UNIVERSITY OF LEEDS

This is a repository copy of Effect of Component Mal-Rotation on Knee Loading in Total Knee Arthroplasty Using Multi-Body Dynamics Modeling Under a Simulated Walking Gait.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/92783/

Version: Accepted Version

Article:

Chen, Z, Wang, L, Liu, Y et al. (4 more authors) (2015) Effect of Component Mal-Rotation on Knee Loading in Total Knee Arthroplasty Using Multi-Body Dynamics Modeling Under a Simulated Walking Gait. Journal of Orthopaedic Research, 33 (9). pp. 1287-1296. ISSN 0736-0266

https://doi.org/10.1002/jor.22908

© 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. This is the peer reviewed version of the following article: "Chen, Z., Wang, L., Liu, Y., He, J., Lian, Q., Li, D. and Jin, Z. (2015), Effect of component mal-rotation on knee loading in total knee arthroplasty using multi-body dynamics modeling under a simulated walking gait. J. Orthop. Res., 33: 1287–1296" which has been published in final form at http://dx.doi.org/10.1002/jor.22908. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Effect of Component Mal-rotation on Knee Loading in Total Knee Arthroplasty using Multi-body Dynamics Modeling under a Simulated Walking Gait

Zhenxian Chen¹, Ling Wang^{1*}, Yaxiong Liu¹, Jiankang He¹, Qin Lian¹, Dichen Li¹,

Zhongmin Jin^{1, 2}

¹State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China
²Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK

*Corresponding author:

Asst. Prof. Ling Wang

Stated Key Laboratory for Manufacturing Systems Engineering, School of Mechanical

Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China

Phone: +0-86-029-83395187

Email: menlwang@mail.xjtu.edu.cn

Author Contribution Statement:

Zhenxian Chen, Ling Wang, Yaxiong Liu, Jiankang He, Qin Lian, Dichen Li and Zhongmin Jin conceived and designed the study. Zhenxian Chen performed the simulation and prepared the manuscript. Ling Wang and Zhongmin Jin reviewed and edited the manuscript. All authors read and approved the manuscript.

1 ABSTRACT

2	Mal-rotation of the components in total knee arthorplasty (TKA) is a major cause of
3	postoperative complications, with an increased propensity for implant loosening or wear
4	leading to revision. A musculoskeletal multi-body dynamics model was used to perform a
5	parametric study of the effects of the rotational mal-alignments in TKA on the knee loading
6	under a simulated walking gait. The knee contact forces were found to be more sensitive to
7	variations in the varus-valgus rotation of both the tibial and the femoral components and the
8	internal-external rotation of the femoral component in TKA. The varus-valgus mal-rotation of
9	the tibial or femoral component and the internal-external mal-rotation of the femoral
10	component with a 5° variation were found to affect the peak medial contact force by
11	17.8~53.1%, the peak lateral contact force by 35.0~88.4% and the peak total contact force by
12	5.2~18.7%. Our findings support the clinical observations that a greater than 3° internal
13	mal-rotation of the femoral component may lead to unsatisfactory pain levels and a greater
14	than 3° varus mal-rotation of the tibial component may lead to medial bone collapse. These
15	findings determined the quantitative effects of the mal-rotation of the components in TKA on
16	the contact load. The effect of such mal-rotation of the components of TKA on the kinematics
17	would be further addressed in future studies.
18	Keywords, total knee arthronlasty: mal-rotation: multi-body dynamics: musculoskeletal

18 Keywords: total knee arthroplasty; mal-rotation; multi-body dynamics; musculoskeletal
19 model; contact force.

20 INTRODUCTION

The fundamental objectives of total knee arthroplasty (TKA) are to restore normal knee joint
function and to relieve pain. However, the failure in TKA resulting from clinical error and

2
3
4
5
6
0
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
26
30
37
38
39
40
41
42
42 42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
50
57
58
59
60

23	mal-alignment of the components limits the long-term survivorship of such prostheses.
24	Dalury et al. ¹ retrospectively identified 820 consecutive revision TKAs and found that
25	mal-position/mal-alignment was the seventh highest reason for revision. However,
26	mal-position/mal-alignment also affects joint loading, component loosening and wear so that
27	it may have a much larger effect on revision. For example, mal-rotation of the components in
28	TKA may result in overload in the medial or lateral condyle, bone damage and bone cement
29	crack initiation, severe wear of the polyethylene component, component loosening, and
30	ultimately revision surgery. ^{2, 3} In contrast, good alignment measured against the neutral
31	position (referenced to the mechanical axis to within 2°) after TKA leads to faster
32	rehabilitation and better function. ⁴
33	In previous clinical studies ⁵ , the issue of mal-rotation was the most frequently discussed
34	complication in TKA. Mal-rotation of a measurable degree has been found in approximately
35	10–30% of patients with TKA, depending on the surgical technique and the anatomical
36	landmarks used. ⁵ Even in the hands of experienced surgeons, overall coronal mal-alignment
37	(> \pm 3° from neutral) existed in approximately 28% of the patients. ⁶ Despite the improvements
38	in surgical instruments and techniques as well as implant designs, a large percentage of the
39	causes for revision are directly associated with the mal-position of the components.
40	Conservatively, surgeons directly influenced at least 27% of the early and 18% of the late
41	causes of revision, if the categories of instability and mal-alignment were purely considered ¹ .
42	In particular, variations in the rotational alignment of both the femoral and the tibial
43	component of greater than 3° can occur in clinical surgery ³ . Patients with greater than 3°
44	femoral internal rotation would receive a poor outcome after secondary patella resurfacing ⁷

45	and suffer unsatisfactory pain levels ⁸ . Berend et al. ⁹ found that a greater than 3° varus
46	alignment of the tibial component was associated with medial bone collapse. Additionally, the
47	wear measurement in retrieved inserts indicated that a varus mal-alignment as low as 3° may
48	result in accelerated wear, even if a nearly ideal overall limb alignment was achieved ¹⁰ .
49	Moreover, exceeding $\pm 3^{\circ}$ varus/valgus deviation from the mechanical axis has been
50	associated with abnormal stress, deterioration of the prosthesis and aseptic loosening. ¹¹
51	However, clinical observations could not explain these unsatisfactory results of such patients.
52	Clinical observations can only retrospectively determine the effect of mal-rotation of the
53	components on pain and functional scores. These are generally qualitative in nature and
54	cannot reveal the changes in joint loading with mal-rotation of the component. The clinical
55	observations should be correlated with the mechanical loading environment around the joint
56	directly.
56 57	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA,
56 57 58	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA, e.g., laboratory experiments using cadaver legs in a physiological gait simulator ³ , along with
56 57 58 59	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA, e.g., laboratory experiments using cadaver legs in a physiological gait simulator ³ , along with finite element analysis (FEA) ² and multi-body dynamics (MBD) simulation ¹² . However, the
56 57 58 59 60	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA, e.g., laboratory experiments using cadaver legs in a physiological gait simulator ³ , along with finite element analysis (FEA) ² and multi-body dynamics (MBD) simulation ¹² . However, the laboratory experimental costs inhibit the performance of multi-parameter analyses. FEA was
56 57 58 59 60 61	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA, e.g., laboratory experiments using cadaver legs in a physiological gait simulator ³ , along with finite element analysis (FEA) ² and multi-body dynamics (MBD) simulation ¹² . However, the laboratory experimental costs inhibit the performance of multi-parameter analyses. FEA was previously used to investigate only the effect of components mal-alignment on the stress and
56 57 58 59 60 61 62	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA, e.g., laboratory experiments using cadaver legs in a physiological gait simulator ³ , along with finite element analysis (FEA) ² and multi-body dynamics (MBD) simulation ¹² . However, the laboratory experimental costs inhibit the performance of multi-parameter analyses. FEA was previously used to investigate only the effect of components mal-alignment on the stress and strain with given boundary conditions (axial loading and joint motion), such that the effect of
 56 57 58 59 60 61 62 63 	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA, e.g., laboratory experiments using cadaver legs in a physiological gait simulator ³ , along with finite element analysis (FEA) ² and multi-body dynamics (MBD) simulation ¹² . However, the laboratory experimental costs inhibit the performance of multi-parameter analyses. FEA was previously used to investigate only the effect of components mal-alignment on the stress and strain with given boundary conditions (axial loading and joint motion), such that the effect of the mal-alignment on the overall knee contact force and motion was neglected. Moreover, the
 56 57 58 59 60 61 62 63 64 	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA, e.g., laboratory experiments using cadaver legs in a physiological gait simulator ³ , along with finite element analysis (FEA) ² and multi-body dynamics (MBD) simulation ¹² . However, the laboratory experimental costs inhibit the performance of multi-parameter analyses. FEA was previously used to investigate only the effect of components mal-alignment on the stress and strain with given boundary conditions (axial loading and joint motion), such that the effect of the mal-alignment on the overall knee contact force and motion was neglected. Moreover, the majority of FEA studies do not include a more physiological model associated with detailed
 56 57 58 59 60 61 62 63 64 65 	directly. A number of in-vitro studies exist on the effects of component mal-alignment in TKA, e.g., laboratory experiments using cadaver legs in a physiological gait simulator ³ , along with finite element analysis (FEA) ² and multi-body dynamics (MBD) simulation ¹² . However, the laboratory experimental costs inhibit the performance of multi-parameter analyses. FEA was previously used to investigate only the effect of components mal-alignment on the stress and strain with given boundary conditions (axial loading and joint motion), such that the effect of the mal-alignment on the overall knee contact force and motion was neglected. Moreover, the majority of FEA studies do not include a more physiological model associated with detailed information of bone, muscles, or ligaments. More recently, a host of musculoskeletal (MSK)

Journal of Orthopaedic Research

67	have been developed specifically for a cadaveric experiment without considering the whole
68	lower limb of the MSK model or the force-producing constraints imposed on the biarticular
69	muscles by neighboring joints. ^{12, 13} Furthermore, a number of computational simulations of
70	the functional activities can be found on the effects of mal-rotation of the components on the
71	knee contact forces, including the squatting motion ¹⁴ , the weight-bearing deep knee bend ¹²
72	and the seated open-kinetic-chain knee extension ¹³ , but none of these studies have addressed
73	normal gait. In our previous study ¹⁵ , the developed MSK MBD model was validated during
74	walking gait through comparisons with the measured muscle activations and tibio-femoral
75	(TF) contact forces from the instrumented knee prosthesis. However, only the perfectly
76	aligned condition was simulated. The effects of the mal-alignment of components on knee
77	loading during walking remain unknown.
78	In this study, by using a validated MSK model under a walking gait, our purpose was to
79	quantify how the variations in femoral or tibial rotational alignment influenced the following:
80	(1) the total TF contact force, (2) the medial and lateral contact forces, and (3) the patellar
81	contact force. In addition, the sensitivity of knee contact forces to different mal-rotation of

82 the components was further determined.

83 MATERIALS AND METHODS

84 Publically available data (https://simtk.org/home/kneeloads)¹⁶, collected from an adult female

- implanted with an instrumented knee replacement (mass 78.4 kg, height 167 cm, left knee),
- 86 were used for this study. A subject-specific lower extremity MSK model, including the left
- 87 leg with the total knee replacement, was constructed in the commercially available MBD
- analysis program AnyBody (version 6.0, Anybody Technology, Aalborg, Denmark) by

89	modifying a generic lower extremity MSK model (AnyBody Managed Model Repository
90	V1.5.1), which was based on the Twente Lower Extremity Model (TLEM) ¹⁷ anthropometric
91	database. The subject-specific bone and implant geometries (the femoral component, the
92	tibial insert and the patella button), released in the published database ¹⁶ , were
93	imported into AnyBody to replace the existing left leg of the generic MSK model. The other
94	segments of the generic MSK model were scaled with respect to the subject's weight and
95	height as well as the relative positions of the ankle, knee, and hip joints as determined from
96	the bone geometries. Six capsular soft tissue structures crossing the tibio-femoral (TF) and
97	patello-femoral (PF) joint were included in the left leg of the modified lower extremity MSK
98	model, including the posterior cruciate ligament (PCL), the medial collateral ligament (MCL),
99	the lateral collateral ligament (LCL), the postero-medial capsule (PMC), and the medial and
100	lateral PF ligaments (MPFL, LPFL). Anterior cruciate ligament (ACL) was removed
101	according to the surgery. The ligament forces exerted by the ligament bundles followed a
102	nonlinear elastic characteristic with a slack region, and a piecewise force-displacement
103	relationship and material parameters for various ligaments were taken from a previous study ¹⁸
104	and are presented in the Supplementary Materials.
105	The left knee of the developed lower extremity MSK model with the implant was
106	simulated via a force-dependent kinematics (FDK) approach ¹⁹ . Two deformable contact
107	models were defined between the tibial insert and the femoral component bearing surfaces
108	and between the patellar button and the femoral component. The contact forces for all contact
109	pairs were calculated using a linear force-penetration volume law^{20} with a contact
110	<i>PressureModule</i> of 1.24×10^{11} N/m ³ in this study. The <i>PressureModule</i> was calculated using

111	the equations derived by Fregly et al. ²¹ , based on the elastic foundation theory; further details
112	can be found in our previous study ¹⁵ .
113	According to the patient's surgical report, an instrumented Zimmer NK-II
114	cruciate-retaining prosthesis was implanted into the patient using a standard antero-medial
115	approach. The tibial bone cut was made at 90° to the long axis in the coronal plane (0° varus)
116	and at 90° in the sagital plane (0° posterior slope). The distal femoral cut was made at 6°
117	valgus to the anatomic axis of the femur. The posterior femoral cut was made at a 3° external
118	rotation with reference to the posterior surface of the posterior condyles. These were defined
119	as the neutral position of the prosthetic components in the developed lower extremity MSK
120	model. The positions of both the femoral and the tibial components were altered with respect
121	to the neutral position to investigate the following thirteen mal-alignment cases: neutral, 3°
122	and 5° of varus and valgus; 3° and 5° of internal and external rotation; 3° and 5° of anterior
123	tilting and posterior tilting (Fig. 1).
124	The subject-specific gait pattern from an over-ground gait study obtained from the same
125	adult female and measured at the patient's self-selected speed (approximately 1.0 m/s) ¹⁶ was
126	used in this study. The corresponding experimental ground reaction forces (GRFs) and
127	marker trajectories were imported into the developed subject-specific lower extremity MSK
128	model in AnyBody. First, with the model scaling, an inverse kinematics analysis was
129	performed to track the marker trajectories during the subject-specific gait. The pelvis and hip
130	angles as well as the foot spatial locations were calculated. Second, an inverse dynamics

- problem was solved by minimizing a cubic polynomial cost function as described by John et

analysis with the given muscle recruitment criterion was performed. The muscle recruitment

133	al ²² . The calculated pelvis and hip angles as well as the foot spatial locations were taken as
134	the inputs for the MSK model to simulate the kinetics of the patient's gait. The TF and PF
135	contact forces were predicted from the combination of the GRFs, segment mass, muscle and
136	ligament action in the inverse dynamics analysis. Meanwhile, the six degrees of freedom of
137	the TF joint were left free to equilibrate automatically during the calculation under the effect
138	of external loads and the muscle, ligament, and contact forces in the FDK solver. Next, the
139	inverse dynamics analysis was executed for all mal-rotated cases with respect to the neutral
140	position under the same gait. The effects of various configurations of the component
141	mal-rotations on the total TF contact force, the medial and lateral contact forces, and the
142	patellar contact force were predicted using the developed subject-specific lower extremity
143	MSK model.
144	RESULTS
145	Knee Contact Forces for the Neutral Position
146	A general overview of the knee contact forces under the neutral position is shown in Fig. 2.
147	The predicted medial and lateral contact forces, total TF contact force, and patellar contact
148	force all varied during a gait cycle, with the maximum corresponding values of
149	approximately 2.5, 1.0, 3.3, and 0.9 times the body weight, respectively. The effects of
150	component mal-rotation were presented in the following, with respect to the predictions
151	based on the neutral position. The changes were examined at maximum load bearing
152	(approximately, 52% of the gait cycle) and peak knee flexion (approximately, 69% of the gait
153	cycle).
154	Effects of the Component Mal-rotation on the Total TF Contact Force

1	
2	
3	
۵ ۵	
т 5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
31 20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
04 55	
3 3	
56	
57	
58	
59	
60	

155	Figure 3 shows the effect of the mal-rotation of the femoral and the tibial components in
156	terms of the varus-valgus, internal-external and anterior-posterior tilting cases on the
157	predicted total TF contact force. The peak total TF contact force at the maximum load bearing
158	was increased by 11.0% at a 5° varus alignment of the tibial insert and increased by 17.9% at
159	a 5° varus alignment of the femoral component. The anterior/posterior tilting mal-rotation of
160	the tibial insert influenced only the total TF contact force during the swing phase of a gait
161	cycle (Fig. 3). The total TF contact force at the peak knee flexion was increased by 14.7% at
162	a 5° anterior tilting of the tibial insert and decreased by 12.6% at a 5° posterior tilting. A
163	similar force change in the first half of the stance phase was 7.9% at a 5° anterior tilting of the
164	tibial insert. However, the total TF contact forces were not sensitive to the variations in the
165	internal/external mal-rotation of the femoral or tibial component and anterior/posterior tilting
1.6.6	
166	of the femoral component (Fig. 3).
166	Effects of the Component Mal-rotation on the Medial Contact Force
166 167 168	of the femoral component (Fig. 3). Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the
166 167 168 169	of the femoral component (Fig. 3). Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the predicted medial contact force. The medial contact force was sensitive to variations in the
166 167 168 169 170	of the femoral component (Fig. 3). Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the predicted medial contact force. The medial contact force was sensitive to variations in the varus/valgus mal-rotation from the femoral or tibial components and the internal/external
166 167 168 169 170 171	of the femoral component (Fig. 3). Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the predicted medial contact force. The medial contact force was sensitive to variations in the varus/valgus mal-rotation from the femoral or tibial components and the internal/external mal-rotation from the femoral component. The peak medial contact force was increased by
 166 167 168 169 170 171 172 	of the femoral component (Fig. 3). Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the predicted medial contact force. The medial contact force was sensitive to variations in the varus/valgus mal-rotation from the femoral or tibial components and the internal/external mal-rotation from the femoral component. The peak medial contact force was increased by 36.2% at a 5° varus alignment of the tibial insert and increased by 37.9% at a 5° varus
 166 167 168 169 170 171 172 173 	of the femoral component (Fig. 3). Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the predicted medial contact force. The medial contact force was sensitive to variations in the varus/valgus mal-rotation from the femoral or tibial components and the internal/external mal-rotation from the femoral component. The peak medial contact force was increased by 36.2% at a 5° varus alignment of the tibial insert and increased by 37.9% at a 5° varus alignment of the femoral component. The peak medial contact force was increased by 17.8%
 166 167 168 169 170 171 172 173 174 	of the femoral component (Fig. 3). Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the predicted medial contact force. The medial contact force was sensitive to variations in the varus/valgus mal-rotation from the femoral or tibial components and the internal/external mal-rotation from the femoral component. The peak medial contact force was increased by 36.2% at a 5° varus alignment of the tibial insert and increased by 37.9% at a 5° varus alignment of the femoral component. The peak medial contact force was increased by 17.8% at a 5° internal rotation of the femoral component and decreased by 21.3% at a 5° external
 166 167 168 169 170 171 172 173 174 175 	Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the predicted medial contact force. The medial contact force was sensitive to variations in the varus/valgus mal-rotation from the femoral or tibial components and the internal/external mal-rotation from the femoral component. The peak medial contact force was increased by 36.2% at a 5° varus alignment of the tibial insert and increased by 37.9% at a 5° varus alignment of the femoral component. The peak medial contact force was increased by 17.8% at a 5° internal rotation of the femoral component and decreased by 21.3% at a 5° external rotation. The medial contact force at the peak knee flexion was increased by 12.5% at a 5°
 166 167 168 169 170 171 172 173 174 175 176 	Effects of the Component Mal-rotation on the Medial Contact Force Figure 4 shows the effect of the mal-rotation of the femoral and the tibial components on the predicted medial contact force. The medial contact force was sensitive to variations in the varus/valgus mal-rotation from the femoral or tibial components and the internal/external mal-rotation from the femoral component. The peak medial contact force was increased by 36.2% at a 5° varus alignment of the tibial insert and increased by 37.9% at a 5° varus alignment of the femoral component. The peak medial contact force was increased by 17.8% at a 5° internal rotation of the femoral component and decreased by 21.3% at a 5° external rotation. The medial contact force at the peak knee flexion was increased by 12.5% at a 5° anterior tilting of the tibial insert and decreased by 12.0% at a 5° posterior tilting.

2	
3	
4	
5	
6	
7	
8	
0	
3	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34	
30	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
52	
50	
59	
h()	

177	Effects of the Component Mal-rotation on the Lateral Contact Force
178	Figure 5 shows the effect of the femoral and the tibial component mal-rotations on the
179	predicted lateral contact force. The lateral contact force at the maximum load bearing was
180	decreased by 68.0% at a 5° varus alignment of the tibial insert and decreased by 40.8% at a 5°
181	varus alignment of the femoral component. In particular, a 5° varus alignment mal-rotation
182	resulted in zero loading on the lateral condyle at 30%, 60% and 90% of the gait cycle. The
183	lateral contact force at the maximum load bearing was decreased by 35.0% at a 5° internal
184	rotation of the femoral component and increased by 38.8% at a 5° external rotation. The
185	lateral contact force at the peak knee flexion was increased by 17.5% at a 5° anterior tilting of
186	the tibial insert and decreased by 13.4% at a 5° posterior tilting.
187	Effects of the Components Mal-rotation on the Patellar Contact Force
187 188	Effects of the Components Mal-rotation on the Patellar Contact Force Figure 6 shows the effect of the femoral and the tibial component mal-rotations on the
187 188 189	Effects of the Components Mal-rotation on the Patellar Contact Force Figure 6 shows the effect of the femoral and the tibial component mal-rotations on the predicted patellar contact force. The maximum change of the patellar contact force at the
187 188 189 190	 Effects of the Components Mal-rotation on the Patellar Contact Force Figure 6 shows the effect of the femoral and the tibial component mal-rotations on the predicted patellar contact force. The maximum change of the patellar contact force at the maximum load bearing was increased by 21.9% at a 5° varus alignment of the tibial insert and
187 188 189 190 191	Effects of the Components Mal-rotation on the Patellar Contact Force Figure 6 shows the effect of the femoral and the tibial component mal-rotations on the predicted patellar contact force. The maximum change of the patellar contact force at the maximum load bearing was increased by 21.9% at a 5° varus alignment of the tibial insert and increased by 18.5% at a 5° varus alignment of the femoral component. The maximum change
187 188 189 190 191 192	Effects of the Components Mal-rotation on the Patellar Contact Force Figure 6 shows the effect of the femoral and the tibial component mal-rotations on the predicted patellar contact force. The maximum change of the patellar contact force at the maximum load bearing was increased by 21.9% at a 5° varus alignment of the tibial insert and increased by 18.5% at a 5° varus alignment of the femoral component. The maximum change of the patellar contact force at the peak knee flexion was decreased by 11.7% at a 5° internal
187 188 189 190 191 192 193	Effects of the Components Mal-rotation on the Patellar Contact Force Figure 6 shows the effect of the femoral and the tibial component mal-rotations on the predicted patellar contact force. The maximum change of the patellar contact force at the maximum load bearing was increased by 21.9% at a 5° varus alignment of the tibial insert and increased by 18.5% at a 5° varus alignment of the femoral component. The maximum change of the patellar contact force at the peak knee flexion was decreased by 11.7% at a 5° internal of the femoral component and increased by 31.4% at a 5° external of the femoral component.
187 188 189 190 191 192 193 194	 Effects of the Components Mal-rotation on the Patellar Contact Force Figure 6 shows the effect of the femoral and the tibial component mal-rotations on the predicted patellar contact force. The maximum change of the patellar contact force at the maximum load bearing was increased by 21.9% at a 5° varus alignment of the tibial insert and increased by 18.5% at a 5° varus alignment of the femoral component. The maximum change of the patellar contact force at the peak knee flexion was decreased by 11.7% at a 5° internal of the femoral component and increased by 31.4% at a 5° external of the femoral component.
187 188 189 190 191 192 193 194 195	Effects of the Components Mal-rotation on the Patellar Contact Force Figure 6 shows the effect of the femoral and the tibial component mal-rotations on the predicted patellar contact force. The maximum change of the patellar contact force at the maximum load bearing was increased by 21.9% at a 5° varus alignment of the tibial insert and increased by 18.5% at a 5° varus alignment of the femoral component. The maximum change of the patellar contact force at the peak knee flexion was decreased by 11.7% at a 5° internal of the femoral component and increased by 31.4% at a 5° external of the femoral component. The patellar contact forces were not sensitive to the variations in the anterior tilting/posterior tilting mal-rotation from the components in TKA (Fig. 6).

197 maximum load bearing and the peak knee flexion as described in the Supplementary

198 Materials.

Page 11 of 27

1

Journal of Orthopaedic Research

2
3
Δ
- -
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
 22
22
23
24
25
26
20
27
28
29
20
30
31
32
33
31
04 05
35
36
37
38
20
39
40
41
42
12
43
44
45
46
17
47
48
49
50
51
51
52
53
54
55
55
56
57
58
50
00
nU

199	Effect of Varus-Valgus Mal-rotation of the Femoral Component on Muscle Forces
200	Figure 7 shows the typical changes of the main muscle forces as a result of the varus-valgus
201	mal-rotation of the femoral component. In particular, the peak muscle forces of vastus
202	medialis, vastus lateralis, medial gastrocnemius and peroneus longus were increased by 11%,
203	12%, 19% and 158%, respectively, at a 5° varus alignment of the femoral component. The
204	peak muscle forces of lateral gastrocnemius, tibialis anterior and soleus were increased by
205	65%, 108% and 98%, respectively, and the peak muscle forces of medial gastrocnemius and
206	peroneus longus were decreased to zero at a 5° valgus alignment of the femoral component.
207	However, the muscle forces of biceps femoris long head, tensor fasciae latae, adductor
208	magnus, gluteus maximus, and sartorius were insensitive to the varus-valgus mal-rotation of
209	the femoral component in the TKA.
210	DISCUSSION
211	Mal-rotations of the components in TKA have been attributed to several clinical
212	complications. However, the dynamic effects of such variability on joint loading during
213	walking have not been reported in previous studies. This study quantified the effects of the
214	mal-rotation of the components in TKA on the knee contact forces during a walking gait
215	using a lower-extremity MSK MBD model.
216	Our findings are consistent with the results of a previous study ³ , which indicated that a 3°
217	or 5° varus-valgus rotation of the tibial insert greatly changed the TF medial-lateral loading
218	distribution. A steep increase (> 36.2%) of load at a 5° varus of the tibial insert at the medial
219	plateau would support the previous clinical observation ⁹ that a greater than 3° varus
220	alignment of tibial insert was associated with medial bone collapse. Our results also

221	demonstrated that the effects from a 5° varus mal-rotation of the femoral component were
222	slightly greater than those from the tibial insert, especially on the total TF contact force.
223	Furthermore, the zero loading on the lateral contact force could be associated with the liftoff
224	of the lateral condyle caused by the varus mal-rotation of the tibial or femoral component.
225	Direct comparison of the predicted load distribution change as a result of the mal-alignment
226	of the components in TKR was not possible with the previous studies. Nevertheless, a
227	previous study by Werner et al ³ at a static loading instant when the knee was fully extended
228	indicated a 96% loading shift to the medial compartment at a 5° varus mal-rotation of the
229	tibial insert. This finding was close to the complete shift of the total loading to the medial
230	side of the knee joint at the same instant during a walking cycle predicted from the present
231	dynamics model. Moreover, a previous study ¹³ found that a 3° internal mal-rotation of the
232	femoral component resulted in a maximum change of the total patellar force of approximately
233	10% during knee flexion. ^{12, 13} In contrast, the predicted maximum effect on the patellar
234	contact force from the present study was 9% due to a 3° internal mal-rotation of the femoral
235	component during the swing phase. Furthermore, the prediction of a greater change in knee
236	contact forces may support the tendency to bias the femoral component into external
237	rotation ²³ , thereby producing reduced TF contact loading and a lower patellar contact force.
238	Although the effect of the tibial internal-external mal-rotation was apparent on only the
239	medial and lateral contact forces during the swing phase (Fig. 4-5), it is still important to
240	avoid excessive mal-rotation of the tibial component to reduce the corresponding effect on
241	the antero-posterior translations ²³ . The relative motion of the femoral component with respect
242	to the tibial insert is equally important as far as wear is concerned; this aspect should be

2	
3	
1	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
40	
41	
42	
43	
44	
15	
+J	
46	
47	
48	
19	
-13	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
50	
29	
60	

243 investigated in future studies.

244	Femoral or tibial rotational alignments mainly influenced the muscle/ligaments moment
245	arms as well as the contact position on the tibial insert. This influence, in turn, directly
246	contributed to the change of the muscle force, MCL and LCL forces and the load distribution,
247	eventually leading to the changes in the predicted knee contact forces. Our prediction fully
248	illustrated the change of the muscle force resulting from the varus-valgus mal-rotation of the
249	femoral component. In particular, the changes of vastus medialis, vastus lateralis, medial
250	gastrocnemius, peroneus longus, lateral gastrocnemius, tibialis anterior and soleus
251	eventually altered the TF medial-lateral loading distribution. In addition, the external rotation
252	of the femoral component induced a higher LCL force, whereas the internal rotation tightened
253	the quadriceps and the MCL^{21} . The tightened quadriceps and MCL might help indicate the
254	reported unsatisfactory pain in clinical observations ⁸ . Such an imbalanced soft tissue loading
255	resulted in changes in the predicted knee contact forces, especially as the knee moved from
256	flexion into extension. Moreover, the component mal-rotation also led to the variations in the
257	contact position on the tibial insert, which further influenced the predicted knee joint forces
258	and kinematics. This influence can be illustrated with the effect of the anterior-posterior
259	tilting; similar changes occurred in the mid-stance phase and in the swing phase for the
260	medial contact force and the total TF contact force. Such changes resulted from the
261	anterior-posterior contact position variations as a result of the component tilt. Nevertheless,
262	the percentage changes during the swing phase appeared to be larger due to the smaller
263	magnitude of the total contact load.
264	In a previous publication ¹⁵ comparing the predicted and measured force data, the errors

2
3
4
5
6
7
0
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
22
23
24
25
26
27
28
29
20
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
40
40
4/
48
49
50
51
52
53
50
54
55
56
57
58
59
60
50

265	of 320 N and 181 N were found for the predicted maximum medial and lateral contact forces,
266	respectively. By contrast, the maximum changes of the medial and lateral contact forces from
267	a 5° varus of the tibial insert were 733 N and 441 N, respectively, and from a 5° valgus of the
268	tibial insert were 1076 N and 574 N, respectively. These values provided further confidence
269	in determining the effect of the variability in component alignment on the predicted joint
270	loading. However, the changes resulted from the tibial internal/external mal-rotation and the
271	femoral or tibial anterior-posterior tilting were smaller than the uncertainties; as a result,
272	these results should be interpreted with caution.
273	There are some potential limitations to this study, in addition to the uncertainties in the
274	predicted load from the present MSK MBD model. First, the quadriceps and collateral
275	ligaments may be released during operation for the purpose of the installation and stability in
276	TKA, which may influence muscle and ligament function and property. However, the muscle
277	and ligament model of the present MSK model was not adjusted for different mal-rotation
278	conditions. The effects of the uncertainties of muscle and ligament on joint loading
279	predictions were not considered, which could markedly affect the predicted joint loading.
280	Second, according to many previous studies ²⁴⁻²⁶ , joint kinematics and kinetics did not exhibit
281	significant alterations between the pre- and post-operative evaluations, and patients may still
282	retain the pre-surgery gait pattern. Furthermore, all previous musculoskeletal models ^{12-14, 23} ,
283	FEA models ^{2, 27} and experimental studies ³ on the effect of component mal-alignments in TKA
284	on biomechanics have assumed the same input conditions at the neutral position. Therefore,
285	in the present study, small changes in the component alignments were assumed to not affect
286	the motion patterns at the hip or the foot, and the same gait trail was assumed to be used

Page 15 of 27

1

Journal of Orthopaedic Research

2	
3	
1	
4	
5	
6	
7	
0	
8	
9	
10	
4.4	
11	
12	
13	
4.4	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
23	
24	
24	
25	
26	
27	
21	
28	
29	
20	
30	
31	
32	
202	
33	
34	
35	
26	
30	
37	
38	
20	
39	
40	
41	
12	
42	
43	
44	
45	
40	
46	
47	
48	
40	
49	
50	
51	
50	
ວ∠	
53	
54	
5.	
22	
56	
57	
52	
50	
59	

308

287	throughout all simulated mal-aligned cases. However, we did find marked changes in the
288	knee joint kinematics, particularly in the anterior-posterior translation, and internal-external
289	rotation, which will be addressed in more detail in a future study. Third, the use of
290	mechanical, anatomical and kinematic alignment for TKA is under debate ²⁸ . Our prediction
291	was limited to the surgical error in the mechanical alignment. The effects of the surgical error
292	in anatomical and kinematic alignments on knee joint loading predictions should be
293	investigated in future work. Furthermore, the mal-alignment may influence the implant
294	failure when combined with other variables, such as the patient's anatomical factors, gait
295	pattern and implant design. Our findings were limited to a single patient with a given implant
296	design. The sensitivity to the patient characteristics and the implant design should be
297	investigated in future work. Despite these limitations, this study demonstrated the advantages
298	of using a computational MSK MBD model to study the effects of variability in component
299	alignment on the predicted knee joint loading.
300	Surgeons should cautiously avoid the mal-rotation of the components by more than 3°
301	variations; the varus-valgus of the tibial or femoral component and the internal-external
302	mal-rotation of the femoral component with as small as a 3° variation in angulation changed
303	the medial-lateral force distribution and total TF contact force markedly. Such investigations
304	may be a key step toward understanding the relationship between surgical parameters and
305	knee joint mechanics, thus providing quantitative guidance for the orthopedic surgeons to
306	improve patient satisfaction.
307	ACKNOWLEDGMENTS

This work was supported by the Program of the National Natural Science Foundation of

2	
3	
4	
5	
6	
7	
8	
0	
3	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
27 25	
20	
26	
27	
28	
29	
30	
31	
22	
3Z 00	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
40 17	
+/ 40	
40 40	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

309	China [51205303	, 51323007], the	National Science &	& Technology	Pillar Program
-----	-----------------	------------------	--------------------	--------------	----------------

- 310 [2012BAI18B00], the Fundamental Research Funds for the Central Universities, and the
- 311 Research Fund for the Doctoral Program of Higher Education of China (RFDP). The authors
- 312 also thank Shanghai Gaitech Scientific Instruments Co. Ltd for providing the Anybody
- 313 software used in this study.

314 **REFERENCES**

- 1. Dalury DF, Pomeroy DL, Gorab RS, Adams MJ. 2013. Why are Total Knee Arthroplasties
- 316 Being Revised? The Journal of arthroplasty 28: 120-121
- 2. Liau JJ., Cheng CK, Huang CH, Lo WH. 2002. The effect of malalignment on stresses in
 polyethylene component of total knee prostheses a finite element analysis. Clinical
- 319 Biomechanics 17: 140-146
- 320 3. Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ. 2005. The effect of valgus/varus 321 malalignment on load distribution in total knee replacements. Journal of biomechanics 38:

322 349-355

- 4. Longstaff LM, Sloan K, Stamp N, et al. 2009. Good alignment after total knee arthroplasty
- 324 leads to faster rehabilitation and better function. The Journal of arthroplasty 24: 570-578
- 325 5. Zihlmann MS, Stacoff A, Romero J, et al. 2005. Biomechanical background and clinical
- 326 observations of rotational malalignment in TKA:: Literature review and consequences.
- 327 Clinical Biomechanics 20: 661-668
- 328 6. Ng VY, DeClaire JH, Berend KR, Lombardi Jr AV. 2012. Improved accuracy of alignment
- 329 with patient-specific positioning guides compared with manual instrumentation in TKA.
- 330 Clinical Orthopaedics and Related Research® 470: 99-107

Journal of Orthopaedic Research

-	
2	
3	
4	
4	
5	
ĉ	
6	
7	
0	
0	
9	
10	
10	
11	
12	
40	
13	
14	
15	
10	
16	
17	
40	
IQ	
19	
20	
20	
21	
22	
~~	
23	
24	
<u></u>	
25	
26	
27	
21	
28	
20	
23	
30	
31	
20	
32	
33	
24	
34	
35	
36	
50	
37	
38	
20	
39	
40	
11	
41	
42	
43	
4.4	
44	
45	
16	
46	
47	
18	
40	
49	
50	
50	
51	
52	
50	
ეკ	
54	
55	
00	
56	
57	
57	
58	
59	
~~	
60	

7. Bhattee G, Moonot P, Govindaswamy R, et al. 2014. Does malrotation of components
correlate with patient dissatisfaction following secondary patellar resurfacing? The Knee 21:
247-251

8. Bell SW., Young P, Drury C, et al. 2014. Component rotational alignment in unexplained

335 painful primary total knee arthroplasty. The Knee 21: 272-277

336 9. Berend ME, Ritter M A, Meding JB, et al. 2004. The Chetranjan Ranawat Award: Tibial

337 Component Failure Mechanisms in Total Knee Arthroplasty. Clinical orthopaedics and related

338 research 428: 26-34

- 339 10. Srivastava A, Lee G. Y, Steklov N, et al. 2012. Effect of tibial component varus on wear in
- total knee arthroplasty. The Knee 19: 560-563
- 341 11. Chotanaphuti T, Khuangsirikul S, Foojareonyos T. 2014. The accuracy of component
 342 alignment in custom cutting blocks compared with conventional total knee arthroplasty
- 343 instrumentation: Prospective control trial. The Knee 21: 185-188
- 344 12. Colwell Jr CW, Chen PC, D'Lima D. 2011. Extensor malalignment arising from femoral
 345 component malrotation in knee arthroplasty: Effect of rotating-bearing. Clinical
 346 Biomechanics 26: 52-57
 - 347 13. Kessler O, Patil S, Colwell Jr CW, D'Lima DD. 2008. The effect of femoral component
- 348 malrotation on patellar biomechanics. Journal of biomechanics 41: 3332-3339
- 349 14. Innocenti B, Pianigiani S, Labey L, et al. 2011. Contact forces in several TKA designs
- during squatting: A numerical sensitivity analysis. Journal of Biomechanics 44: 1573-1581
- 351 15. Chen Z, Zhang X, Ardestani MM, et al. 2014. Prediction of in vivo joint mechanics of an
- 352 artificial knee implant using rigid multi-body dynamics with elastic contacts. Proc Inst Mech

- 16. Fregly BJ, Besier TF, Lloyd DG, et al. 2012. Grand challenge competition to predict in
 vivo knee loads. Journal of Orthopaedic Research 30: 503-513
- 356 17. Horsman K, Koopman H, Van der Helm F, et al. 2007. Morphological muscle and joint
- parameters for musculoskeletal modelling of the lower extremity. Clinical Biomechanics 22:
 239-247
- 18. Blankevoort L, Kuiper J, Huiskes R, Grootenboer H. 1991. Articular contact in a
 three-dimensional model of the knee. Journal of biomechanics 24: 1019-1031
- 361 19. Andersen MS, Rasmussen J. 2011. Total knee replacement musculoskeletal model using
 362 a novel simulation method for non-conforming joints. International Society of Biomechanics
- 363 Conference. Brussels
- 364 20. AnyBody. "Anyscript Reference Manual/AnyForceSurfaceContact". Anybody
 365 Technology, Aalborg, Denmark
- 366 21. Fregly BJ, Bei YH, Sylvester ME. 2003. Experimental evaluation of an elastic foundation
 367 model to predict contact pressures in knee replacements. Journal of Biomechanics 36:
 368 1659-1668
- 22. Rasmussen J, Damsgaard M, Voigt M. 2001. Muscle recruitment by the min/max
 criterion—a comparative numerical study. Journal of Biomechanics 34: 409-415
- 371 23. Thompson JA, Hast MW, Granger JF, et al. 2011. Biomechanical effects of total knee
 372 arthroplasty component malrotation: a computational simulation. Journal of Orthopaedic
 373 Research 29: 969-975
- 374 24. Levinger P, Menz HB, Morrow AD, et al. 2013. Lower Limb Biomechanics in Individuals

375	With Knee Osteoarthritis Before and After Total Knee Arthroplasty Surgery. The Journal of
376	Arthroplasty 28: 994-999
377	25. Bulgheroni P, Bulgheroni M, Ronga M, Manelli A. 2007. Gait analysis of pre-and
378	post-meniscectomy knee: a prospective study. The Knee 14: 472-477
379	26. Smith AJ, Lloyd D, Wood D. 2004. Pre surgery knee joint loading patterns during
380	walking predict the presence and severity of anterior knee pain after total knee arthroplasty.
381	Journal of Orthopaedic Research 22: 260-266
382	27. Fitzpatrick CK., Clary CW, Rullkoetter PJ. 2012. The role of patient, surgical, and
383	implant design variation in total knee replacement performance. Journal of Biomechanics 45:
384	2092-102
385	28. Cherian JJ, Kapadia BH, Banerjee S, et al. 2014. Mechanical, Anatomical, and Kinematic
386	Axis in TKA: Concepts and Practical Applications. Current reviews in musculoskeletal
387	medicine 7: 89-95
388	FIGURE LEGENDS
389	Figure 1 Diagrams of the varying configurations of mal-rotation showing the varus-valgus
390	rotation, internal-external rotation and anterior-posterior tilting of the femoral and tibial
391	component in left TKA.
392	Figure 2 Knee contact force under neutral position as a function of gait cycle (unit: contact

- 393 force in Newtons/Body Weight).
- 394 Figure 3 Effects of the mal-rotation of the components in TKA on the total TF contact force
- 395 for varus/valgus rotation, internal/external rotation and anterior/posterior titling.
- 396 Figure 4 Effects of the mal-rotation of the components in TKA on the meidal contact force

- for varus/valgus rotation, internal/external rotation and anterior/posterior titling.
- Figure 5 Effects of the mal-rotation of the components in TKA on the lateral contact force for
- varus/valgus rotation, internal/external rotation and anterior/posterior titling.
- Figure 6 Effects of the mal-rotation of the components in TKA on the patellar contact force
- for varus/valgus rotation, internal/external rotation and anterior/posterior titling.
- Figure 7 Effects of the varus/valgus mal-rotation of the femoral component on the muscle

forces.

<text><text>

Figure 1 Diagrams of the varying configurations of mal-rotation showing the varus-valgus rotation, internalexternal rotation and anterior-posterior tilting of the femoral and tibial component in left TKA. 82x59mm (300 x 300 DPI)

Figure 2 Knee contact force under neutral position as a function of gait cycle (unit: contact force in Newtons/Body Weight). 82x57mm (300 x 300 DPI)

Neutral

Varus 3

Varus 5°

Valgus 3°

Valgus 5

- Internal 3° - Internal 5° - External 3°

External 5°

rotation, internal/external rotation and anterior/posterior titling. 168x118mm (300 x 300 DPI)

Figure 4 Effects of the mal-rotation of the components in TKA on the meidal contact force for varus/valgus rotation, internal/external rotation and anterior/posterior titling. 168x118mm (300 x 300 DPI)

John Wiley & Sons, Inc.

Figure 5 Effects of the mal-rotation of the components in TKA on the lateral contact force for varus/valgus rotation, internal/external rotation and anterior/posterior titling. 168x118mm (300 x 300 DPI)

leutra

Varus 3° Varus 5°

Valgus 3

Valgus 5

- Neutral Internal 3° Internal 5° External 3°

External 5°

Posterior tilting

osterior tilting

Figure 7 Effects of the varus/valgus mal-rotation of the femoral component on the muscle forces. 168x209mm (300 x 300 DPI)