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ABSTRACT

This paper examines the performance of conventional
eddy viscosity and Detached Eddy Simulation (DES)
turbulence models implemented in the open source
CFD library OpenFOAM. For these purposes we re-
visit a number of benchmark data sets developed by
the Architectural Institute of Japan. We firstly present
results for analysis of the flow around a single high
rise building and make comparisons with wind tunnel
data. Secondly we examine predicted flows in a real
urban environment. We find that the eddy viscosity
models perform similarly to implementation in other
CFD codes. Such modelling approaches give unsatis-
factory performance in certain wind conditions, how-
ever. The DES results show better prediction of wind
flows in comparison to both wind tunnel and field data
in many cases.

INTRODUCTION
Background

Calculation of external flows in complex urban en-
vironments using CFD methods is of value to stud-
ies of structural loads, pedestrian comfort, natural
ventilation, contaminant dispersion and wind energy
(Meroney et al., 2001; Blocken et al., 2012; Hooff and
Blocken, 2010; Vardoulakis et al., 2003; Tabrizi et al.,
2014). Despite the fact that the Large Eddy Simulation
(LES) modelling approach is known to behave better
than the Reynolds-Averaged Navier-Stokes (RANS)
approaches using eddy-viscosity turbulence models, it
is still expensive (often prohibitively so) in analysis
of practical building external flows. A promising hy-
brid RANS/LES approach is Detached Eddy Simula-
tion (DES) that treats boundary layer regions using a
RANS model and transitions to LES mode in regions
of separated flow.

Aims and objectives

The aim of this study is to offer some validation ev-
idence for OpenFOAM software (Weller et al., 1998)
applied to external flows in urban environments with
commonly used eddy viscosity and DES turbulence
models. Our further aim is to evaluate the advantages
of DES approaches in these applications as this has
been reported in very few papers. This work has been
carried out in the context of study and development
of CFD based methods for wind energy assessment in
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complex urban environments. Hence we comment on
modelling of wake conditions rather than evaluation of
surface pressures and forces or dispersion of contami-
nants.

For these purposes we examine the performance of
both steady RANS models as well as Delayed De-
tached Eddy Simulation approaches implemented in
OpenFOAM using benchmark data derived from wind
tunnel data as well as data derived from field mea-
surements developed by the Architectural Institute of
Japan (AlJ) (AlJ, 2009; Yoshie et al., 2007). A num-
ber of studies have previously been reported that make
use of these test cases Tominaga et al. (2004).

Application of OpenFOAM

In this work we apply numerical models implemented
in the OpenFOAM CFD library (Weller et al., 1998).
OpenFOAM is a free, open-source CFD software li-
brary, that makes use of the object oriented features of
the C++ programming language (Jasak et al., 2007).
OpenFOAM has gradually gained popularity in both
commercial and academic organisations, the reward
of being free of charge, easily modifiable, adequate
for a broad range of fluid dynamics applications, pro-
viding efficient parallel computing capabilities and the
possibility to easily implement customised solvers and
functions (Ghione, 2012). However, development of
independent quality assurance data and documentation
relies on the efforts of third parties. Some validation
exercises where OpenFOAM models have been ap-
plied to wind flows have been published Balogh et al.
(2012); Churchfield and Moriarty (2010); Flores et al.
(2014) but these have not been concerned with urban
environments.

In applying the first of the AlJ test cases we have used
the steady-state RANS solver simpleFoam from the
OpenFOAM library (version 2.3.1) with the standard
k-, k-w-SST and Realizable k-¢ eddy viscosity turbu-
lence models (Launder and Spalding, 1974; Menter,
1994; Shih et al.,, 1995). In the second test case
involving a model of a real urban environment, we
have applied the standard k- model for the RANS
calculations. The DES concept was developed by
Spalart et al. (1997) for aerospace applications in-
volving boundary layer separation. The DES model
we have applied in both test cases is the DDES-SA
model (Spalart et al., 2006) with the pisoFoam tran-
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sient solver. This version of the Spalart-Allmaras DES
model has some improvements over the original model
(Spalart et al., 1997). These development seek to im-
prove prediction of boundary layer separation points
on aerofoils. This is not a particular issue in building
external flows as separation is generally forced by re-
verse right-angle features at roof and wall edges rather
than curved surfaces.

The main advantage of DES approaches in the case of
urban wind flows is that coarser grids and larger time-
steps can be taken than would otherwise be required
for true LES. We see the ability to capture the features
of wake regions by calculations in LES mode to be the
most significant advantage in these types of problem
as buildings in dense urban environments are gener-
ally in the wake of neighbouring buildings rather than
clean atmospheric boundary layer conditions.

TEST CASE A: HIGH RISE BUILDING

General description of the experiment

The first test case is a study of the flowfield around a
high-rise building of 2:1:1 (height:width:depth) ratio,
placed in a turbulent boundary layer (Figure 1). The
wind tunnel scale model was 0.16 m high and 0.08 m
square. The wind tunnel imposed an inlet condition
approximating a power law velocity profile with an ex-
ponent of around 0.27 and the Reynolds number was
2.4 x 10* (Figure 1).
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Figure 1: 2:1:1 shaped building geometry. b=0.08m.
The velocity profile is U = 2°27 (Yoshie et al., 2007).
The roof and rear reattachment lengths are defined as
Xgr and X respectively

Measurements were taken using a split-film probe for
the instantaneous wind velocity in each direction and
the average and standard deviation of fluctuating wind
velocities were reported (Yoshie et al., 2007). Mea-
surements of the velocities were made at a grid of
points over a vertical cross-section and on horizontal
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planes as indicated in Figure 2. The data used in our
first validation study is that published by Meng and
Hibi (1998).
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Figure 2: The Test Case A wind tunnel experiment. (a)
Measuring points in vertical cross-section (y = 0). (b)
Measuring points in horizontal plane (z = 0.125b and
1.25b) (Yoshie et al., 2007).

Computational domain and mesh

The dimensions of the computational domain are
LxWxH = 21bx13.75bx11.25b (with b being the
width of the building) and replicate the geometry of
the wind tunnel—as recommended in best practice
guidelines Franke et al., 2007. The experiment param-
eters have been reported by Tominaga et al., 2008 and
are the standard conditions for the comparative studies
with the wind tunnel data as well as the CFD results of
other working groups.

The mesh resolution for the RANS calculations was
60(x) x 45(y) x 39(z) (105,300 cells) and the building
was discretized into 10 x 10 x 16. The minimum grid
width is set to 0.07b and is expanded towards the hor-
izontal and the vertical directions. This follows simi-
lar practice to other CFD studies of this case reported
by Tominaga et al., 2008. A finer mesh was used for
the DES calculations and contained approximately 1.1
million cells. Figure 3 illustrates these mesh arrange-
ments.
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Figure 3: Test case A grid discretization for: (a) DES
cases; (b, c) RANS cases.

Boundary Conditions

The conditions shown in Table 1 are the standard
boundary conditions for the RANS calculations—
following the practices reported by Yoshie et al., 2007.
Symmetry conditions were applied at the lateral and
upper surfaces in the DES calculations.

TEST CASE B: ACTUAL URBAN AREA

General description of the experiment

The second test case is a study of the flow field within
a building complex in the Shinjuku sub-central area
of Tokyo, Japan (Figure 4). A number of wind tun-
nel experiments as well as field measurements were
carried out by various research institutions around the
time of construction. In this and other reported studies

the CFD simulations were performed for conditions
recorded in 1977 (Yoshie et al., 2007). The case is of
particular interest as it has a complex geometry with
large variation in building heights. The data set has
additional value as it includes field measurements as
well as wind tunnel test data. In the field tests three
cup anemometers were used, taking measurements at
10 m height from the ground for the points 1 to 36 and
at 192 m and 242 m for the C and D points shown in
Figure 5.

Figure 4: Building complexes in urban area of Shin-
Juku (Yoshie et al., 2007) that define the geometry of
Test Case B.

ket
it

Figure 5: Test case B measuring points and building
heights (Shinjuku)

Computational domain and mesh

The computational domain is firstly defined by CAD
data representing 1000x 1000 m of the Shinjuku sub-
central area (Figure 5). This building geometric data
extends for approximately one block beyond the cen-
tral region containing the measurement points (the ex-
ception being point 11 close to the south border) and
this follows the AIJ guidance (Yoshie et al., 2007).
The dimensions of the complete domain are Lx W xH
= 5742x3372x1422 m? accommodating an upstream
length of 5SH (with H being the height of the high-
est building), a downstream subdomain length of 15H
and a height of 6H. The lateral boundaries have been
placed 5H from the Shinjuku partition in accordance
with best practice guidelines (Franke et al., 2007;
Tominaga et al., 2008).
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Table 1: Standard Boundary Conditions (Yoshie et al., 2007)

Inflow

Outflow

Lateral and upper surfaces of the domain
Ground surface

Building surface

Interpolated values of U and k from the experimental flow
Zero gradient

Logarithmic law for a smooth wall

Logarithmic law with roughness length zo(zp = 1.8 x 10*m)
Logarithmic law for a smooth wall

This case study has geometric complexity representa-
tive of urban environments of practical interest and
represents a challenge in terms of mesh generation.
The OpenFOAM snappyHexMesh tool has proved
able to mesh the case study geometry with a high de-
gree of automation and good parallel efficiency. The
tool generates hex-dominant meshes with an octree
topology whereby a background cubic mesh is sub-
divided a number of times as the ground and building
surfaces are approached. At the building surfaces the
cells are modified to snap to the underlying CAD ge-
ometry (triangulated Stereolithography format in this
case).

Parts of the computational grid are presented in Fig-
ure 6 to demonstrate the refinement regions around
the buildings. The total number of cells for the whole
domain was approximately 11.5 million for the west
wind direction illustrated. Similar results were ob-
tained by simply rotating the background mesh to ob-
tain meshes for the other wind directions resulting in
meshes with comparible numbers of cells. Boundary
conditions were treated in a similar manner to Test
Case A.

Figure 6: Parts of the computational grid

RESULTS
Test Case A results

Experimental data for Test Case A, and results of other
related CFD studies, are available in the form of pre-
dictions of reattachment lengths ( Xg and Xy in Fig-
ure 1) and mean velocities at a the grid of points shown
in Figure 2. A synopsis of the computed reattachment
lengths are presented in Table 2. These are the CFD
results for the RANS simulations utilizing different
turbulence models and the hybrid DDES-SA model

with reattachment lengths estimated from examining
the mean longitudinal wind velocities near the roof and
ground surfaces.

Table 2: Test Case A Results: Computed reattachment
lengths.

# | CFD Turbulence xg/b | xr/b
model model

1 | RANS Standard k-¢ 2.68 | 0.50

2 | RANS Realizable k-¢ | 5.37 | 0.50

3 | RANS k-w-SST 2.59 | 0.30

4 | LES/RANS | DDES-SA 2.39 | 0.38

5 | Experiment 142 | 0.52

In all cases the rear reattachment lengths are over pre-
dicted with the prediction of the DDES-SA calcula-
tion being closest to the experimental value. Tomi-
naga et al. (2004) presented 11 sets of results for this
test case and also found X /b was over predicted (a
range of 1.98-2.7 for different implementations of the
standard k- model). Lower values closer to the ex-
perimental result were only found using LES or DNS
approaches in that study. The behaviour in the wake is
further illustrated in Figure 8. This shows similar fea-
tures in the standard k- and DDES-SA flow near the
reattachment point. However, there are further differ-
ences further downstream as the flow returns towards
its undisturbed condition—unfortunately no wind tun-
nel measurements are available for this region and so
we can’t comment further.

The recirculation zone near the leading edge of the
roof and the associated reattachment length (xg in Fig-
ure 1), which was observed in the wind tunnel experi-
ments, was only reproduced in the RANS calculations
with the k-w-SST turbulence model (Table 2). The
DDES-SA and other RANS results show the flow at-
tached over part of the the roof but no clear reversal of
flow. Similar variability in the prediction of this fea-
ture was noted by Tominaga et al. (2004).

Figure 7 presents the distribution of the mean horizon-
tal velocity (U,) on a vertical mid plane (y = 0) and on
two horizontal planes. One horizontal plane is near the
ground (z = 0.125b) and one part way up the building
(z = 1.25b). The positions of the measuring lines are
illustrated with the dotted lines which also represent
the origin for the calculated wind velocities i.e. posi-
tive values are plotted on the right side of the line, and
negative values on the left side (Yoshie et al., 2007).
In general, where the mean velocities are compared at
the measurement points (Figure 7) there is good cor-
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respondence between the CFD results and the wind
tunnel data. The main differences in these velocity
profiles are found near the building surfaces and the
edges of the wake i.e. at locations of higher velocity
gradient or rate of shear. The DDES-SA results and
Standard k- turbulence model results generally show
best agreement with the experimental data. In the hor-
izontal plane part way up the building (¢ = 1.25b)
horizontal velocities are noticeably underestimated in-
side the wake region. In the horizontal plane near the
ground surface (z = 0.125b) the DDES-SA results are
noticeably better than all the RANS models.

Ux (m/s)

y/b
N
T

x/b

Ux (m/s) (z=0.125b)

z/b

)

x/b

Ux (m/s) (z=1.25b}

z/b
Nl - o
T T

x/b

Wind Tunnel data ——
CFD Standard k-¢ ——
CFD k-w SST —e—

CFD DDES —*—

CFD Realizable k-8 —=—

Figure 7: Distribution of U, in a vertical plane on
the centreline (a) and in horizontal planes at heights
0.125b and 1.25b.

Visualisation of the instantaneous velocities calculated
with the DDES-SA model have given some insight
into the behaviour in the wake region. The aspect ratio
of the building means that the eddy structures gener-

ated by the vertical leading edges dominate those gen-
erated at the leading edge of the roof. The largest eddy
structures flowing from the roof are transported over
the eddy structures near the ground at the leeward side
of the building. The flow in the wake region accord-
ingly seems more complex, with stronger mixing, than
flows over cubes. This has also been pointed out by
Tominaga et al. (2004). It appears that consequently
there are periods in the vortex shedding cycle where
the wake is extended and the reattachment point is very
mobile. This gives some clue as to why it was diffi-
cult to achieve convergence with the Realizable model.
This is to be investigated further.

a. Standard k - epsilon

b. Realizable k - epsilan

d. k-40-SST

Velocity Magnitude

il 2 4 &
- oW .
Figure 8: Velocity vectors and magnitude data on a
vertical plane through the centre of the wake region.

Test Case B results

To compare the CFD results with the field measure-
ments and the wind tunnel data the computational
wind speed has been normalised by the wind speed
at reference point D (the top of the Shinjuku Mitsui
Building) at a height of 242 m for the north wind di-
rection and point C (the top of the KDD Building) at
192 m height for the other wind directions as in previ-
ous studies.

Figure 9 presents the calculated wind speed ratios
alongside the field measurements and the wind tun-
nel data (where available), at the measuring points for
four wind directions (East, South, West and North).
In 44 of the total of 60 comparisons, results for the
DDES-SA model fall within one standard deviation
of the field measurements and only 5 fall significantly
outside this band. The RANS results fall outside the
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Figure 9: Comparison of predicted and measured wind speed ratios at the reference measuring points. The North
and South wind directions include field study data.
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Figure 10: Comparison of wind speed ratio at reference measuring points with wind direction South.
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one standard deviation band in 24 out of a total of 60
tests—12 are significantly outside.

The superior performance of the DDES-SA model is
also demonstrated in Figure 10, where the results are
compared with the RANS results for other CFD codes
published by a working group of the Architectural In-
stitute of Japan Tominaga et al., 2005. In this figure the
measurement points are shown in order of increasing
mean velocity.

A qualitative review of the results (Figure 11) shows
that the complex flow patterns of the interaction be-
tween the wind flow and building is well reproduced
by the DDES-SA calculations, including such details
as the horseshoe vortex shape (h1, h2 and h3 regions)
and the reattachment zones behind the buildings (11, r2
and r3 regions). In the RANS results (Figure 11 right)
these vortices are not as well defined and the size of
the recirculation zone in the wake of the buildings is
overestimated.

CONCLUSIONS

In this work we investigated the prediction capabili-
ties of numerical models implemented using the Open-
FOAM CFD library and revisiting two test cases de-
veloped by the Architectural Institute of Japan that
provide benchmark data derived from wind tunnel
testing and field measurements. We examined the
performance of both steady-state RANS approaches
with some eddy-viscosity turbulence models as well
as a hybrid RANS/LES approach with the Delayed
Detached Eddy Simulation (DDES-SA) turbulence
model. The test cases represent an idealized building
with 2:1:1 aspect ratios and a real urban geometry with
considerable geometric complexity. The tests have ex-
amined mean velocity predictions and boundary layer
reattachment lengths.

Calculations of wind flows around buildings using
RANS approaches and two-equation turbulence mod-
els are known to have limitations, particularly in cal-
culating conditions in wake regions. We found this to
be the case with the models of this type we evaluated
using OpenFOAM and that predictions were compa-
rable with what has been published in earlier studies
for these types of model. Results from applying DES
approaches to these test cases has not been published
before. Results we obtained with the DDES-SA model
have been noticeably better than those from the RANS
models, particularly in wake regions where LES is the
mode of calculation although not in all cases. We con-
clude that this approach, although significantly more
computationally demanding than RANS calculations,
offers improved robustness and accuracy over a range
of wind conditions. Accordingly, we intend to pursue
the application of DES approaches using OpenFOAM
in the further study of wind flows at the campus where
we are collecting high frequency anemometer data for
further validation exercises.
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