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Abstract

Despite the widespread applications of human gait analysis, causal interbetiwesn joint kinematics and joint
moments have not been well documented. Typical gait studies are often tionitede multi-body dynamics analysis of
a few subjects which do not reveal the relative contributions of joiniridties to joint moments.

This study presented a computational approach to evaluate the sensitioity aigments due to variations of joint
kinematics. A large data set of probabiligomnt kinematics and associated ground reaction forces were generated based
on experimental data from literaturklulti-body dynamics analysis was then used to calculate joint moments with
respect to the probabilistic gait cycles. Employing the Principal Componentian@¢), the relative contributions of
individual joint kinematics to joint moments were computed in terms of satysitidices SI).

Results highlighted high sensitivity of (1) hip abduction momeettdichanges in pelvis rotatio8l£0.38) and hip
abduction §1=0.4) , (2) hip flexion moment due to changes in hip flexi80.35 and knee flexionl=0.26), (3) hip
rotation moment due to changespielvis obliquity §I=0.28) and hip rotationS{=0.4) , (4) knee adduction moment due
to changes in pelvis rotatiosk=0.35), hip abduction $1=0.32) and knee flexior5(=0.34) (5) knee flexion moment
due to changes in pelvis rotatio8l£0.29), hip flexion (Sl= 0.28) and knee flexioBlE€0.31) , and (6)knee rotation
moment due to changes in hip abducti8k(.32), hip flexion and knee flexio®I0.31).

Highlighting the “cause-and-effect” relationships between joint kinematics and the resultant joint moments provides
a fundamental understanding of human gait and can lead to desigoptimization of current gait rehabilitation
treatments.

Keywords: Gait modification Rehabilitation Sensitivity analysis, Joint momentgulti-body dynamics



10

11

12

13

14

15

16

17

18

19

20

21

1. Introduction

Human gait studies have been one of the most attractive and challengingf asesseghanics with

different applications for musculoskeletal disorder diagngsis|[1-5] , therapeic/entions[6-P] and

functional evaluations of different treatmemﬂ3||. Multi-body dynamics (MBD) analysis has been widely

used to study human gait. From a technical point of view, two different approadW@&Dohnalysis can be

found in literature: inverse dynamics and forward dynamics. Inverse dynangiysis has been mainly used

to calculate joint moments, muscle forces and body torques from known joint kicee[fidt-14] . On the

other hand, forward dynamics analysis has been employed to determine tkimgoirdtics from known joint

moments and muscle forc

bs [19

21].

These studies however have major limitations, which prohibit a holistic stadding of human gait;

first, MBD cannot provide a systematic investigation of the causal interactwedn joint kinematics and

the resultant joint moments. Typical gait analyses reveal the effects Dkijogmatics on the joint moments

and vice versa. However, the relative contributions of individual kinemiatigsnt kinetics cannot be well

evaluated by MBD alone. Second, gait studies often do not accommodate the rolepatiatgrvariability.

Large inter-patient variations have been reported in joint kinematics andcki]. However, gait

studies are often evaluated for a few numbers of subjects due to the costeanelgtiired for experimental

gait measurements.

Due to the cost of experimental data acquisition, principal component arf@¢#3$ has been widely

used to computationally generate a large population of probabilistic dafady@sa small experimental data

set. PCA outlinesa database through its underlying principal patterns and then enlarges dbasdatia

randomizing its major patterns. For example, PCA has been used to generate large stiovabilipatient
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databases of geome24], elastic mod [25] and joint kis [26]. Considering tlemirdagability of

PCA to discriminate and extract the underlying fundamental patterns of a data Bféceas been also

employed to extract and interpret the complicated interactions between highly coupled variables. For example,

the relative contributions of joint alignments and loadings to jointhar@cs have been investigated through
PCA ]. These two unique capabilities of PCA, enlarging a small experimerdbbdatand analyzing the
causal interactions, may be hired to address the aforementioned limitdtiprevious MBD studies. We
hypothesized that PCA can computationally produce a large probabilistic databager-piatient joint
kinematics that can be then imported to MBD to compute the corresponding fmments. In order to
perform MBD however, ground reaction forces and moments (GRF&M) , relatédese probabilistic
kinematics, must be first estimated . Previous studies have successfullytiisésl aeural network (ANN)

to calculate GRF&M [34]

ANN is an efficient surrogate model with the ability to learn dinear relationship [28-31]. Once a set

of inputs (e.g. kinematics) and corresponding outputs (e.g. GRF&M) are presenteel network, the

network learns the causal interactions between inputs and outputs. Given a rdvinpats, the trained

neural network (surrogate model) can generalize the relationship to produceotiiatedutputs. A neural

network therefore can be of significant advantage, especially when the outputshmEuiiveictly measured

for all sets of inputs. We hypothesized that a trained ANN can be used to esien&RF&M related to a

probabilistic database of joint kinematics that have been computationallyagehénrough PCA. |t is

expected that a combination of these computational techniques can address the aforesmiénttations of

the previous human gait studies.



42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

This study developed a combined computational framework to provide a thorough quantitaght
into the essential relationships between joint kinematics and joint kinaticerdingly (1) a large data set of
probabilistic gait cycles was created based on experimental data in literaturbidbr(2) the qualitative
contributions of individual joint kinematics to joint moments and (3) th@nttativesersitivity indices of
joint moments due to kinematic variations were investigated. The aimsosttily was to understand the
relationships between joint kinematics and the resultant joint momentsheitbng term aim of optimizing

current rehabilitation methods.

2. Material and methods

A published repository of experimental gait cycles was adopted for the presen{ssatign 2.1). A
large data set of probabilistic kinematics was then created from expetimgaitteycles using PCA (section
2.2). Associated GRF&M were computed using ANN technique (section 2.3). MBRsinalas then
employed to calculate joint moments based on the probabilistic joint kinematicsoanuited GRF&M
(section 2.4). Once again, PCA was used to determine the contributions ofrjemiakics to joint moments
(section 2.5). It should be noted that PCA was used for a twofold purpgseandomizing the joint
kinematics and (2) extracting the interactions between kinematics and joirgntsorfigure 1 shows the

schematic diagram of the proposed methodology.

2.1. Experimental gait data

A subject pool consisted of four different participants (three males, oraefeheight: 168.3+2.6 cm;

mass: 69.2+6.2kg) was adopted from a published reposImmps(//simtk.org/home/kneelosdsThis

repository included three dimensional GRF&M (Force plate, AMTI Corp., tatar MA, USA) , recorded
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with a frequency of 1000 Hz and marker trajectory data (10-camera motiamecapstem, Motion Analysis

Corp., Santa Rosa, CA, U$Aecorded at a frequency of 200 Hz for a total number of 144 gait tals.
modified Cleveland Clinic marker set was used with extra markers ore¢heamd trunk. These subjects
walked with a variety of different patterns which provided sufficient diversityis repository. A complete

description of this data set is provided in Fregly et al (2) [32]. Acgele was defined as the time interval
between foot strike of one leg to the following foot strike of the sam%g Subsequently, two complete
gait cycles were picked up from each trial using the associated vertical€aRiRg to a total number of 288
experimental gait cycles (144 trials two gait cycles). Joint kinematic waveforms and segmental motions
were then computed using a three dimensional musculoskeletal model, implemented in MBB ¢ssatiien
2.4). In the present studysegmental motion” refers to“displacement and “acceleratioil of human body

segments.
2.2.PCA-based statistical model

In the traditional scenario of random sampling, input parameters are perturbed inddéperdaeias the
interactions between input parameters are often ignored. Therefore, the conveatidoalizing techniques
(e.g., Monte Carlo, Latin hyper cube sampling, etc.) cannot be used to randomize hurpattegai since
joint kinematics are highly coupled to each other and cannot be randomized seplaraitigr words,
correspondence should be preserved between joint kinematics in order to generate ranstamized
database. To create a large database of probabilistic joint kinematics fronh expeamental database, PCA
was use@. The main idea behind this technique is to map the “inter-dependefritvariables (joint kinematic$
into a reduced number of corresponding “independerit variables (principal component values) that can be

randomized separately. Randomized independent variables were then inversely mapgdear iotiginal
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inter-dependent variables. For a more detailed study of PCA techniqee [34]. Prichjahiti&inematics

were generated following the steps below:

(1) Atotal of 288 experimental gait cycles were arranged in a matrix X such that :
X =[ X1 X2 X3 vevenre X 288] oY)
Where xis a singlé‘experimentdl gait cycle:
x =[PR PR PR HAHF HRKF AF SH 1< £ 28¢ (2)

In the above equation , PRx is pelvis tilt, PRy is pelvis obliqittyz is pelvis rotation HA is hip
abduction/adductiorHF is hip flexion/extensionkIR is hip rotationKF is knee flexion/extensionAF is

ankle flexion/extension and SE is subtalar eversion/inversion.

(2) Using PCA, a total of nine eigenvectors and the corresponding eigenvalues, assodmtbd wafiove
nine kinematic variables, were computed for the experimental database h&).importance of
eigenvectors was ranked with respect to the associated eigenvalues. Higher wigemednt the
associated eigenvectors were more essential and descriptive for the dgigbasel the lower

eigenvalues referred to the less-important features that might be caused by noise.

(3) The first six important eigenvectors which explained 95% of variance in Xamereged in the matrix E.
The experimental data set (X) was then transformed into principal component gR€3$ without

significant loss of information:

PC value= ng&g XE X6 (3)

In other words, matrix X, consisted of nine inter-dependent kinematic varialaledramsformed inta
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reduced number of six secondary independent variables (PC values) that can be randomized separately.

(4) For the computed PC values, row-wise mean (m) and standard deviation (d) wptgecbover all the
288 experimental gait cycles. Each PC value was randomly sampled from a normautitietrivith a
mean value of m and a standard deviation value of +2d. Randomized PC \mjuasre then mapped
into their original variables (joint kinematics) resulting in a probabilisticiaon of joint kinematics ()

while the correspondence between coupled kinematics was preserved:

Y=PxEg?! )

in the above equation;'Erepresents the inverse of matrix E.

2.3.Ground reaction force and moment computation

A number of computational techniques have been developed to calculate GRF&M only based upon

kinematic waveforms|£|,]. Oh et al (2013@5] showed feasibility of calculating ground reaction

forces and moments based on joint kinematics using an artificial neurarkefhey proved the feasibility
of using ANN-based computed GRF&M to calculate joint moments. This technique was adagatiedilaie

the GRF&M, related to the probabilistic joint kinematics. The methodology can be outlined as below
(1) Using MBD software, segmental motions were calculated from probabilistic kinematics.

(2) For the single support phase, GRF&M were calculated by subtracting theatpaet acceleration from

segmental acceleration regarding each human body segment (Newtonian mechanics-sgcond law)[37].

(3) For the double support phase, a three-layer ANN with 14 inputs (displacements aedatons| of

skeletal segments), three hidden neurons and six output nodes (GRF&M) was constrbtted) (Far a
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detailed description of this neural netwosste,e. This structure was trained based on two-thirds of the
experimental kinematics (inputs) and the corresponding measured GRF&M (outputs) olvtaméiue
experimental repository (section 2.1) and was validated for one-third ofethaining experimental
kinematics|[38]. In fact, the experimental repository was divided into three subsets: train (70%),
validation (15%) and test (15%). Once the network was trained and validatpcediction ability was
tested for those inputs that were not included in the training procedursulsstt). The trained neural
network was then employed to predict the GRF&M corresponding to the double support phase o

probabilistic kinematics.

(4) The cubic spline function was applied to assemble the GRF&M of single suppse (dbtained from
Newtonian second law) with the GRF&M of double support phase (obtained from ANN) and rgdonstr
the GRF&M of a complete gait cycle. All of the above computations were implemientddTLAB

(version 2009, The MathWorks, Inc., MA, USA).
2.4.Multi body dynamics analysis

A three dimensional musculoskeletal model was implemented in MBD software AnyBodkling
System (version 6.0, AnyBody Technology, Aalborg, Denmark). This model was constructédbabe
University of Twente Lower Extremity Model (TLEM). The TLEM model was a detadladaver-based
model which has been previously validated to calculate muscle forces and joint efﬂhe skeleton
included thorax, trunk, pelvis, thigh, patella, shank and foot segments. Hip jointodatethas a sphere joint
with three degrees of freedom (DOF): flexion-extension, abduetidnetion and internal-external rotation.
Knee joint was modeled as a hinge joint with only one DOF for flexion-extension aretgaijoint was

considered for ankle-subtalar complex. The musculoskeletal model also contained 160 tendscle-
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142  actuators. The musculoskeletal model was scaled to the average anthropometric ishiasacterfour

143  participants and was then hired in the MBD analysis at three different stages:

144  First, MBD analysis was employed to calculate the joint kinematic wavefant segmental motions related

145  to the experimental gait trials (published repository, section 2.1).

146  Second, MBD analysis was also used to calculate the segmental moticets tieeldie probabilistic kinematic

147  waveforms (section 2.2).

148  Third, the probabilistic kinematics (section 2.2) and the associated GRF&M (s2@&)orere imported into

149  an inverse dynamics simulation to calculate joint moments.
150 2.5.PCA-based sensitivity analysis

151 Traditional sensitivity analysis often discards the potential dependenciesbeitypait variables and
152  therefore is not applicable to study human gait with highly inter-dependentkjoatics. Instead, a
153  principal component-based technique was adopted follofitzgatrick et al (2011@7]. A data matrix)(T

154  was constructed from probabilistic joint kinematics (section 2.2) and result@ntjoments (section 2:4
155 T =[joint kinematic variables , joint kinetic variasi] ®)

156 PCA was applied to calculate the eigenvectors and eigenvalues fooltiabipstic gait cycles (T). Here,
157  each eigenvector consisted of two separate parts: one part was teetatet joint kinematic variablésand
158  the other part was related to thgoint kinetic variable® The “kinematic” part represented how the coupled
159  joint kinematics varied tgether and the “kinetic” part explained how the resultant joint moments were

160  changed accordingly. In other words, eigenvectors represented the relatilmutont of joint kinematics to
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the variations of joint kinetics. Sensitivity indices were then calculated-daet” the above contributions

within two steps:
(1) The data matrix T was transformed into a secondary orthogonal data space of PC values:
PC value= T x Et (6)

In the above equation,tEs the feature matrix which contained all eigenvectors of matrix T. PCsvalue
were in fact the secondary independent variables for primary inter-dependentegafjisibt kinematics and

kinetics).

(2) The average PC values, over all probabilistic gait cycles, contained twategpats associated with the
“kinemati¢’ and “kinetic” variables. The proportions of the PC values corresponding to the “joint kinematic
variable§ to the PC values associated with the “joint kinetic variable$ were considered as the sensitivity

indices (SI) of joint moments due to the joint kinematic variations.
3. Results

3.1. Generating the probabilistic gait cycles

The PCA-statistical model was randomly sampled and a total number of 500 pstibadpit cycles
were created. The sampled gait cycles were similar in pattern to the origieaihsental kinematics (Figure
2). Regarding each set of probabilistic joint kinematics, the trained wB\used to estimate the GRF&M of
double support phase. Figure 3 shows the average performance of the ANN. Results show thatldNN
accurately predict the GRF&M of double support phase for all three subsetd.thé Pearson correlation
coefficients (p), between network predictions (y axis) and experimental data (x a&xis),above p=0.98.

Figures (3-a) and (3-b) show that the network learned the nonlinear relgtidretiveen kinematics and
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GRF&M (p=0.98) and Figure (3-c) implies that the network could generalize the relationship and priedict t
GRF&M for new kinematics which were not included in the network training (p=0.97). The overall patterns
of estimated GRF&M were well-consistent with the experimental GRF&M (FigureCdinputed joint
moments were also similar (in terms of the overall patterns) to thosamoments which were computed
based on “experimentdl kinematics and “measuretl GRF&M (Appendix, Figure A.1). This in turn approved

the validity of the ANN-based computed GRF&M.
3.2.Relative contributions of joint kinematics

Eigenvectors are presented to demonstrate the relative contributiombvafual joint kinematics to the
variations of joint moments (Figure 5). For the hip joint, results indicate hbdirst eigenvector (the most
important mode of variation) of the hip abduction moment was mainlpwtd to changes in the pelvis
rotation and hip abduction whilst the second eigenvector (the second importantfreadation) was highly
attributed to changes in the hip joint rotation combined with knee joinbfleldCA demonstrates the higher
contributions of the pelvis rotation and hip joint abduction over the lesseriegianis of other kinematics to
the hip abduction moment. For hip flexion moment, first eigenvector demonstrates the highleutians of
hip flexion and knee flexion kinematics to hip flexion moment whilst tlcerssd eigenvector implies that hip
flexion moment was also influenced by pelvis rotation and pelvis tiltil&lgn hip rotation moment was

mainly affected by changes in the pelvis rotation, pelvis obliquity and hip rotation.

The knee joint adduction moment was found to be sensitive to the peltismrotdap abduction, and
knee flexion. Eigenvectors also highlight the substantial contributions gietlis rotation and knee flexion
(first eigenvector) to the knee flexion moment compared to the lesseibatiotrs of the hip flexion and hip

rotation (second eigenvector). Knee rotation moment was heavily influenced by hipi@bdunat knee
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flexion in the first mode of variation (first eigenvector) as vasl by hip flexion in the second mode of
variation (second eigenvector). For the ankle joint, results show the kéigmehips between knee and ankle
joints flexion and ankle flexion moment. Eigenvectors also reveal thkd pmht rotation moment was highly

influenced by the hip joint rotation and subtalar joint eversion.
3.3. Sengitivity indices of joint moments

Sensitivity indices (SI) of joint moments due to changes in joint kinematecpresented in Figure 6
Results highlight that hip joint abduction moment was significantyensensitive to variations in pelvis
rotation (SI=0.38) and the hip abductid®i<0.4) than to variations in other kinematics. Hip flexion moment
was noticeably sensitive to sagittal-plane kinematics including pelviéSE-0.23, hip flexion (SI=0.35),
knee flexion (SI=0.26), and ankle flexio®I€0.17). Hip rotation moment was slightly more sensitive to
pelvis obliquity (SI=0.28 pelvis rotation (SI=0.22) and hip rotation (SI=0.4). Three dimensional knde join
moments (adduction, flexion and rotation components) were mainly sensitive to charfgpsand knee
joints flexion (Sk0.3). Both adduction and rotation components of the knee joint moment were highly
influenced by the hip joint abductio®l(=0.32). In addition, both adduction and flexion components of the
knee joint moment were sensitive to changes in pelvis rotation (fordduection moment: Sl =0.35; for
knee flexion moment: SI =0.28) but fairly insensitive to changes in pilyipelvis obliquity and subtalar
eversion. Similarly, ankle flexion moment was more sensitive to the variatideg flexion including hip
flexion (SI=0.3), knee flexion (SI=0.29) and ankle flexion (SI=0.44) while ardtition moment was mainly
affected by the hip joint rotatiorSI=0.39) and subtalar joint eversion (SI=0.29). In general, varying the
kinematics of an individual joint not only changed the moment about that ihtalso could yield to

substantial changes in the moments of adjacent joints. For example, hip joint abduction couldly affeea
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the hip abduction moment as well as adduction and rotation components of the knee j@nt.rSamilarly,
changes in the knee flexion led to substantial changes in three dimensieagbint moments as well as

abduction and flexion components of the hip joint moment.
4. Discussion
4.1. Relative contributions and sensitivity indices

In the conventional sensitivity analysis, a single input is perturbed whié imiputs are kept constant.
The individual contribution of each input to an output measure therefore can ilyepeaseived. This
technique however cannot be employed to discriminate between different camsbottidependent inputs
where all inputs are simultaneously involved to alter an output measure. For exdmapmverall variation in
a joint moment is the result of simultaneous changes in all joint kinesnditzpatrick et al (201@
suggested using PCA as an alternativenterpret the “cause-andeffect” relationships between dependent
inputs and outputs (section 2.5). Eigenvectors of the data space (i.e. |Btibgbint kinematics and the
resultant joint moments), provided a qualitative comparison between the contishaftidifferent kinematics
(see section 3.2). For a quantitatiieanking’ of the overall contributions of different joint kinematics,
eigenvectors were further used to transform the inter-dependent joint kinearatigsint moments into an
orthogonal data space. In the orthogonal data space, inter-dependent variablegsatexteas independent
variables (PC values). The ratios‘{dint kinemati¢’ PC values to “joint kinetic’ PC values were interpreted

as sensitivity indices (see section 3.3).
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241 4.2.Validity of the results

242 The fact that the patterns of probabilistic gait cycles and the comjputeésnoments are similar to the
243 patterns of experimental data reassures and builds confidence in the reduisgi#lit cannot be guaranteed
244  that human body replicates these patterns, our findings are well consistepteviously published clinical
245  reports in literature. For example, our results highlight the influence ofoimp gbduction and rotation
246 kinematics on hip abduction moment which is in agreement with the study of t@rahs(ZOlZ]. PCA
247  findings also highlight the sensitivity of knee adduction moment to changgseluis rotation, hip
248  abduction/flexion/rotation, and knee flexion. Likewise, Fregly et al ()a[nd Barrios et al (2016]
249  demonstrated the influence of pelvis rotation, hip adduction and hip internal rotatitegdteckion on knee
250  adduction momentMoreover,PCA demonstrated the concurrent influence of pelvis rotation, hip flexion, hip
251  rotation and knee flexion kinematics on knee flexion moment and knee adduction ncom@oients (see
252  Figure 5). Walter et al (2012] and Creaby et al (2){also reported that kinematic modifications
253  which decrease knee adduction moment may adversely increase knee flexion momentclifivase
254  observations can be justified according to the aforementioned multi-effech&iics which were found to be

255  shared between flexion and adduction components of the knee joint moment.
256 4.3. Applicationsin gait rehabilitation

257 Clinical biomechanics has revealed the importance of gait modification #&gatéy pre- and

258  post-surgical staggs [44-49]. Gait modification aims to alter joint loading distributidrdegrease load on an

259  affected limb through minor changes in the human gait pattern. Majority atudees, concerned with the

260  gait modification designs, are established based on conventional MBD arHl 419ve& e MBD

261  alone does not provide a systematic investigation of joint kinematicsnfhagtrice rehabilitation outcome.

15|



262  Therefore, the synergistic joint kinematic changes, required for joint offloagimgd be very challenging to

263  determine by typical MBD.

264 Our findings highlighted the importance and contributions of different kimetmaticsto joint moments
265 The most effective and ineffective joint kinematics with significantuerice on joint moments were
266  documented. Moreover, joint kinematics with simultaneous effects on adjacenmainénts were also
267  highlighted leading to a preference or avoidance about specific kinematicsinwvobesd in a targeted
268 rehabilitation. These quantitative understandings therefore, can provide significafits bendesign and
269  optimization of an objective gait retraining strategy. Considering theveslatiportance of kinematics, an

270  objective rehabilitation can be designed through the most influential kinematics.
271 4.4.Limitations of the study

272 This study developed a computational framework to provide a quantitative understandimg of t
273  “cause-andeffect” interactions between joint kinematics and joint moments. To accommodate the inter-patient
274  variability, PCA was employed to create a large probabilistic database okijoénmbatics. Perhaps the main
275 limitation of the developed framework was that the primary experimenti@bakse contained a small number
276  of four participants. However, these subjects were quite different in anthrgjmoainetracteristics, preferred
277  walking velocity, and shoe type. Moreover, each subject completed a variety of diffexikinig trials

278 ranging from normal gait to exaggerated rehabilitation patterns. Accordingdyexpected that the present
279  repository accommodated sufficient diversity. The second limitation wash#h&héee joint was modeled as a
280 hinge joint in MBD analysis with only one DOF for flexion-ext@msi Nevertheless; the proposed

281  methodology will be equally applicable for more numbers of subjects and a MBD analysis with ldfser D
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5. Conclusion

This study provided a quantitative understanding of the interactions Inejaiae kinematics and the
resultant joint moments. A computational framework was developed to (1) generate adtaigase of
probabilistic gait cycles, (2) assess the contributions of individualmetnatics to the joint moments and (3)
evaluate the relative sensitivity indices of joint moments due to joietiatic variations. Results highlighted
the high contributions of pelvis rotation and hip abduction to hip abdustament, the importance of hip
and knee joints flexion for hip flexion moment, and the effect of pelvis wibligpelvis rotation and hip
rotation on hip rotation moment. Results also revealed the importancevisf ngehtion, hip abduction and
knee flexion for knee adduction moment, the influence of pelvis rotation andiéxiea on knee flexion
moment and the contributions of hip abduction and knee flexion to knee rotation moment. Results ado show
that ankle flexion moment was highly influenced by knee and ankle jointerflexhilst ankle rotation
moment was mainly influenced by hip rotation and subtalar eversion kilmsmiitis expected that such
guantitative insights provide potential benefits to direct the rehalailitatesign procedure to optimal gait

retraining programs.
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Figure 1 A schematic diagram of the proposed methodology.
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Table

Table 1 14 input variables for artificial neural network

Input variable

Description

Displacement

Acceeration

Left knee joint centre in X-axis

Left hip joint centre inY-axis

Right ankle joint centre inZ-axis

Left foot segment mass centre inX-axis
Pelvis segment mass centre inX-axis
Left thigh segment mass centre inY-axis

Right shank segment mass centre in Z-axi

Thorax segment mass centre inY-axis
Right knee joint centre inZ-axis

Right shank segment mass centre inX-axi:
Right foot segment mass centre inY-axis
Right thigh segment mass centre inY-axis
Left foot segment mass centre inZ-axis

Pelvis segment mass centre inZ-axis




