ՜ఎೆಶష ൬ ݍ߲߲ ா൰ܥܶܶ     ொ՜ఎೆಶశ ൬ ݍ߲߲  ா൰ܥܶܶ

Conjecture 4.6: Consider a traffic network ܩ for which Assumption A1 holds, and let ߟா represent a 

route transition point of type C3(ii). Then:    ொ՜ఎೆಶష ൬ ݍ߲߲ ா൰ܥܶܶ ൏    ொ՜ఎೆಶశ ൬ ݍ߲߲  ா൰ܥܶܶ

The above conjectures are stated without proof. We remark that proof of these conjectures is 

challenging because it is not possible to guarantee that the directional derivatives, stated in 

Conjectures 4.5 and 4.6, always exist (Josefsson and Patriksson, 2007). Given this difficulty, it is 

particularly noteworthy that ܶܶܥௌை is fully differentiable at all points of demand ܳ, including all 

route transition points ߟௌை, given the similarities that exist between the UE and SO models.  

Numerical evidence supporting these conjectures can be found in the examples in section 5. 

4.3.3 The Sensitivity of the Price of Anarchy to Route Transition Points 

This section describes the implications of the results of sections 4.3.1 and 4.3.2 for the Price of 

Anarchy; starting with differentiability. 

Corollary 4.7: Consider a traffic network ܩ for which Assumption A1 holds. The Price of Anarchy is a 

differentiable function for all demand movements ݍ  Ͳ, for which ܳ ב Ȣா. 

Proof: Follows from propositions 4.1 and 4.4. ז 

The result that follow describes the differing effects on the Price of Anarchy of route transition 

points of the types described in conditions C3(i) and C3(ii), under UE and SO. 

Theorem 4.8: Consider a traffic network ܩ for which Assumption A1 holds. 

(i) For a demand ߟௌை, which corresponds to a route transition point that satisfies condition C3(i): ߩሺܳሻ ൏ ሺܳሻǡߩ ܳ ՜ ௌைାߟ  
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where ߩ represents a continuation of the trajectory of ߩ for ܳ ՜ ܳ ௌைି, intoߟ ՜ ௌைାߟ . 

(ii) For a demand ߟௌை, which corresponds to a route transition point that satisfies condition C3(ii): ߩሺܳሻ  ሺܳሻǡߩ ܳ ՜ ௌைାߟ  

where ߩ represents a continuation of the trajectory of ߩ for ܳ ՜ ܳ ௌைି, intoߟ ՜ ௌைାߟ . 

Proof: Proof of (i) follows from proposition 4.2 and the fact that ܶܶܥௌை is on the denominator of ߩ. 

Proof of (ii) follows from proposition 4.3, the associated discussion that followed and the fact that ܶܶܥௌை is on the denominator of ז .ߩ 

Conjecture 4.9: Consider a traffic network ܩ for which Assumption A1 holds. 

(i) At a demand ߟா, which corresponds to a route transition point that satisfies condition C3(i):    ொ՜ఎೆಶష ൬߲ݍ߲ߩ൰     ொ՜ఎೆಶశ ൬߲ݍ߲ߩ൰ 

(ii) At a demand ߟா, which corresponds to a route transition point that satisfies condition C3(ii):    ொ՜ఎೆಶష ൬߲ݍ߲ߩ൰ ൏    ொ՜ఎೆಶశ ൬߲ݍ߲ߩ൰ 

Proof of Conjecture 4.9 would follow immediately from proofs of conjectures 4.5 and 4.6. 

4.4 The Variation of the Price of Anarchy for High Travel Demand 

As travel demand values ݍ become larger, the network becomes saturated as the delay 

components of travel cost begin to dominate the free-flow component. In the network example in 

section 3.1.1, it was shown that expansions in the sets ܭ  and ܭ෩  eventually stop once demand 

reaches a sufficiently high threshold. This matches our observations from numerical examples. 

For the special case of traffic networks with cost functions of the form ܿ ൌ ܽ  ܾݔఉ (ܽ ǡ ܾǡ ߚ  Ͳ), 

our conjecture is that as demand ܳ continues to increase, the Price of Anarchy enters a region of 

decay that can be characterised by a power law. This characterisation is stated as conjecture 4.10, 

and is supported by the numerical examples that follow in section 5. 

Conjecture 4.10: Consider a traffic network ܩ that serves a demand matrix ܳ with entries ݍ  Ͳ, 

and that has cost functions of the form ܿ ൌ ܽ  ܾݔఉ (ܽǡ ܾǡ ߚ  Ͳሻ, which satisfy Assumption A1. 

Let ߞ represent a global demand multiplier applied to the demand matrix ܳ. Then, as ߞ ՜ λ, the 

leading order behaviour of the Price of Anarchy is ܱ൫ͳ ଶఉΤߞ ൯. 

5 Numerical Examples 

This section presents four numerical examples, which provide illustrations of the theoretical results 

presented in sections 3 and 4; and also provide numerical evidence to support conjectures 4.5, 4.6, 

4.9 and 4.10. The first example in section 5.1 addresses the simplest scenario of the variation of the 

Price of Anarchy with increasing demand on a single OD pair. The second example in section 5.2 then 

presents a more complicated scenario; in which travel demand is increased, at different rates, on 

several OD pairs between a single origin and several destinations. The final two examples in section 

5.3 then present two scenarios in which demand is uniformly increased on several OD pairs, 

between multiple origins and multiple destinations. 
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Figure 8 - Sioux Falls Network 

The numerical examples in this section are based on the canonical test network of Sioux Falls
4
, which 

is shown in Figure 8. This network comprises 24 nodes and 76 links, and the cost of travel ܿ on each 

link ݅ is represented by a BPR cost function with power ߚ ൌ Ͷ, which is common to all links. Note 

that this network satisfies the conditions stated in Assumption A1, theorem 3.5 and corollary 3.6. 

The results for each example are compiled from UE and SO traffic assignments undertaken at several 

discrete levels of travel demand. At each demand level ݆, travel demand ݍ, on each OD movement ݎ, is increased by a demand multiplier ߞ; where ߞ ൏ ାଵߞ ǡݎ  ݆. This guarantees that demand is 

always increasing on each OD movement and therefore satisfies condition C1. As each traffic 

assignment is undertaken for discrete values of the demand multipliers ߞ, it is not possible to 

identify the exact levels of demand at which each route transition point occurs. These levels of 

demand are therefore approximated in the analysis that follows by the first demand level ݆ beyond 

the route transition point; this being the first level of demand at which it is possible to observe that 

either the minimum (marginal total) cost route set for an OD movement ݎ or the OD specific active 

network for an OD movement ݎ has changed. Each traffic assignment is calculated using the OBA 

algorithm, solved to an average excess cost of, at most, ͳͲିଽ. 

5.1 Example 1: Increasing Demand in a Single OD Pair Network 

In this single OD pair scenario, the variation of the Price of Anarchy is studied as travel demand ݍ ൌ ͳͲ is increased, using demand multipliers ߞ ൌ ͳǡʹǡǥ ǡͳͲͲͲͲ, on the OD movement between 

node 20 and node 3 in the Sioux Falls network. Figure 9 displays the variation of the Price of Anarchy 

against travel demand ݍ. The vertical lines in this figure signify levels of demand corresponding to 

route transition points ߟா and ߟௌை, at which the OD specific active networks ଵܺா  (green lines) and ଵܺௌை (red lines), expand (solid lines) and contract (dashed lines). Recall that OD specific active 

networks provide an alternative characterisation for the minimum (marginal total) cost route set 

under UE and SO. This figure also displays graphs of the Price of Anarchy for 17 sub-networks 

(denoted ̴ߩͳ, ̴ߩʹ, etc), which correspond to the 17 different states of the active network, between 

route transition points, as demand increases. 

Focussing on the graph for the full network, Figure 9 displays the same three identifiably distinct 

regions of behaviour of the Price of Anarchy that are evident in Figure 1: an initial region in which 

                                                           
4
 Network and demand matrix files for Sioux Falls were obtained from Bar-Gera (2001). 
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the Price of Anarchy is one, a period of fluctuations, followed by a decay back towards one. It can be 

seen that the Price of Anarchy varies smoothly ݍ א Ȣா, which is consistent with corollary 4.7, and 

three of the four effects of expansions and contractions described in theorem 4.8 and conjecture 4.9 

are clearly visible. For UE, at all points ߟா corresponding to an expansion of ܺா , the Price of 

Anarchy is non-differentiable and there is a decrease in the gradient of the Price of Anarchy, which 

provides numerical evidence to support conjecture 4.9(i). At the single point ߟா ൎ ͵ͺǡͲͲͲ, which 

corresponds to a contraction of ܺா , the Price of Anarchy is also non-differentiable and there is an 

increase in the gradient of the Price of Anarchy, which provides numerical evidence to support 

conjecture 4.9(ii). For SO, at all points ߟௌை, which correspond to an expansion of ܺௌை, the Price of 

Anarchy is smooth but transfers onto a higher trajectory than the Price of Anarchy for the sub-

network that detaches, which illustrates theorem 4.8(i). The effect of a contraction in ܺௌை at a route 

transition point ߟௌை described in theorem 4.8(ii); for which there is a single point in this example at ߟௌை ൎ ʹͷǡͲͲͲ, is less apparent. 

 
Figure 9 ʹ The Variation of the Price of Anarchy against the Demand Multiplier ࣀ in Example 1 

Turning to the systematic relationship between route transition points ߟா and ߟௌை, Table 1 lists the 

approximate levels of demand for each state of the active network as demand increases. The table 

also presents the value of ߟௌை ாΤߟ  at each route transition point and shows the number of links that 

are active in each state of ଵܺா  and ଵܺௌை. Given that, for ߚ ൌ Ͷ, ͳ ඥߚ  ͳഁΤ ൎ ͲǤ, the results in this 

table are consistent with the conclusions of corollary 3.6. 

No. 
Route Transition Points ࡱࢁࣁࡻࡿࣁ 

Number of Active 

Links in ࢄࢄ & ࡱࢁࡻࡿࣁ ࡻࡿ ൌ ࡱࢁࣁ ࣀ ൌ  ࣀ
1 1 1 - 6 

2 285 426 0.6690 12 

3 697 1,042 0.6689 14 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

27 

 

4 800 1,196 0.6689 17 

5 978 1,463 0.6685 19 

6 1,368 2,046 0.6686 23 

7 1,657 2,478 0.6687 28 

8 1,936 2,895 0.6687 29 

9 1,941 2,902 0.6688 30 

10 2,016 3,015 0.6687 31 

11 2,300 3,439 0.6688 32 

12 2,313 3,458 0.6689 33 

13 2,,520 3,769 0.6686 32  

14 2,803 4,191 0.6688 34 

15 3,246 4,853 0.6689 35 

16 3,499 5,232 0.6688 36 

17 4,309 6,443 0.6688 37 

18 4,734 7,079 0.6687 38 

Table 1 ʹ Route Transition Points in Example 1 

Finally, Figure 10 displays the decay rate of the Price of Anarchy for demand ݍ  ǡͲͶͶ, which 

represents the level of demand of the final route transition point ߟா. This figure also plots a trend-

line; calculated by Ordinary Least Squares regression, which shows that the decay in the Price of 

Anarchy is consistent with ܱ ቀͳ ଶఉൗߞ ቁ. Figure 10 also displays decay rates of the Price of Anarchy in 

adjusted versions of the Sioux Falls network for values of ߚ ൌ ͳǡʹǡ͵. The decay in each of these 

additional scenarios, from the point of the final route transition point ߟா, is also ܱ ቀͳ ଶఉൗߞ ቁ. These 

findings are consistent with conjecture 4.10. 

 
Figure 10 ʹ Decay in the Price of Anarchy for High Demand in Example 1 for ࢼ ൌ , ࢼ ൌ , ࢼ ൌ , ࢼ ൌ  
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5.2 Example 2: Increasing Demand in a Multiple (One to Many) OD Pair Network 

In this multiple OD pair scenario, the variation of the Price of Anarchy is studied as travel demand is 

increased on 22 OD pairs; between a single origin at node 20 and destination nodes ݏ ൌͳǡ ʹǡ ͵ǡǥ ǡ ͳͻǡ ʹͳǡ ʹʹǡ ʹ͵ in the Sioux Falls network. The initial amount of demand ݍ and the demand 

multipliers ߞ are different for each of the 22 OD movements. This therefore represents a more 

complicated scenario than the single OD example that was explored in section 5.1. The initial 

amount of demand on each OD movement ݎ is set at ݍ ൌ ʹͶ െ   forߞ . The demand multipliersݏ

each OD movement ݎ are then set at ߞ ൌ ݆ ൈ ሺͳ  ͲǤͲͳݏሻ, with values of ݆ ൌ ͳǡʹǡǥ ǡʹͲͲͲ. 

Figure 11 displays the variation of the Price of Anarchy against index values ݆ ൌ ͳǡʹǡ ǥ ǡͶͲͲ for the 

demand multipliers ߞ. Similarly to Figure 9, the vertical lines in this figure signify levels of demand 

corresponding to route transition points ߟா and ߟௌை, at which one or more OD specific active 

networks ܺா  and ܺௌை expand or contract. Even with the greater complexity of this example, Figure 

11 provides further numerical evidence to support conjecture 4.9 and further illustrations of 

theorem 4.8. In particular, the increase in gradient of the Price of Anarchy at ߟா ൌ ͳͺͲ is much 

clearer than in Figure 9. 

 
Figure 11 ʹ The Variation of the Price of Anarchy against the Index  for Demand Multipliers ࢘ࣀ in Example 2 

Turning to the systematic relationship between route transition points ߟா and ߟௌை, Table 2 lists the 

approximate levels of demand for each route transition point under UE and SO. In contrast to Table 

1, the final column of this table displays the number of links with positive flow of the total of 38 links 

in Sioux Falls. These results are again consistent with the conclusions of corollary 3.6. 

No. 

Route Transition Points ࡱࢁࣁࡻࡿࣁ 

Number of Active 

Links in ڂ ࢘ࡱࢁ࢘ࢄ  

ڂ & ࢘ࡻࡿ࢘ࢄ  
ࡻࡿࣁ ൌ ࡱࢁࣁ  ൌ  
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1 1 1 - 24 

2 47 71 0.662 25 

3 58 87 0.6667 26 

4 60 90 0.6667 27 

5 70 105 0.6667 26 

6 72 107 0.6729 27 

7 75 112 0.6696 28 

8 82 123 0.6667 29 

9 88 132 0.6667 30 

10 103 154 0.6688 31 

11 105 157 0.6688 32 

12 111 165 0.6727 31 

13 114 171 0.6667 32 

14 115 171 0.6725 33 

15 121 180 0.6722 32 

16 123 184 0.6685 33 

17 127 190 0.6684 34 

18 144 216 0.6667 35 

19 156 233 0.6695 36 

20 166 248 0.6694 35 

21 183 273 0.6703 36 

22 204 305 0.6689 36 

23 239 357 0.6695 37 

24 259 388 0.6675 38 

25 310 464 0.6681 37 

26 418 625 0.6688 38 

Table 2 ʹ Route Transition Points in Example 2 

Finally, Figure 12 displays the decay rate of the Price of Anarchy for demand indices ݆  ʹͷ, which 

represents the level of demand of the final route transition point ߟா. This decay is consistent with ܱ൫ͳ ݆ଶఉΤ ൯ as is proposed in conjecture 4.10. 
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Figure 12 - Decay in the Price of Anarchy for High Demand in Example 2 

5.3 Examples 3 and 4: Increasing Demand in a Multiple (Many to Many) OD Pair Network 

In addition to illustrating the theoretical results and conjectures of sections 3 and 4, the two 

examples in this section also illustrate challenges that exist in identifying route transition points in 

more complicated multiple OD networks. 

5.3.1 Sioux Falls Network: Five OD Example 

In this first multiple OD pair scenario, the variation of the Price of Anarchy is studied as travel 

demand is increased on five OD pairs ݎ ൌ ͳǡǥ ǡͷin the Sioux Falls network: between node 20 and 

node 1; node 23 and node 2; mode 20 and node 3; node 7 and node 13; and between node 1 and 

node 19. The initial amounts of demand on each OD movement are set at ݍଵ ൌ ଶݍ ,͵ʹ ൌ ͳͶ, ݍଷ ൌ ͳ, ݍସ ൌ ͳͺ and ݍହ ൌ ʹͺ. The demand multipliers for each OD movement are identical, with 

values ߞଵ ൌ ڮ ൌ ହߞ ൌ ߞ ൌ ͳǡʹǡǥ ǡͺͲͲͲ. 

Figure 13 displays the variation of the Price of Anarchy against demand multipliers up to ߞ ൌ ͳͲͲͲ. 

Similarly to previous figures the vertical lines signify levels of demand corresponding to route 

transition points ߟா and ߟௌை. As OBA is unable to identify OD specific active networks in network 

examples with multiple origin nodes, the vertical lines represent only those route transition points at 

which an expansion (contraction) in an OD specific active network coincides with an expansion 

(contraction) in the overall active network, which is equivalent to ڂ ܺா  and ڂ ܺௌை . The overall 

active network is uniquely defined by link flows. This demonstrates a limitation of using the OBA 

algorithm to identify changes in OD specific active networks for cases in which there are multiple 

origins. The consequence of this is that there may be route transition points that exist, which this 

method does not identify. Indeed, at ߞ ൎ ͷͲͲ, there is a ͚downǁĂƌĚ ŬŝŶŬ͛ ŝŶ ƚŚĞ ŐƌĂƉŚ ŽĨ ƚŚĞ PƌŝĐĞ 
of Anarchy, which suggests that there is a route transition point ߟா corresponding to the expansion 
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of ܭ  for some OD movement ݎ. The identification of route transition points, through observation 

of OD specific active networks, in this general case would require the TAPAS algorithm. The example 

in section 5.3.2 demonstrates an alternative approach to identifying route transition points, which 

uses route enumeration. 

Despite this limitation of OBA, the behaviour of the Price of Anarchy at all other route transition 

points accords with the claims made in conjecture 4.9 and provides further illustrations of the 

statements in theorem 4.8. 

 
Figure 13 ʹ The Variation of the Price of Anarchy against the Demand Multiplier ࣀ in Example 3 

For each of the vertical lines in Figure 13, Table 3 lists the approximate levels of demand at which 

the overall active network changes as travel demand increases. Similarly to previous examples, these 

results are consistent with the conclusions of corollary 3.6. 

No. 

Route Transition Points ࡱࢁࣁࡻࡿࣁ 

Number of Active 

Links in ڂ ࢘ࡱࢁ࢘ࢄ  

ڂ & ࢘ࡻࡿ࢘ࢄ  
ࡻࡿࣁ ൌ ࡱࢁࣁ ࣀ ൌ  ࣀ

1 1 1  21 

2 71 106 0.6698 24 

3 136 203 0.67 37 

4 142 211 0.673 42 

5 149 223 0.6682 46 

6 170 253 0.6719 41 

7 210 314 0.6688 46 

8 215 322 0.6677 48 

9 222 332 0.6687 46 

10 227 339 0.6696 49 
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11 277 414 0.6691 50 

12 311 464 0.6703 52 

13 362 541 0.6691 56 

14 430 643 0.6687 55 

15 458 685 0.6686 56 

16 485 726 0.668 57 

17 492 736 0.6685 56 

18 516 771 0.6693 57 

19 521 778 0.6697 58 

20 521 779 0.6688 59 

21 628 939 0.6688 60 

22 647 967 0.6691 61 

23 780 1,166 0.669 60 

24 806 1,205 0.6689 62 

25 1,037 1,551 0.6686 63 

26 1,428 2,136 0.6685 62 

Table 3 ʹ Route Transition Points in Example 3 

Finally, Figure 14 displays the decay rate of the Price of Anarchy for values of the demand multiplier ߞ  ʹͳ͵, which represents the level of demand of the final route transition point ߟா. This decay 

is consistent with ܱ ቀͳ ଶఉൗߞ ቁ as is proposed in conjecture 4.10. 

 
Figure 14 - Decay in the Price of Anarchy for High Demand in Example 3 

5.3.2 Sioux Falls Network: 528 OD Example 

In this second multiple OD pair scenario, the variation of the Price of Anarchy is studied as travel 

demand is increased in the Sioux Falls network, using the demand matrix file that is available at Bar-

Gera (2001). This demand matrix contains 528 OD pairs. The initial amounts of demand on each OD 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

33 

 

movement are set at ݍ ൌ ͲǤͲͲͳݍᇱ , where ݍᇱ  represents the value in the original matrix. Demand 

multipliers for each OD movement are then identical, with values ߞଵ ൌ ڮ ൌ ହଶ଼ߞ ൌ ߞ ൌͳǡʹǡǥ ǡͻͲͲͲ. 

Figure 15 displays the variation of the Price of Anarchy against demand multipliers up to ߞ ൌ ʹͲͲͲ. 

Similarly to Figure 13, this figure also uses vertical lines to signify levels of demand that correspond 

to route transition points ߟா and ߟௌை at which there is a change in the overall active networks ڂ ܺா  and ڂ ܺௌை . For this example, there are only two such route transition points, which Table 4 

shows both satisfy the conditions of conclusions of corollary 3.6. 

In order to better identify the full sets of route transition points Ȣா and Ȣௌை, an alternative 

methodology is employed in which, at each demand level, we count the number of routes, for each 

OD movement ݎ, that are within a tolerance ͳͲିଵ of the minimum (marginal total) cost route under 

UE and SO. This is inspired by the approach described in Bar-Gera (2006). This method identifies a 

total of 364 demand levels ߞ א ሾͲǡʹͲͲͲሿ, which correspond to route transition points ߟா and ߟௌை 

for this network. As the inclusion of a vertical line for each of these points would make Figure 15 

unintelligible, we instead plot the difference between the total numbers of minimum (marginal 

total) cost routes under UE and SO. Referred to as the difference measure, this measure is 

calculated, for each demand level ݆, as σ หܭ෩ ൫ߞ൯ห െ σ หܭ ൫ߞ൯ห . Although this is a particularly 

coarse measure, it can be seen that it has a similar overall pattern to the Price of Anarchy (though 

with different magnitude). This measure, therefore, provides further numerical evidence to support 

the claims of conjecture 4.9 and the conclusions of theorem 4.8.  

 
Figure 15 ʹ The Variation of the Price of Anarchy against the Demand Multiplier ࣀ in Example 4 

No. 
Route Transition Points ࡱࢁࣁࡻࡿࣁ 

Number of Active 

Links in ڂ ࢘ࡱࢁ࢘ࢄ ࡻࡿࣁ  ൌ ࡱࢁࣁ ࣀ ൌ  ࣀ
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ڂ & ࢘ࡻࡿ࢘ࢄ  

1 1 1  74 

2 71 106 0.6698 75 

3 136 203 0.67 76 

Table 4 ʹ Route Transition Points in Example 4 

For values of ߞ  ʹͲͲͲ, the difference measure becomes increasingly unstable as demand 

increases. This is an indicator that the level of convergence of ͳͲିଽ eventually (and inevitably) 

becomes unable to clearly identify expansions and contractions because of the magnitudes of travel 

costs. For this example, it is therefore not possible to identify the exact level of demand at which the 

final region of decay in the Price of Anarchy begins. For this reason, Figure 16 displays the decay rate 

of the Price of Anarchy for values of the demand multiplier ߞ  ͻ͵Ͷ, which signifies the first point 

in Figure 15 at which the Price of Anarchy begins to steadily fall. It can be seen from this figure that 

the decay rate of the Price of Anarchy eventually becomes consistent with ܱ ቀͳ ଶఉൗߞ ቁ, as is 

proposed in conjecture 4.10, for values of ߞ  ͶͲ͵. 

 
Figure 16 - Decay in the Price of Anarchy for High Demand in Example 4 

6 Conclusions 

Selfish routing is known to be inefficient for society as a whole but it is unknown how or why the 

extent of this inefficiency, which can be measured by the Price of Anarchy, varies with the 

underlying structures of demand and supply that have been shown to exist in real traffic networks. 

Focussing on how the Price of Anarchy varies as travel demand is increased in traffic networks with 

separable and strictly increasing cost functions, this paper has identified and described the effects of 

four mechanisms that govern this variation. These are, specifically, expansions and contractions in 

the sets of routes, for each OD movement, of minimum (marginal total) cost under UE and SO. In the 
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special case of traffic networks with cost functions of the form ܿ ൌ ܽ  ܾݔఉ, for which ܽ ǡ ܾǡ ߚ Ͳ, this paper has also proven that there is a systematic relationship between link flows under UE and 

SO, and has conjectured that the Price of Anarchy has power law decay for large demand. 

There are several opportunities for the work presented in this paper to be extended. Firstly, the 

numerical evidence presented in section 5 supports the claims stated in conjectures 4.9 and 4.10, 

with respect to the gradient of the Price of Anarchy, and also the power law decay in the Price of 

Anarchy for large demand. Strict proofs for each of these statements are still required. The theory 

could also be generalised further by easing the restrictions that were imposed on the types of 

demand movements and route transition points in this paper; specifically, by allowing demand 

movements to move freely both up and down, allowing adjacent route transition points and also 

allowing simultaneous expansions and contractions in minimum cost route sets. This is likely to 

require further numerical work to explore what exactly can be established. 

More generally, by providing a description of the mechanisms that govern how the Price of Anarchy 

varies with travel demand, this paper provides a starting point from which the effects of patterns in 

demand and supply structure can begin to be explored. In particular this paper highlights the 

differing nature of how demand is assigned across routes under the UE and SO principles. This is an 

important consideration when making comparisons of the inefficiency of selfish routing across 

different supply topologies, which will be the general focus of our future research. 
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