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Abstract

This paper presents a numerical regularization approach to the simultaneous deter-
mination of multiplicative space- and time-dependent source functions in a nonlinear
inverse heat conduction problem with homogeneous Neumann boundary conditions
together with specified interior and final time temperature measurements. Under
these conditions a unique solution is known to exist. However, the inverse prob-
lem is still ill-posed since small errors in the input interior temperature data cause
large errors in the output heat source solution. For the numerical discretisation,
the boundary element method combined with a regularized nonlinear optimization
are utilized. Results obtained from several numerical tests are provided in order to
illustrate the efficiency of the adopted computational methodology.

Keywords: Inverse source problem; Boundary element method; Nonlinear opti-
mization; Regularization.

2010 Mathematics Subject Classification: 65M32, 65M38.

1 Introduction

Solving inverse source problems for the parabolic heat equation has been the point of
interest for many works, see [4–7, 9, 10, 13] to mention only a few, due to their ever
increasing applications in problems related to pollution, unknown heat source generation
or control of oil wells and their production rates. Almost all the previous studies generally
assumed that the unknown heat source is independent of one or more of the independent
variables in order to ensure the uniqueness of solution. On the other hand, only a few
studied looked at the general case, [1], but the classes of functions in which the source is to
lay were further restricted with constraints which are difficult to satisfy in practice (both
experimental and computational). Recently, the authors investigated the reconstruction of
an additive source of the form φ(t)+ψ(x), see [8]. In this work, we extend the investigation
to include the reconstruction of a multiplicative source of the form r(t)s(x), in which
both r(t) and s(x) are unknown functions. In contrast to the previously investigated
linear reconstruction of the additive source, this new inverse source problem formulation
is more difficult to solve because it now becomes nonlinear. Moreover, its ill-posednes with
respect to small errors in the input data being blown up in the output source solution
adds even further difficulty.

The plan of the paper is as follows. In Section 2, we give the mathematical formulation
of the inverse multiplicative source problem and state its unique solvability. In Section 3,
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we describe the numerical discretisation of the problem based on the boundary element
method (BEM), whilst in Section 4 we introduce the method for obtaining the solution
based on a nonlinear least-squares minimization. Section 5 presents and discusses numer-
ical results and illustrates the need for employing regularization in order to stabilise the
solution. Finally, Section 6 presents the conclusions of the paper.

2 Mathematical Formulation

Let L > 0 and T > 0 be fixed numbers and denote by DT := {(x, t)| 0 < x < L, 0 <
t < T} = (0, L) × (0, T ). Consider the following inverse initial-boundary value prob-
lem of finding the temperature u(x, t) and the multiplicatively separable source function
F (x, t) := r(t)s(x) which satisfy the equation

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + r(t)s(x), (x, t) ∈ DT , (2.1)

subject to the initial condition

u(x, 0) = ϕ(x), x ∈ [0, L], (2.2)

the homogeneous Neumann boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, t ∈ [0, T ], (2.3)

and the additional temperature measurement

u(X0, t) = β(t), t ∈ [0, T ], (2.4)

at a fixed sensor location X0 ∈ (0, L), and

u(x, T ) = µ(x), x ∈ [0, L], (2.5)

at the ‘upper-base’ final time t = T . Conditions (2.3) express that the ends {0, L} of the
finite slab (0, L) are insulated. In order to avoid trivial non-uniqueness represented by

the identity r(t)s(x) = r(t)
c

· cs(x), with c arbitrary non-zero constant, we impose a fixing
condition, say

s(X0) = α. (2.6)

In the above setting, the functions ϕ, β, µ and the constant α are given, whilst the func-
tions r(t), s(x) and u(x, t) are unknowns. One can remark that the specified interior and
the final time temperature measurements (2.4) and (2.5) are time- and space-dependent
functions β(t) and µ(x) and, in principle, they are meant to supply the missing informa-
tion to identify the time- and space-dependent components r(t) and s(x), respectively.
However, because of the nonlinearity represented by the product r(t)s(x) we cannot de-
couple the system of equations (2.1)–(2.6) and identify separately r(t) and s(x) from (2.4)
and (2.5), respectively.

We further assume that the conditions (2.2)–(2.5) are consistent, i.e. the following
compatibility conditions are satisfied:

ϕ′(0) = ϕ′(L) = µ′(0) = µ′(L) = 0, β(0) = ϕ(X0), β(T ) = µ(X0). (2.7)
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The unique solvability, i.e. existence and uniqueness of the solution of the inverse
problem (2.1)–(2.6), was established in [11]. With some slight corrections, this theorem
reads as follows.

Theorem 1. Suppose that ϕ(x) ∈ H4(0, L), µ(x) ∈ H4(0, L) and β(t) ∈ H2(0, T ) satisfy
(2.7) and that α 6= 0. Also, assume that:

(i) d := β ′(0)− ϕ′′(X0) 6= 0, m :=
β ′(T )− µ′′(X0)

d
6= 0,

(ii) ϕ′′′(0) = ϕ′′′(L) = µ′′′(0) = µ′′′(L) = 0,

(iii) λ1 < 1, 4λ2λ3 − (1− λ1)
2 ≤ 0, λ4 < 1,

where

λ1 :=
2

m2d2
max

{

d2 +
4L2‖β ′′‖2

π2
, 4L‖θ‖2 + Lm2‖ϕ′′′‖2

}

,

λ2 :=
2

d2
max

{

4L6

π4m4
, 1

}

, λ3 :=
2‖θ′‖2
m2

+
4‖β ′′‖2
d2

(

2‖θ‖2
m2

+ ‖ϕ′′′‖2
)

,

λ4 :=
1

m2d2
max {d2 + 2L3z0 + 4L2‖β ′′‖2, 4L3z0 + 4L3‖θ′‖2 + 2Lm2‖ϕ′′′‖2},

θ(x) = µ′′′(x)−mϕ′′′(x), z0 =
1− λ1
2λ2

.

Then the inverse problem given by equations (2.1)–(2.6) has a unique solution u(x, t) ∈
H4,2(DT ) ∩ C(0, T ;H4(0, L)) ∩ C(0, L;H2(0, T )), r(t) ∈ H1(0, T ) and s(x) ∈ H2(0, L).

Remarks
(i) In the above theorem, Hk(Ω), with k ∈ {1, 2, 4} and Ω = (0, L) or (0, T ), denotes

the Sobolev space of functions consisting of all elements of L2(Ω) having generalized
derivatives up to order k inclusively in L2(Ω). Also, we denote

H4,2(DT ) := {u ∈ L2(DT )|∂jxu ∈ L2(0, L) for j = 1, 2, 3, 4, and ∂itu ∈ L2(0, T ) for i = 1, 2}.

Finally, C(0, T ;H4(0, L)) denotes the space of continuous mappings from (0, T ) toH4(0, L)
and C(0, L;H2(0, T )) denotes the space of continuous mappings from (0, L) to H2(0, T ).
The norms ‖β ′′‖ and ‖ϕ′′′‖ are understood in L2(0, T ) and L2(0, L), respectively. Also,
the norms of θ and θ′ are in L2(0, L).

(ii) The higher regularity of solution u(x, t) in H4,2(DT ) ∩C(0, T ;H4(0, L)) ∩C(0, L;
H2(0, T )) was assumed because the technique of proof of the unique solvability of the
inverse problem given by Savateev in reference [11] is based on differentiating the governing
heat equation (2.1) with respect to t and x and hence the higher regularity required.
Furthermore, we note that X0 cannot be allowed to be a boundary point {0, L} because
the proof in [11] starts by applying equation (2.1) and using (2.4) at x = X0 ∈ (0, L).

(iii) In deriving the expressions for λ1, λ4 and z0 above (which are different from those
given in [11, 12]), use has been made of the Hölder, Poincaré-Friedrichs and Wirtinger
inequalities, [2], for the function W := utx, satisfying W (0, t) =W (L, t) = 0, namely,

|Wx(X0, t)|2 ≤ L‖Wxx(·, t)‖2, ∀t ∈ [0, T ], ‖W (·, T )‖ ≤ L

π
‖Wx(·, T )‖,

where the norms are in L2(0, L). For more details, see the proof of Theorem 1.1 of [11].
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Although the inverse problem (2.1)–(2.6) has a unique solution it is still ill-posed
because it violates the continuous dependence upon the input data (2.4) and (2.5). This
can easily be seen from the following example of instability.

Let L = π, X0 = π/2 and, for n ∈ N
∗ take

un(x, t) =
[1− exp(−(2n + 1)2t)] cos((2n+ 1)x)

n3/2
, (2.8)

which satisfies the heat equation (2.1) with the sources

r(t) =
(2n+ 1)

n3/4
, s(x) =

(2n+ 1) cos((2n+ 1)x)

n3/4
. (2.9)

We also have that the initial condition (2.2) and the Neumann boundary conditions (2.3)
are all homogeneous and the measured data (2.4)–(2.6) are given by

α = β(t) = 0, µ(x) =
[1− exp(−(2n + 1)2T )] cos((2n+ 1)x)

n3/2
→ 0, (2.10)

as n → ∞. However, the sources r(t) and s(x) given by (2.9) become unbounded as
n→ ∞, in any reasonable norm.

3 Boundary Element Method (BEM)

In this section, we explain the numerical procedure for discretising the inverse problem
(2.1)–(2.6) by using the BEM. First of all, let us introduce the fundamental solution G of
the one-dimensional heat equation, as

G(x, t, y, τ) =
H(t− τ)
√

4π(t− τ)
exp

(

−(x− y)2

4(t− τ)

)

,

where H is the Heaviside step function. On multiplying the equation (2.1) by this funda-
mental solution and using the Green’s identity, we obtain the following boundary integral
equation, see e.g. [5]:

η(x)u(x, t) =

∫ t

0

[

G(x, t, ξ, τ)
∂u

∂n(ξ)
(ξ, τ)− u(ξ, τ)

∂G

∂n(ξ)
(x, t, ξ, τ)

]

ξ∈{0,L}

dτ

+

∫ L

0

G(x, t, y, 0)u(y, 0) dy+

∫ L

0

∫ T

0

G(x, t, y, τ)r(τ)s(y) dτdy,

(x, t) ∈ [0, L]× (0, T ], (3.1)

where η(0) = η(L) = 1/2, η(x) = 1 for x ∈ (0, L), and n is the outward unit normal to
the space boundary {0, L}. For discretising (3.1), we divide the boundaries {0} × [0, T ]
and {L} × [0, T ] into N small time-intervals [tj−1, tj], j = 1, N , with tj =

jT
N
, j = 0, N ,

whilst the initial domain [0, L] × {0} is divided into N0 small cells [xk−1, xk], k = 1, N0

with xk = kL
N0

, k = 0, N0. Over each boundary element, the temperature u is assumed to

be constant and take its value at the midpoint t̃j = (tj−1 + tj)/2, i.e.

u(0, t) = u(0, t̃j) =: h0j , u(L, t) = u(L, t̃j) =: hLj , t ∈ (tj−1, tj ].
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Similarly, in each cell, the initial temperature u(x, 0) is assumed to be constant and takes
its value at the midpoint x̃k = (xk−1 + xk)/2, i.e.

u(x, 0) = ϕ(x) = ϕ(x̃k) =: ϕk, x ∈ (xk−1, xk].

The source functions r(t) and s(x) can also be approximated using piecewise constant
approximations as

r(t) = r(t̃j) =: rj, s(x) = s(x̃k) =: sk,

for x ∈ (xk−1, xk], k = 1, N0, and t ∈ (tj−1, tj], j = 1, N .
Applying the homogeneous Neumann boundary condition (2.3) and using the constant

BEM interpolations above, the boundary integral equation (3.1) becomes

η(x)u(x, t) =

N
∑

j=1

[−B0j(x, t)h0j − BLj(x, t)hLj ] +

N0
∑

k=1

[Ck(x, t)ϕk +Dr
k(x, t)sk] , (3.2)

where the coefficients are given by

Bξj(x, t) =

∫ tj

tj−1

∂G

∂n
(x, t, ξ, τ)dτ, for ξ ∈ {0, L}, (3.3)

Ck(x, t) =

∫ xk

xk−1

G(x, t, y, 0)dy, , (3.4)

Dr
k(x, t) =

∫ xk

xk−1

∫ t

0

G(x, t, y, τ)r(τ) dτ dy =
N
∑

j=1

dj,k(x, t)rj, (3.5)

where dj,k(x, t) =
∫ xk

xk−1

∫ tj
tj−1

G(x, t, y, τ) dτ dy for j = 1, N , k = 1, N0. The integrals in

(3.3) and (3.4) can be evaluated analytically and are given in [5], whereas the double
integral source term dj,k(x, t) in (3.5) is given by

dj,k(x, t) =



























































































0 ; t ≤ tj−1,

J(x, t, xk−1, tj−1)− J(x, t, xk, tj−1)

+
(x− xk−1)

2

4
− (x− xk)

2

4
; tj−1 < t ≤ tj , x ≤ xk−1,

J(x, t, xk−1, tj−1)− J(x, t, xk, tj−1)

−(x− xk−1)
2

4
− (x− xk)

2

4
; tj−1 < t ≤ tj , xk−1 < x ≤ xk,

J(x, t, xk−1, tj−1)− J(x, t, xk, tj−1)

−(x− xk−1)
2

4
+

(x− xk)
2

4
; tj−1 < t ≤ tj , x > xk,

J(x, t, xk−1, tj−1)− J(x, t, xk, tj−1)
−J(x, t, xk−1, tj) + J(x, t, xk, tj) ; t > tj,

where

J(x, t, xk, tj) =

(

(x− xk)
2

4
+
t− tj
2

)

erf

(

x− xk
2
√
t− tj

)

+

√
t− tj
2
√
π

(x−xk) exp
(

−(x− xk)
2

4(t− tj)

)
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and the error function erf is defined as erf(x) =
2√
π

∫ x

0

e−σ2

dσ. By applying (3.2) at

the boundary element nodes (0, t̃i) and (L, t̃i) for i = 1, N , we obtain the system of 2N
equations

−Bh
¯
+ Cϕ

¯
+Drs

¯
= 0

¯
, (3.6)

where

B =

[

B0j(0, t̃i) +
1
2
δij BLj(0, t̃i)

B0j(L, t̃i) BLj(L, t̃i) +
1
2
δij

]

2N×N

, C =

[

Ck(0, t̃i)
Ck(L, t̃i)

]

2N×N0

,

Dr =

[

∑N
j=1 dj,k(0, t̃i)rj

∑N
j=1 dj,k(L, t̃i)rj

]

2N×N0

, h
¯
=

[

h0j
hLj

]

N

, ϕ
¯
=
[

ϕk

]

N0

, s
¯
=
[

sk
]

N0

,

where δij is the Kronecker delta symbol.
For the direct problem, we can find now the boundary temperatures u(0, t̃i) and u(L, t̃i)

from (3.6) as
h
¯
= B−1(Cϕ

¯
+Drs

¯
). (3.7)

Furthermore, the temperatures u(X0, t̃i) for i = 1, N and u(x̃k, T ) for k = 1, N0 are
explicitly given from (3.2) as

[u(X0, t̃i)]N = −BIh
¯
+ CIϕ

¯
+DrIs

¯
=
[

β(t̃i)
]

N
, (3.8)

[u(x̃k, T )]N0
= −BIIh

¯
+ CIIϕ

¯
+DrIIs

¯
=
[

µ(x̃k)
]

N0

, (3.9)

where

BI =
[

B0j(X0, t̃i) BLj(X0, t̃i)
]

N×2N
, CI =

[

Ck(X0, t̃i)
]

N×N0

,

DrI =
[

∑N
j=1 dj,k(X0, t̃i)rj

]

N×N0

, BII =
[

B0j(x̃k, T ) BLj(x̃k, T )
]

N0×2N
,

CII =
[

Ck(x̃k, T )
]

N0×N0

, DrII =
[

∑N
j=1 dj,k(x̃k, T )rj

]

N0×N0

.

4 Solution of Inverse Problem

In this section, we wish to obtain simultaneously the unknown components r(t) and s(x)
of the multiplicative source term in the inverse problem (2.1)–(2.6) by using the BEM
together with a classical minimization process which is commonly used in the theory of
inverse problems, [3]. The conditions (2.4)–(2.6) are imposed by minimizing the nonlinear
least-squares function

F0(r, s) :=

N
∑

i=1

(

u(X0, t̃i)− β(t̃i)
)2

+

N0
∑

k=1

(u(x̃k, T )− µ(x̃k))
2 + (s(X0)− α)2. (4.1)

Here, the approximated temperatures u(X0, t) and u(x, T ), as introduced earlier in (3.8)
and (3.9), respectively, are now employed into the above objective function with the initial
guesses r

¯0
and s

¯0
for functions r and s, respectively. Whereas s(X0) is approximated as

s(X0) ≈
s(x̃Nk

) + s(x̃Nk+1)

2
, (4.2)
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where 1 ≤ Nk < N0 is the largest number for which xNk
≤ X0. Then, introducing

(3.7)–(3.9) and (4.2) into (4.1) yield

F0(r
¯
, s
¯
) =‖ − BIB−1(Cϕ

¯
+Drs

¯
) + CIϕ

¯
+DrIs

¯
− β

¯
‖2

+ ‖ −BIIB−1(Cϕ
¯
+Drs

¯
) + CIIϕ

¯
+DrIIs

¯
− µ

¯
‖2 + (s(X0)− α)2, (4.3)

where r
¯
= (rj)N , s

¯
= (sk)N0

and the norm ‖ · ‖ is the Euclidean norm of a vector.
The minimization of (4.3) is performed using the lsqnonlin routine from the MATLAB
Optimization Toolbox. This routine attempts to find the minimum of a sum of squares
by starting from some arbitrary initial guesses r

¯0
, s
¯0

for r
¯
, s
¯
, respectively. Note that we

have compiled this routine with the following default parameters:

• Algorithm = Trust-Region-Reflective.

• Maximum number of objective function evaluations, ‘MaxFunEvals’ = 102 × (N +
N0 + 1).

• Maximum number of iterations, ‘MaxIter’ = 400.

• Termination tolerance on the function value, ‘TolFun’ = 10−10 to 10−6.

• Termination tolerance, ‘TolX’ = 10−10 to 10−6.

5 Numerical Results and Discussion

This section presents three benchmark test examples in order to test the accuracy and
stability of the numerical methods introduced in Sections 3 and 4. The following root
mean square errors (RMSE) are used to evaluate the accuracy of the numerical results:

RMSEt =

√

√

√

√

1

N

N
∑

i=1

(

Exact(t̃i)−Numerical(t̃i)
)2
, (5.1)

RMSEx =

√

√

√

√

1

N0

N0
∑

k=1

(Exact(x̃k)−Numerical(x̃k))
2. (5.2)

5.1 Example 1

We consider a benchmark test example with T = 1, L = 1/10, X0 = 1/20, and the initial
data (2.2) given by

ϕ(x) = u(x, 0) = 0, x ∈ [0, L]. (5.3)

For the direct problem (2.1)–(2.3) we also need the input source data

r(t) = − et

40

(

400π2t2 − 400π2t + t2 + t− 1
)

, s(x) = 40 cos(20πx). (5.4)

In order to test the BEM accuracy for the direct problem given by equation (2.1) with
the source given by the product of the functions in (5.4), subject to (2.3) and (5.3), the
numerical results are compared with the exact solution given by

u(x, t) = et(t− t2) cos(20πx), (x, t) ∈ DT . (5.5)

7



The exact expressions for the inputs (2.4)–(2.6) are given by

β(t) = u(1/20, t) = −(t− t2)et, µ(x) = u(x, 1) = 0, α = s(1/20) = −40. (5.6)

We took L = 1/10 which is small because, as defined in Theorem 1, we then have
α = −40 6= 0, d = −1 6= 0, m = −e 6= 0, θ(x) = µ(x) = ϕ(x) ≡ 0, λ1 = 0.2962 < 1,
λ2 = 2, λ3 = 0, 4λ2λ3− (1−λ1)2 = −0.4953 ≤ 0, z0 = 0.1759, and λ4 = 0.2613 < 1 which
satisfy all the conditions (i)–(iii) for existence and uniqueness of the solution.

As the specified boundary conditions (2.3) are of Neumann type, the boundary un-
knowns in the BEM are represented by the Dirichlet data u(0, t) and u(L, t), as given by
(3.7). Once all the boundary data has been obtained accurately, equations (3.8) and (3.9)
can be employed explicitly and with no need of interpolations to obtain the temperatures
(3.8) and (3.9), respectively. The RMSE of the direct problem results are shown in Table
1 and it can be concluded that the BEM numerical solutions are convergent to their cor-
responding exact values, as the number of boundary elements increases. Whereas Figure
1 displays the analytical and numerical results of β(t) and µ(x) and very good agreement
can be observed.

Table 1: The RMSE (5.1) and (5.2) for u(0, t), u(0.1, t), β(t) and µ(x), obtained using
the BEM for the direct problem with N = N0 ∈ {10, 20, 40}, for Example 1.

N = N0 u(0, t) u(0.1, t) β(t) µ(x)
10 5.01E-3 5.01E-3 5.64E-3 8.51E-2
20 1.03E-3 1.03E-3 1.75E-3 4.51E-2
40 8.17E-4 8.17E-4 9.69E-4 2.30E-2
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Figure 1: The analytical (—–) and numerical results for (a) β(t) and (b) µ(x) obtained
using the BEM for the direct problem with N = N0 ∈ {10 (− ·−), 20 (· · · ), 40 (−−−)},
for Example 1.

Next we consider the inverse problem given by equations (2.1), (2.3), (2.6) with
α = s(1/20) = −40 specified, (5.3) and (5.6). The numerical solution is obtained, as
described in Section 4, by minimizing the objective function (4.1). Preliminary numerical
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investigations showed that the initial guesses r
¯0

and s
¯0

cannot be so arbitrary in order
for the minimization process to converge. After many trials, we decided to illustrate the
numerical results obtained by considering the initial guess as

r
¯0

= r
¯
+ ǫ
¯r
, s

¯0
= s
¯
+ ǫ
¯g
, (5.7)

where r
¯
and s

¯
are given by (5.4), and ǫ

¯r
= random(′Normal′, 0, σr, N, 1) and ǫ

¯g
=

random(′Normal′, 0, σg, N0, 1) are random variables generated by the MATLAB command
for normal distributions with mean zero and the standard deviations σr and σg, respec-
tively, given by

σr = p0 × max
t∈[0,T ]

|r(t)|, σg = p0 × max
x∈[0,L]

|s(x)|, (5.8)

where p0 is a percentage of perturbation. The intention here was that the initial guesses
(5.7) are understood as some general priors for the unknowns presumed to have been
obtained experimentally from some simple but rather inaccurate practical measurement.
Hereafter, unless otherwise specified, we present results obtained with p0 = 100% per-
turbed initial guess (which is quite far from the exact solution (5.4)) and N = N0 = 20,
and use the MATLAB optimization toolbox lsqnonlin with TolFun = TolX = 10−6 to
solve the inverse problem.

Figure 2(a) shows the unregularized objective function F0 which converges in 39 iter-
ations and the numerical results for r(t), s(x), u(0, t), u(0.1, t) are displayed in Figures
2(b)–2(e), respectively. As we can see in these figures, the numerical results are inaccurate
and partially unstable in Figure 2(c).

In order to improve the accuracy and stability, we apply a Tikhonov regularization
process based on minimizing the penalised objective function

Fλ(r
¯
, s
¯
) := F0(r

¯
, s
¯
) + λ

(

‖Rr
¯
‖2 + ‖Rs

¯
‖2
)

, (5.9)

where λ > 0 is a regularization parameter to be prescribed, and R is a (differential)
regularizing matrix. Initially, we have applied the first- and second-order regularizations
based on minimizing the objective function (5.9) as

Fλ(r
¯
, s
¯
) = F0(r

¯
, s
¯
) + λ

(

N−1
∑

i=1

(ri+1 − ri)
2 +

N0−1
∑

k=1

(sk+1 − sk)
2

)

, (5.10)

Fλ(r
¯
, s
¯
) = F0(r

¯
, s
¯
) + λ

(

N−1
∑

i=2

(−ri+1 + 2ri − ri−1)
2 +

N0−1
∑

k=2

(−sk+1 + 2sk − sk−1)
2

)

, (5.11)

respectively. By trial and error, among various regularization parameters λ ∈ {10−9, ..., 102},
we have found, as best illustrative results, those obtained with λ = 10−5 which are shown
in Figure 3. As we can see in this figure, applying orders one or two regularizations (5.10)
or (5.11) yield stable, but rather inaccurate results, especially near the endpoints of the
intervals of definition of the functions involved. In order to improve on these inaccuracies
we have then investigated a hybrid combination of first- and second- order regularizations
given by

Fλ(r
¯
, s
¯
) = F0(r

¯
, s
¯
) + λ

(

(r1 − r2)
2 + (−rN−1 + rN )

2 +
N−1
∑

i=2

(−ri+1 + 2ri − ri−1)
2

+ (s1 − s2)
2 + (−sN0−1 + sN0

)2 +

N0−1
∑

k=2

(−sk+1 + 2sk − sk−1)
2

)

. (5.12)
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Figure 2: (a) The objective function F0 and the numerical results for (b) r(t), (c) s(x), (d)
u(0, t), (e) u(0.1, t) obtained with no regularization (−·−), for exact data for Example 1.
The corresponding analytical solutions are shown by continuous line (—–) in (b)–(e) and
the p0 = 100% perturbed initial guesses are shown by dotted line (· · · ) in (b) and (c).
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Figure 3: The numerical results for (a) r(t), (b) s(x), (c) u(0, t), (d) u(0.1, t) obtained
with the first-order regularization (· · · ) and the second-order regularization (−−−) with
regularization parameter λ = 10−5, for exact data for Example 1. The corresponding
analytical solutions are shown by continuous line (—–).
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According to (5.9) and (5.12), the differential regularization matrix R is given by

R =

















1 −1 0 0 . 0
−1 2 −1 0 . 0
0 −1 2 −1 . 0
. . . . . 0
0 0 0 −1 2 −1
0 0 0 0 −1 1

















. (5.13)

In the regularization process, we need to choose an appropriate regularization parameter
λ which balances accuracy and stability. Here, we use the L-curve method to find the
regularization parameter λ. Figure 4(a) shows the L-curve obtained by plotting the
solution norm

√

‖Rr
¯
‖2 + ‖Rs

¯
‖2 versus the residual norm

√

F0(r
¯
, s
¯
) for various values of

λ when R is given by (5.13). From this figure it can be seen that the corner of the
L-curve occurs nearby λ = 10−5, with other appropriate values between the wide range
10−6 to 10−4. With this value of the regularization parameter the numerical results are
shown in Figures 4(b)–4(f). From Figure 4(b) it can be seen that convergence for the
regularized objective function Fλ is achieved within 15 iterations. Also, in comparison
with the previous Figures 3(c)–3(f), very good agreement between the exact and the
regularized numerical solutions is now obtained, as illustrated in Figures 4(c)–4(f). All
results are summarized in terms of the RMSE (5.1) and (5.2) in Table 2. Various initial
guesses (5.7) with p0 ∈ {40, 60, 80, 100}% in (5.8) have been investigated in order to test
the robustness of the minimization procedure with respect to the independence on the
initial guess. From Table 2 it can be seen that whilst the choice of the initial guess seems
to matter for the accuracy of the unregularized solution, this restriction disappears when
regularization with λ = 10−5 is imposed. This shows that the numerical regularization
method employed is robust with respect to the independence on the initial guess.

Table 2: The RMSE (5.1) and (5.2) for r(t), s(x), u(0, t), u(0.1, t) for exact data for
Example 1.

p0 λ r(t) s(x) u(0, t) u(0.1, t)
40% 0 6.349 18.47 4.72E-2 3.27E-2

10−5 1.528 0.819 1.49E-2 1.53E-2
60% 0 9.752 26.70 1.14E-1 8.12E-2

10−5 1.513 0.767 1.48E-2 1.50E-2
80% 0 25.83 44.93 1.99E-1 2.74E-1

10−5 1.526 0.812 1.48E-2 1.47E-2
100% 0 53.70 54.24 2.34E-1 2.54E-1

10−5 1.529 0.819 1.47E-2 1.48E-2

To test the stability of the BEM combined with the nonlinear regularization, we solve
the inverse problem when random noises defined as

ǫ
¯
P
β = random(′Normal′, 0, σP

β , N, 1), ǫ
¯
P
µ = random(′Normal′, 0, σP

µ , N0, 1), (5.14)

are added to the input functions β(t) and µ(x), respectively, where P represents the
percentage of noise with which the measured data (2.4) and (2.5) is contaminated. In
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Figure 4: (a) The L-curve criterion, (b) the objective function Fλ, and the numerical
results (−◦−) for (c) r(t), (d) s(x), (e) u(0, t), (f) u(0.1, t) obtained with the hybrid-order
regularization (5.12) with regularization parameter λ = 10−5 suggested by L-curve, for
exact data for Example 1. The corresponding analytical solutions are shown by continuous
line (—–) in (c)–(f).
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Figure 5: (a) The objective function Fλ and the numerical results for (b) r(t), (c) s(x),
(d) u(0, t), (e) u(0.1, t) obtained with the hybrid-order regularization (5.12) with regular-
ization parameter λ = 10−5 for P ∈ {1(−·−), 3(· · · ), 5(−−−)}% noisy data for Example
1. The corresponding analytical solutions are shown by continuous line (—–) in (b)–(e).
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(5.14), the standard deviations σP
β and σP

µ are given by

σP
β = P × max

t∈[0,T ]
|β(t)|, σP

µ = P × max
x∈[0,L]

|µ(x)|. (5.15)

Then β
¯
and µ

¯
in (4.3) are replaced by their noisy perturbations

β
¯

P = β
¯
+ ǫ
¯
P
β , µ

¯

P = µ
¯
+ ǫ
¯
P
µ . (5.16)

The numerical results obtained with λ = 10−5, (suggested by the L-curve criterion) are
illustrated in Figure 5. From Figure 5(a) it can be seen that convergence of the objective
functional (5.12) is rapidly achieved within 15-16 iterations for P ∈ {1, 3, 5}%. Further-
more, Figures 5(b)–5(e) show that stable and accurate numerical results are obtained for
all amounts of noise P . Also, as expected, the numerical solutions become more accurate
as the amount of noise P decreases.

5.2 Example 2

In Example 1, all conditions for the existence and uniqueness of Theorem 1 were satisfied.
We now consider an example which has the analytical solution, [12],

u(x, t) = (e3t − e−t) cos(x), (x, t) ∈ DT = [0, π]× [0, 0.3], (5.17)

r(t) = e3t, s(x) = 4 cos(x), t ∈ (0, 0.3), x ∈ (0, π), (5.18)

where T = 0.3, L = π. One can easily check that the homogeneous Neumann conditions
(2.3) are satisfied and that the initial condition (2.2) is homogeneous and given by (5.3).
Taking also X0 = 0.75 we obtain that the input data (2.4)–(2.6) are given by











β(t) = u(0.75, t) = (e3t − e−t) cos(0.75),

µ(x) = u(x, 0.3) = (e0.9 − e−0.3) cos(x),

α = s(0.75) = 4 cos(0.75).

(5.19)

From (5.3) and (5.19) we have α = d = 4 cos(0.75) 6= 0, ϕ(x) ≡ 0, m = e0.9 6= 0,
θ(x) = (e0.9 − e−0.3) sin(x), λ1 = 5.3719, λ2 = 0.2518, λ3 = 24.928, z0 = −8.6813,
λ4 = 14.654. One can then observe that the conditions (i) and (ii) of Theorem 1 are
satisfied, but the condition (iii) has been violated. Whilst a solution obviously exists,
as given by equations (5.17) and (5.18), one cannot guarantee yet that this solution is
unique.

We have solved first the direct problem given by equations (2.1) (with r and s given
by (5.18)), (2.3) and (5.3) using the BEM with various numbers of boundary elements
N = N0 ∈ {5, 10, 20} and the numerical results for β(t) and µ(x) presented in Figure
6 show rapid convergence and excellent agreement with the analytical solution (5.19).
Afterwards, we have solved the inverse problem given by equations (2.1), (2.3), (5.3) and
(5.19) in order to retrieve the temperature u(x, t) and the heat source components r(t)
and s(x) given analytically by equations (5.17) and (5.18), respectively. We have taken
N = N0 = 20 boundary elements and the arbitrary initial guesses r

¯0
= 0

¯
and s

¯0
= 0

¯
.

We first consider the case of exact data. The convergence of the unregularized objective
function F0 achieved within 56 iterations using the lsqnonlin routine with TolFun = TolX
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Figure 6: The analytical (—–) and numerical results for (a) β(t) and (b) µ(x) obtained
using the BEM for the direct problem with N = N0 ∈ {5(− · −), 10(· · · ), 20(− − −)},
for Example 2.

= 10−10 is illustrated in Figure 7(a). Also, the RMSEs (5.1) and (5.2) of solutions r
and s are shown in Figure 7(b). The numerical solutions for r and s obtained after 56
iterations are shown by dash-dot line (− · −) in Figures 7(c) and 7(d), respectively. Very
good agreement between the numerical and analytical solutions for s can be observed,
whilst the numerical solution for r is stable but slightly away from the analytical solution.
We then look more closely at Figure 7(b) and observe that the minimum of RMSEs is at
iteration 31 instead of 56. Therefore, we have tried solving the inverse problem with the
fixed iteration at 31, and the numerical results become more accurate, as illustrated by
the circle markers (◦ ◦ ◦) in Figures 7(c) and 7(d). Further, we have applied the hybrid-
order regularization procedure (5.12) with the regularization parameter λ = 2 × 10−4

(chosen by the trial and error) and the results are shown in Figure 8. Figure 8(a) displays
the convergence of the regularized functional (5.12) achieved within 28 iterations. Also,
results for RMSEs and the solutions for r and s are shown in Figures 8(b)–8(d). From
Figure 8(b) one can see that the minimum of the RMSEs occurs after 23 iterations. By
comparing Figures 7 and 8 one can conclude that the inclusion of some small regularization
yields slightly more accurate and stable results.

Table 3: The RMSEs (5.1) and (5.2) for r(t) and s(x), for the noise levels δ ∈ {0, 0.01, 0.1},
for Example 2.

Noise level λ No. of iterations r(t) s(x)

No noise

0 56 6.3068E-2 1.5492E-1
0 31 (fixed) 2.6668E-2 1.4751E-1

2E-4 28 5.6471E-2 1.1003E-1
2E-4 23 (fixed) 1.9713E-2 6.4412E-2

δ = 0.01
4E-4 27 6.3004E-2 1.0886E-1
4E-4 21 (fixed) 2.8829E-2 6.5281E-2

δ = 0.1 2 17 5.2212E-2 3.0714E-2
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Figure 7: (a) The objective function F0, (b) the RMSEs (5.1) and (5.2) for r(t) (−−−)
and s(x) (· · · ) obtained with no regularization for exact data, and the numerical results for
(c) r(t) and (d) s(x) obtained using the minimization process after 56 unfixed iterations
(− · −), and 31 fixed iterations (◦ ◦ ◦), for Example 2. The corresponding analytical
solutions (5.18) are shown by continuous line (—–) in (c) and (d).

Next, we consider the stability of the numerical solution when the noise is present in
the input data (2.4) and (2.5). As in [12], the noise was defined by































βǫ(t̃i) = β(t̃i)



1 +
δ

√

∑N
i=1 β

2(t̃i)
rand(i)



 , i = 1, N,

µǫ(x̃k) = µ(x̃k)



1 +
δ

√

∑N
k=1 µ

2(x̃k)
rand(k)



 , k = 1, N0,

(5.20)

where rand(·) is a random variable generated by the MATLAB command from a normal
distribution with mean zero and unit standard deviation, and δ represents the noise level.
Remark that the noise (5.20) is multiplicative, whilst the noise in (5.16) is additive. For
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Figure 8: (a) The objective function Fλ, (b) the RMSEs (5.1) and (5.2) for r(t) (−−−)
and s(x) (· · · ) obtained using the hybrid-order regularization (5.12) with regularization
parameter λ = 2 × 10−4 for exact data, and the numerical results for (c) r(t) and (d)
s(x) obtained using minimization process after 28 unfixed iterations (− ·−), and 23 fixed
iterations (◦ ◦ ◦), for Example 2. The corresponding analytical solutions (5.18) are shown
by continuous line (—–) in (c) and (d).

δ = 0.01, Figure 9 illustrates the results obtained using the hybrid-order regularization
(5.12) with regularization parameter λ = 4 × 10−4 (found by the trial and error). The
convergence of the regularized objective function achieved within 27 iterations is shown
in Figure 9(a), whilst the minimum RMSEs of r and s occur after 21 iterations, as can
be seen in Figure 9(b). Numerical solutions for r and s obtained after 27 (unfixed) and
21 (fixed) iterations are displayed in Figures 9(c) and 9(d), respectively. As expected, the
conclusions from Figure 9 obtained for a low level of noise δ = 0.01 are very much the
same as the those from Figure 8 obtained for no noise δ = 0. From both Figures 8(c),
8(d) and 9(c), 9(d) one can observe that the numerical results are accurate and stable.
Furthermore, there is little difference in the results obtained whether we stop (fix) the
iteration process at the minimum of the RMSEs shown in Figures 8(b) and 9(b) or, if

18



we let the iteration process running until converge of the regularized objective function is
achieved.
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Figure 9: (a) The objective function Fλ, (b) the RMSEs (5.1) and (5.2) for r(t) (−−−)
and s(x) (· · · ) obtained using the hybrid-order regularization (5.12) with regularization
parameter λ = 4×10−4 for noise level δ = 0.01, and the numerical results for (c) r(t) and
(d) s(x) obtained using the minimization process after 27 unfixed iterations (− · −), and
21 fixed iterations (◦ ◦ ◦), for Example 2. The corresponding analytical solutions (5.18)
are shown by continuous line (—–) in (c) and (d).

Next, we consider a large amount of noise, such as δ = 0.1, included in (5.20) and the
numerical results are shown in Figure 10. First, one can observe from Figure 10(a) that
the convergence of the objective function (5.12) is rapidly achieved within 17 iterations
and the monotonic decreasing curve has a somewhat different shape than that recorded
in Figure 8(a) for no noise δ = 0 or in Figure 9(a) for a low amount noise δ = 0.01.
Also, interestingly, unlike in Figures 8(b) and 9(b) where the RMSEs (5.1) and (5.2) show
a minimum before the iteration process has finished, in Figure 10(b) no such minimum
occurs. Therefore, in Figures 10(c) and 10(d) we present only numerical results for r
and s, respectively, obtained after 17 (unfixed) iterations. From these figures it can be
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Figure 10: (a) The objective function Fλ, (b) the RMSEs (5.1) and (5.2) for r(t) (−−−)
and s(x) (· · · ) obtained using the hybrid-order regularization (5.12) with regularization
parameter λ = 2 for noise level δ = 0.1, and the numerical results (− · −) for (c) r(t)
and (d) s(x) obtained using the minimization process after 17 (unfixed) iterations, for
Example 2. The corresponding analytical solutions (5.18) are shown by continuous line
(—–) in (c) and (d).

seen that the numerical solutions are stable, with an unexpected very high accuracy in
predicting the s component in Figure 10(d). For completeness and clarity the RMSEs
(5.1) and (5.2) of Figures 7(b)–10(b) are given in numbers in Table 3. From this table and
also, from Figure 10(b) it can be seen that for δ = 0.1 the component s(x) is predicted
more accurately than the r(t) component, whilst for δ ∈ {0, 0.01} in Figures 7(b), 8(b)
and 9(b) this prediction is reversed.

Finally, we report that the numerical results presented in this subsection for Example
2 are comparable in terms of accuracy and stability with the numerical results obtained
recently in [12] using a different method of successive approximants previously developed
in [11].
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5.3 Example 3

The previous examples possessed an analytical (smooth) solution available explicitly and
they were tested in order to verify the accuracy and stability of the numerical method
employed. In this subsection, we consider a severe test example represented by the non-
smooth source components

r(t) =

{

t, 0 ≤ t ≤ 1/2

1− t, 1/2 < t ≤ 1 = T
, s(x) =

{

x, 0 ≤ x ≤ 1/20

0.1− x, 1/20 < x ≤ 1/10 = L
, (5.21)

where L = 1/10, T = 1, X0 = 1/20. We also take the homogeneous initial temperature
(5.3). This example does not have an analytical solution for the temperature u(x, t)
readily available. Therefore, in such a situation the data (2.4) and (2.5) is simulated
numerically by solving the direct problem (2.1) with the multiplicative source given by
the product of the functions in (5.21), subject to the homogeneous boundary and initial
conditions (2.3) and (5.3). The BEM numerical solutions for the data β(t) = u(1/20, t)
and µ(x) = u(x, 1) are shown in Figure 11 for various numbers of boundary elements
N = N0 ∈ {10, 20, 40}. From this figure the convergence of the numerical solution, as the
number of boundary elements increases, can be observed.
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Figure 11: The numerical results for (a) β(t) and (b) µ(x) obtained using the BEM for
the direct problem with N = N0 ∈ {10(− · −), 20(· · · ), 40(−−−)}, for Example 3.

Next we consider the inverse problem given by equations (2.1), (2.3), (2.6) with α =
s(1/20) = 1/20 specified, (5.3), and the additional measured data (2.4) and (2.5) which
has been simulated numerically in Figure 11. We pick from Figure 11 the numerical BEM
solutions obtained with N = N0 = 20 and we further perturb this data with noise, as in
(5.16). We took as initial guesses r

¯0
= s
¯0

= 0, and we initiated the iterative minimization
process of the hybrid regularization functional (5.12), as described in Example 1. The
numerical results obtained with λ = 2 × 10−4 (found by trial and error) are shown in
Figure 12 for P = {1, 5, 10}% noise generated as in (5.16). From Figure 12(a) it can be
seen that the convergence of the functional (5.12) is rapidly achieved within 7-8 iterations
using the lsqnonlin routine with TolFun = TolX = 10−6. Also, Figures 12(b) and 12(c)
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Figure 12: (a) The objective function Fλ and the numerical results for (b) r(t) and (c)
s(x) obtained with the hybrid-order regularization (5.12) with regularization parameter
λ = 2 × 10−4 for P = 1%(− · −), P = 5%(· · · ) and P = 10%(− − −) noisy data for
Example 3. The corresponding analytical solutions (5.21) are shown by continuous line
(—–) in (b) and (c).

show that stable and accurate numerical solutions for both r(t) and s(x) are obtained for
all the amounts of noise P .

In closure, although not illustrated, we report that the same good performance has
been recorded when attempting to reconstruct even discontinuous source components.

6 Conclusions

In this paper, inverse source problems with homogeneous Neumann boundary conditions
together with specified interior and final time temperature measurements have been con-
sidered to find the space- and the time-dependent components of a multiplicative source
function. The numerical discretization was based on the BEM combined with a Tikhonov
regularization procedure. For a wide range of test example, the obtained results indicate
that stable and accurate numerical solutions have been achieved. The identification of

22



both multiplicative r(t)s(x) and additive φ(t) + ψ(x) components of space- and time-
dependent sources of the form r(t)s(x) + φ(t) + ψ(x) can also be considered, [11], but its
numerical implementation is deferred to a future work.
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