
This is a repository copy of Contribution of geometric design parameters to knee implant 
performance: Conflicting impact of conformity on kinematics and contact mechanics.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/92780/

Version: Accepted Version

Article:

Ardestani, MM, Moazen, M and Jin, Z (2015) Contribution of geometric design parameters 
to knee implant performance: Conflicting impact of conformity on kinematics and contact 
mechanics. Knee, 22 (3). pp. 217-224. ISSN 0968-0160 

https://doi.org/10.1016/j.knee.2015.02.011

Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

 

Original article 

 

Contribution of geometric design parameters to knee implant performance: 

conflicting impact of conformity on kinematics and contact mechanics 

 

Marzieh M. Ardestani1,*, Mehran Moazen2, Yang Wenjian1, and Zhongmin Jin 1, 3 

1State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China 

2Medical and Biological Engineering, School of Engineering, University of Hull, Hull, UK 

3Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK 

 

 (M.M.Ardestani) Tel.: +0-86-029-83395122;  

                                     E-mail: mostafavizadeh@yahoo.com 

 

 

 

 

 

 

 

 

 

 

 

 

*Manuscript (including title page)
Click here to view linked References

mailto:mostafavizadeh@yahoo.com
http://ees.elsevier.com/thekne/viewRCResults.aspx?pdf=1&docID=5692&rev=0&fileID=202629&msid={15209DF8-4DD6-42EA-BECD-84A6641EBB45}


2 

 

 

Abstract: 

  Background: Outcomes of total knee arthroplasty are closely related to articular geometry of implanted 

prostheses. Geometry has a competing effect on kinematics and contact mechanics of prosthetic knee such that 

an implant geometry that generates lower contact pressure will impose more constraints on knee kinematics. 

The geometric parameters that may cause this competing effect have not been well understood. This study 

aimed to quantify the underlying causal relationships between implant geometric variables and its 

performance metrics. 

 Methods: Parametric dimensions of a fixed-bearing cruciate retaining implant were randomized to 

produce a number of perturbed implant geometries. Performance metrics (i.e. maximum contact pressure and 

kinematic range of motion) of each randomized implant were calculated using finite element method and 

artificial neural network technique. The relative contributions of individual geometric variables to the 

performance metrics were then determined through principal component analysis (PCA). 

 Results: Results showed that femoral and tibial distal radii, femoral and tibial posterior radii and femoral 

frontal radius are the most important key parameters which might cause the conflicting impact of geometry on 

its kinematics and contact mechanics. In the sagittal plane, distal radii of femur and tibia affected both contact 

pressure and anterior-posterior displacement of the prosthetic components. Also, posterior radii of femur and 

tibia influenced both contact pressure and internal-external rotation of the prosthetic knee. In the frontal plane, 

femoral frontal radius influenced both contact pressure and internal-external rotation of the prosthetic 

components. 

Conclusion: Such investigations can be used to potentially enhance the future knee implant designs. 

 

Keywords˖Total knee arthroplasty, Kinematics, Contact mechanics, Finite element simulation, Artificial neural network 
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1. Introduction 1 

 Knee implant geometry directly affects the outcome of total knee arthroplasty [1-9]. It affects both 2 

contact mechanics [4, 10-13] and kinematics of the articulating components [14-19] . In fact, implant 3 

geometry has a competing effect on the resultant kinematics and contact mechanics [20, 21]. For instance, a 4 

high conformity design which decreases the contact pressure at the articulating surfaces may restrict the 5 

relative displacement of the prosthetic components that adversely affects the kinematics [10]. 6 

 Previous computational attempts have investigated the impact of implant geometry on its kinematics [22] 7 

and contact mechanics [10, 23-25]. However, to best of our knowledge, no previous study has quantified the 8 

underlying causal relationships between implant geometry and its performance metrics (kinematics and 9 

contact mechanics). A key rationale behind lack of such studies is perhaps high computational cost of iterative 10 

finite element (FE) simulations that are required. Moreover, discriminating between the contributions of 11 

individual geometric variables is challenging as geometric variables are highly coupled to each other and all 12 

geometric variables “jointly” contribute to dictate the overall performance of a knee implant [20].  13 

 Artificial neural network (ANN) and principal component analysis (PCA) are two powerful methods that 14 

can reduce the computational cost of iterative FE models. Artificial neural network (ANN) is an efficient 15 

surrogate model with the ability to “learn” a nonlinear relationship [26]. Once a set of inputs and 16 

corresponding outputs are presented to the network, the network learns the causal interactions between inputs 17 

and outputs. Given a new set of inputs, the trained neural network (surrogate model) can generalize the 18 

relationship and calculate the associated outputs. The ANN surrogate therefore can release the necessity of 19 

repeating computationally expensive FE models. For example, ANN has been used in conjunction with FE 20 

analysis to predict contact mechanics [27, 28], wear and tribological behavior [29], joint load distribution [30, 21 

31] and bone tissue adaption [32-34]. On the other hand, PCA can model complicated interactions between 22 

input variables and output metrics in terms of relative contribution [35]. PCA transfers a complicated data 23 

space of inputs and corresponding outputs to a secondary orthogonal data space in which important modes of 24 

variations can be extracted and analyzed.  25 

 The present study aimed to quantify the causal relationship between knee implant geometry and its 26 

resultant performance metrics using a combined ANN, PCA and FE analysis. The implant performance was 27 
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outlined in terms of maximum contact pressure and kinematic range of motions (i.e. anterior-posterior range 28 

of displacement and internal-external range of rotation). Using FE and ANN, the aforementioned performance 29 

metrics were calculated for a number of probabilistic geometries. The relative contributions of individual 30 

geometric variables to the overall implant function were then evaluated through PCA. Such investigations 31 

enlighten the competing effect of implant geometry on its performance metrics and can potentially lead 32 

towards optimized implant designs.  33 

2. Materials and methods  34 

 Femoral and tibial insert geometry of a knee replacement implant were parameterized and randomized to 35 

generate a wide range of implant geometries (section 2.1). A number of these randomized geometries were 36 

analyzed using FE method to calculate the (1) maximum contact pressure, (2) anterior-posterior range of 37 

displacement and (3) internal-external range of rotation (section 2.2). A feed forward artificial neural network 38 

(FFANN) was then trained to learn the nonlinear relationship between geometric variables as inputs and the 39 

corresponding performance metrics as outputs. The trained network then predicted the performance metrics, 40 

corresponding to the remaining randomized implant geometries (section 2.3). The contributions of individual 41 

geometric parameters to the overall implant performance were quantified using PCA (section 2.4).  42 

2.1. Parametric tibiofemoral models  43 

 A computer aided design (CAD) model of a fixed-bearing cruciate retaining knee implant was created in 44 

CATIA software (V.5, Dassault Systemes, MA, USA). Femoral and tibial dimensions of the model were 45 

parameterized through a total number of sixteen geometric variables associated with the medial and lateral 46 

femoral and tibial components (Table 1 and Figure 1). The allowable upper and lower boundaries of each 47 

design variable were obtained from literature [21]. Each design variable was then randomized from a uniform 48 

distribution based on Latin hyper cube sampling (LHS) technique. In LHS technique, the sampling space of 49 

each variable was divided into equal-probability intervals and one sample was chosen from each interval to 50 

ensure an equal coverage of the whole sampling space [36]. 51 

2.2. Finite element simulation   52 

 A total number of 256 "critical" candidates, built from the minimum and maximum values of the 53 



5 

 

geometric variables, were imported into the commercial finite element package (ABAQUS/Explicit, V6.12 54 

Simulia Inc., RI, USA). Each tibiofemoral knee implant consisted of two main parts; femoral component and 55 

tibia insert. Rigid body assumptions were applied to both femoral and tibial insert components, with a simple 56 

linear elastic foundation model defined between the two contacting bodies [37]. Tetrahedral (C3D10M) 57 

elements were used to mesh the tibiofemoral knee implants in ABAQUS.  Convergence was tested by 58 

decreasing the edge length  of  elements  from  8 mm  to  0.5 mm  in  five steps (8, 4, 2, 1,and 0.5 59 

mm). The solution converged on the parameter of the interest (İ 5% - contact pressure) with over 86000 60 

elements depending on the dimensions of the candidate femoral and tibial components. Penalty based contact 61 

condition was specified at the tibia insert and femoral component interface with a friction coefficient of 0.04 62 

[37].  63 

 Kinematics and contact mechanics were calculated based on a computational model of Stanmore knee 64 

simulator [38-41]. Stanmore simulator is a well-established load-controlled knee simulator in which in vivo 65 

environment of knee joint is replicated through applying forces and moments to femoral and tibial 66 

components [42, 43]. Soft tissue constraints were modeled with mechanical spring-based assembly consisted 67 

of four linear springs [38, 41]  (Figure 2). The loading and boundary conditions were obtained from a 68 

load-controlled protocol, consistent with ISO Standard 14243-2 [44]: (1) tibia insert was free in medial-lateral 69 

direction while it was constrained in superior-inferior, flexion-extension and valgus-varus directions. 70 

Anterior-posterior (AP) force and internal-external (IE) torque were applied to the tibia insert; (2) femoral 71 

component was free in valgus-varus direction while it was constrained in anterior-posterior, medial-lateral and 72 

internal-external directions. Flexion angle and axial load were applied to the femoral component. The required 73 

boundary condition (flexion angle) and load profiles (axial force, AP force, and IE torque) were obtained from 74 

a normal gait cycle similar to our previous study [28, 45] (Figure 3a). The contact pressure and kinematics 75 

were calculated over the whole flexion cycle. In this study, only maximum contact pressure and kinematic 76 

range of motion (ROM) including anterior-posterior range of displacement (A-P ROM) and internal-external 77 

range of rotation (I-E ROM) were reported (Figure 3b) . 78 

2.3. Artificial neural network surrogate 79 

 Feed forward artificial neural network (FFANN) is a well-known approximator [28, 45-47], capable of 80 

learning any nonlinear relationship between inputs and outputs regardless of their complexity [48]. A 81 



6 

 

three-layer FFANN with one input layer, one hidden layer and one output layer was constructed (Figure 4). 82 

This structure had sixteen inputs (geometric variables, see Figure 1) and three outputs (maximum contact 83 

pressure, A-P ROM and I-E ROM, see Figure 3b). Details of this neural network can be found in our previous 84 

studies [28, 45-47] . In brief, hidden neurons were activated by "hyperbolic tangent sigmoid" function and 85 

output nodes were activated with a "pure line" function to produce a weighted sum of hidden neurons in the 86 

output. The aforementioned 256 randomized geometries and their associated performance metrics, computed 87 

through FE models, served as the training data space for the neural network. This data space was randomly 88 

divided into three distinguished subsets: train (70%), validation (15%) and test (15%). Train and validation 89 

subsets were used to train the network and adjust the connection weights through a gradient descent back 90 

propagation algorithm with an adaptive learning rate. Validation subset was used to evaluate the "prediction 91 

accuracy" of the trained network, whilst test subset was mainly used to assess the "generalization ability" of 92 

the trained structure for new sets of inputs. "Prediction accuracy" was defined as the normalized root mean 93 

square error between FFANN predictions and FE computations. "Generalization ability" was defined as the 94 

percentage of the test data space that was accurately predicted by the FFANN. In brief, there was a trade-off 95 

between "prediction accuracy" of the network and its "generalization ability". Both generality and accuracy of 96 

the network were in turn affected by the number of hidden neurons and the error goal, used in the training 97 

procedure. A precise error goal or more number of hidden neurons adjusted the weights precisely and 98 

increased the accuracy of the network. However, too many hidden neurons or a rigorous error goal decreased 99 

the generality of the trained network due to over-fitting and yielded to an increase in the prediction error on 100 

the test subset [49]. A number of different hidden neurons (5 to 30 neurons with an increment of 5 neurons in 101 

each step) and a variety of different error goal values (Err=0.01 Err=0.05 Err=0.1 Err=0.2) were examined to 102 

find the best compromised network. This network was then used to calculate the performance metrics (outputs) 103 

of the remaining perturbed geometries (inputs).  104 

2.4. Principal component analysis 105 

 In general, the overall performance of an implant is dictated through a complex interaction between 106 

geometric variables [10, 20-22, 24, 25]. Traditional sensitivity analysis however, often discards the complex 107 

inter-dependencies between input variables [35]. Instead, PCA was employed to investigate the causal 108 

relationship between geometric variables of the implant and its performance [50]. The probabilistic geometries 109 

and the corresponding performance metrics were arranged in a matrix T: 110 
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[    var  ,   ]T Sixteen geometric design iables performance measurs                                     (1) 111 

 In the above matrix, each row demonstrates one candidate implant and its performance metrics. Matrix T 112 

was transferred into an orthogonal data space of PC values:  113 

    TPC value T E                                                                       (2) 114 

 Where ET is a feature matrix consisted of all eigenvectors of matrix T. PC values were in fact the 115 

secondary "independent" variables for the primary "inter-dependent" variables (geometric variables and 116 

performance metrics). Each PC value consisted of two parts: one part was related to the geometric variables 117 

and the other was related to the performance metrics. The first part represented how the geometric variables 118 

varied together and the second explained how the resultant performance metrics were changed accordingly. 119 

The normalized ratio of PC values corresponding to the "geometric variables" to the PC values associated 120 

with the "performance metrics" were interpreted as relative contribution (RC) indices of geometric variables to 121 

the implant function (0 İ RC İ 1). 122 

3. Results 123 

 The geometric variables were randomly sampled and a total number of 500 probabilistic tibiofemoral 124 

designs were created. For a number of 256 candidate designs, kinematics and contact mechanics were 125 

computed using FE simulation (Figure 5). The simulation time for a complete gait cycle, discretized into 100 126 

increments, was approximately 40 minutes for each FE model on a dual core CPU (2.93GHz, 4GB RAM).  127 

The performance metrics were then outlined through the maximum contact pressure, A-P ROM and I-E ROM. 128 

A three-layer FFANN, with sixteen geometric variables as inputs and three performance metrics as outputs, 129 

was trained based on FE computations. Table 2 summarizes the performance of this network for different 130 

numbers of hidden neurons and a variety of error goal values. It was found that the more precise the error goal 131 

was, the more epochs were needed to train the network. More training epochs in turn yielded to a network 132 

with lower generality. For example, for the error goal of Err=0.01, training epochs ranged from 800 to 1200 133 

and generality varied from 36% to 54%. For an error goal of Err=0.1 however, lower numbers of training 134 

epochs were needed (498 to 660) and the generality ranged from 90% to 100%. Also, with a precise error goal 135 

(Err=0.01 and 0.05), increasing the number of hidden neurons necessitated further number of training epochs. 136 

Although the prediction accuracy was increased, the generality was adversely decreased due to over-fitting. 137 
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On the other hand, with a flexible error goal (Err=0.1 and 0.2), increasing the number of hidden neurons 138 

enhanced both prediction accuracy and generality of the trained network. Table 2 demonstrates that the 139 

proposed FFANN with the error goal of Err=0.1 and fifteen hidden neurons achieved the best compromise 140 

between accuracy and generality. Thus this network was used to estimate the performance metrics of the 141 

remaining geometries. The simulation time of the trained FFANN, to produce an estimation of implant 142 

performance metrics for each set of geometric variables, was approximately 30 sec on the same CPU. 143 

 The relative contribution indices, obtained from PCA, discriminated between contributions of different 144 

individual geometric variables to the performance metrics (Figure 6). Results highlight that contact pressure 145 

was significantly more sensitive to the variations in the tibia frontal radius ( contact pressure
tibia frontalRC = 0.70), tibia distal 146 

radius ( contact pressure
tibia distalRC =0.65) and femoral distal radius ( contact pressure

femoral distalRC =0.57) than to variations in other 147 

geometric variables. A-P ROM was sensitive to the femoral posterior radius ( A-P ROM
femoral posteriorRC =0.64), femoral 148 

distal radius ( A-P ROM
femoral distalRC =0.58), and tibia distal radius ( A-P ROM

tibia distalRC =0.60). I-E ROM was slightly more 149 

sensitive to the femoral posterior radius ( I-E ROM
femoral posteriorRC =0.72), tibia posterior radius ( I-E ROM

tibia posteriorRC =0.58) 150 

and tibia anterior radius ( I-E ROM
tibia anteriorRC =0.58) than to the femoral frontal ( I-E ROM

femoral frontalRC =0.35) or tibia frontal 151 

( I-E ROM
tibia frontalRC =0.10) radii. Results also demonstrate that the distal radii of femur and tibia have a higher 152 

impact on both contact pressure and A-P ROM, than their posterior radii. Posterior radii of femur and tibia in 153 

turn simultaneously affected both contact pressure and I-R ROM.  These geometric variables therefore might 154 

cause the conflicting effect of sagittal conformity on the implant kinematics and contact mechanics. Similarly, 155 

femoral frontal radius contributes to the conflicting effect of the frontal conformity since both I-E rotation and 156 

contact mechanics were related to this geometric variable. 157 

4. Discussion 158 

 4.1. Neural network surrogate model 159 

 Ideally, all of the randomized implant geometries should be evaluated using FE method. However, FE 160 

simulation is computationally expensive which makes it impractical to be used iteratively for hundred 161 

numbers of randomized implant geometries. A neural network (surrogate model) was therefore trained using 162 
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FE computations to learn the causal relationship between geometric variables (inputs) and implant function 163 

(outputs). To build the initial training data base, required to train the FFANN surrogate, a total of 256 FE 164 

simulations were performed. It should be pointed out that similar to any other kind of surrogate models, the 165 

proposed neural network required some initial computational cost to establish the training data base through 166 

running the original FE model. However, once the FFAMM trained, it generalized the underlying causal 167 

relationship to further numbers of randomized geometries and released the necessity of repeating the FE 168 

simulation. It therefore facilitated the simulation of hundreds implant geometries in a fraction of the time 169 

required for running the original FE model (30 seconds compared to 40 minutes for each perturbed geometry). 170 

It should be pointed out that although a trained FFANN can generalize the causal relationship to new implant 171 

geometries, FFANN can only interpolate the training examples. In other words, predictions of FFANN are 172 

accurate and valid for those inputs which lay within the training data base. In the present study, the proposed 173 

FFANN was trained using the FE computations of those candidate implants which were built from the 174 

minimum and maximum values of the geometric variables (critical candidates).  175 

4.2. Validation 176 

 Overall, the general trends of finite element computations were well compared with the previously 177 

published experimental and computational literature for the fixed-bearing cruciate retaining implants [38-41]. 178 

Beside this, computational findings are in a good agreement with previous studies which in turn reassures  179 

the  reliability  of  the  proposed  computational framework: first, frontal conformity, defined by the 180 

femoral frontal, tibia frontal and condylar space, had a higher contribution to the contact pressure than to the 181 

kinematics ( contact pressure
frontal conformityRC = 0.41 vs. kinematics

frontal conformityRC = 0.13) (Sathasivam and Walker, 1999); second, 182 

results highlighted the key impact of the tibia frontal radius on the condylar contact pressure ( contact pressure
tibia frontalRC = 183 

0.73), and the relative contribution of the femoral posterior radius to the kinematic variations ( kinematics
feomral posteriorRC184 

= 0.68) (Fitzpatrick et al., 2012a, Fitzpatrick et al., 2012b).  185 

4.3. Contribution of the present study  186 

 Previous studies have mostly described the condylar shape of the knee implant in terms of conformity. 187 

Although, the competing effect of conformity on the implant kinematics and contact mechanics has been well 188 

understood [10, 20, 21], the geometric variables which may cause this competing relationship have not been 189 
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studied in a systematic manner. The present study developed a computational framework to provide further 190 

insights into this conflicting relationship. Contribution indices demonstrated that femoral and tibial distal radii, 191 

femoral and tibial posterior radii and femoral frontal radius are the most important key parameters which 192 

might cause the conflicting impact of conformity on performance metrics (see Figure 6). In the sagittal plane, 193 

femoral and tibial distal radii affected both contact pressure and AP displacement of the prosthetic components. 194 

Also, femoral and tibial posterior radii concurrently affected contact pressure and IE rotation of the prosthetic 195 

components. In the frontal plane, femoral frontal radius influenced both contact pressure and IE rotation of the 196 

prosthetic components. 197 

 Findings of this study can be used to potentially enhance the future knee implant designs. For instance, 198 

present findings suggested that femoral posterior radius affected the kinematics more than the contact 199 

mechanics ( kinematics
femoral posteriorRC = 0.70 vs. contact pressure

femoral posteriorRC  = 0.30). Accordingly, a reduction in the conformity 200 

achieved via femoral posterior radius may enhance kinematics of the knee implant whilst its adverse effect on 201 

the contact pressure may still be tolerated. Similarly, increasing the frontal conformity via tibia frontal radius 202 

may reduce the contact pressure with the minimum adverse effect on the implant kinematics ( contact pressure
tibia frontalRC  203 

= 0.73 vs. kinematics
tibia frontalRC  = 0.1). 204 

 This perspective may also provide potential benefits for patient-specific designs. For example, an active 205 

golf athlete who demands higher levels of knee rotation may take advantage of a less constraint implant that is 206 

specifically designed over femoral posterior (FP) , tibia posterior (TP) and tibia anterior(TA) radii with more 207 

influence on I-E rotation than contact pressure ( I-E ROM
FP,TP,TARC = 0.63 vs. contact pressure

FP,TP,TARC  = 0.25). On the other 208 

hand an elderly patient with less physical activity who demands more durability may benefit from a more 209 

constraint design that is achieved over tibia frontal radius with minimum adverse effect on kinematics 210 

( contac
tibia 

t pres
fr

su
ontal

reRC = 0.73 vs. tibia frontal
kinematicsRC = 0.1).   211 

4.4. Limitations and future research direction  212 

 There were several limitations in this study: (1) rigid body constraints were applied to both femoral and 213 

tibial components. Halloran et al (2005) showed that rigid body analysis of the tibiofemoral knee implant can 214 

calculate contact pressure in an acceptable consistence with a full deformable model whilst rigid body analysis 215 

would be much more time-efficient. Therefore, in order to produce the training data base, required to train the 216 
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neural network, rigid body constraints were applied; (2) contact mechanics of knee implants were outlined as 217 

contact pressure. However, wear should be considered as a more rigorous tribological metric [4]. Wear is a 218 

function of kinematics and contact mechanics [51] and wear estimation requires more computational effort. 219 

Nevertheless, the proposed methodology should be equally applicable to investigate the causal relationship 220 

between geometric variables and wear; (3) although computational findings were in a good agreement with 221 

the available literature [20, 52, 53], part of the presented findings has not been reported elsewhere and further 222 

clinical investigations are required  to  test  whether  changes in the  proposed dimensions  can 223 

alleviate the competing effect of implant geometry on its performance metrics. Accordingly, various future 224 

directions from this study can be considered: (1): on the methodological level, more tribological metrics (e.g. 225 

wear) can be included into the computational framework; (2) on the validation level, a 3D printer can be used 226 

to print different tibiofemoral components for testing in an in vitro set-up. It is expected that increasing the 227 

conformity via changes in the in the femoral and tibial distal radii leads to higher adverse effects on the 228 

implant constraints (due to simultaneous impact on contact pressure and kinematics) compared to a high 229 

conformity design which is achieved through changes in tibia frontal radius.  230 
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Table 1 Geometric design variables which were defined on medial and lateral sides of the implant.  

 Geometric variable Description Minimum (mm) Maximum (mm) 

P1 TP Tibia posterior radius 14  20  

P2 TD Tibia distal radius 25  50  

P3 TA Tibia anterior radius 15  70  

P4 TF Tibia frontal radius 25  50  

P5 FP Femoral posterior radius 25  50  

P6 FD Femoral distal radius 5  9  

P7 FF Femoral frontal radius 15  70  

P8 W Condylar space 5 9 

Table(s)



Table 2  FFANN with fifteen hidden neurons achieved the best compromise between accuracy and generality and was 

used in the rest of study (highlighted in gray) 

Error goal  Number of hidden units 

  5 10 15 20 25 30 

 Accuracy 0.79 0.83 0.89 0.91 0.96 0.98 

E=0.01 Generality 0.54 0.51 0.44 0.42 0.40 0.36 

 Epochs 800 830 900 950 1100 1200 

        

 Accuracy 0.73 0.79 0.88 0.90 0.94 0.97 

E=0.05 Generality 0.66 0.62 0.58 0.51 0.48 0.45 

 Epochs 770 820 840 900 970 1000 

        

 Accuracy 0.65 0.74 0.85 0.90 0.94 0.96 

E=0.1 Generality 0.90 0.95 1 1 1 1 

 Epochs 660 600 580 520 500 460 

        

 Accuracy 0.63 0.70 0.79 0.86 0.89 0.91 

E=0.2 Generality 0.91 0.98 1 1 1 1 

 Epochs 600 540 520 490 460 410 

Table(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Geometric design variables 
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Figure 2 Finite element model of load-controlled Stanmore knee simulator 
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Figure 3(a) Boundary conditions and loads for FE simulation, (b) kinematic range of motion and maximum contact pressure over 

the entire gait cycle obtained from FE simulation 
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Figure 4 A schematic diagram of the proposed three-layer FFANN with sixteen input nodes 

(geometric variables) and three output nodes (maximum contact pressure, A-P ROM and I-E ROM) 
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Figure 5 Contact pressure, A-P displacement and I-E rotation computed through FE simulation for a number of candidate 

implants. 
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Figure 6 Sensitivity of TKA function due to individual geometric variables 
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