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Abstract 

A comprehensive parametric study has been carried out to investigate the seismic performance of 

multi-storey shear buildings considering soil-structure interaction (SSI). More than 40,000 SDOF and 

MDOF models are designed based on different lateral seismic load patterns and target ductility 

demands to represent a wide range of building structures constructed on shallow foundations. The cone 

model is adopted to simulate the dynamic behaviour of an elastic homogeneous soil half-space. 1, 5, 10, 

15 and 20-storey SSI systems are subjected to three sets of synthetic spectrum-compatible earthquakes 

corresponding to different soil classes, and the effects of soil stiffness, design lateral load pattern, 

fundamental period, number of storeys, structure slenderness ratio and site condition are investigated. 

The results indicate that, in general, SSI can reduce (up to 60%) the strength and ductility demands of 

multi-storey buildings, especially those with small slenderness ratio and low ductility demands. It is 

shown that code-specified design lateral load patterns are more suitable for long period flexible-base 

structures; whereas a trapezoidal design lateral-load pattern can provide the best solution for short 

period flexible-base structures. Based on the results of this study, a new design factor RF is introduced 

which is able to capture the reduction of strength of single-degree-of-freedom structures due to the 

combination of SSI and structural yielding. To take into account multi-degree-of-freedom effects in SSI 

systems, a new site and interaction-dependent modification factor RM is also proposed. The RF and RM 

factors are integrated into a novel performance-based design method for site and interaction-dependent 

seismic design of flexible-base structures. The adequacy of the proposed method is demonstrated 

through several practical design examples.  
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1 Introduction 

While flexible foundations can affect the seismic responses of structures, current seismic codes 

either allow engineers to take advantage of Soil-Structure Interaction (SSI) by using a reduced response 

spectrum [1], or permit SSI effects to be neglected for common building structures [2]. This concept 

stems from the fact that the SSI effect increases the period of the system, which usually leads to a 

reduced design acceleration spectrum, and also provides additional energy dissipation capacity due to 

the soil material damping and radiation [3]. 

Several studies have been performed to investigate the effects of SSI on the seismic response of 

Single-Degree-of-Freedom (SDOF) structures using elasto-plastic oscillators supported by soil springs. 

Some studies [4, 5] have reported beneficial SSI effects, while others [6, 7] have shown opposite results. 

It has been generally accepted that the predominant period of the site motion plays an important role in 

SSI analyses [8, 9]. Beneficial SSI effects have been found for structures with natural periods higher 

than the site period, whereas detrimental effects are observed in structures whose periods are shorter 

than the site period. This implies that neglecting SSI effects in the seismic design procedures does not 

necessarily lead to conservative design solutions.  

While a number of investigations have been conducted to study the strength-ductility relationship of 

SDOF SSI systems [10-12], less attention has been paid to the inelastic strength demands of Multi-

Degree-of-Freedom (MDOF) SSI systems. Santa-Ana and Miranda [13] studied the base shear strength 

relationship between MDOF and their corresponding SDOF systems using site-dependent ground 

motions. However, the compliance of the foundation was not included in their analysis. In a more recent 

study, Ganjavi and Hao [14] investigated the strength-ductility relationship of flexible-base multi-storey 

shear buildings subjected to a group of 30 real earthquake ground motions recorded on alluvium and 

soft soil deposits. Based on their results, a new equation was proposed to estimate the strength reduction 

factor for MDOF SSI systems. Based on a study on seismic response of SSI systems utilising a 

nonlinear Winkler-based model, Raychowdhury [15] concluded that foundation nonlinearity can reduce 
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the ductility demands of buildings. Aydemir and Ekiz [16] studied the ductility reduction factor for 

flexible-base multi-storey frames subjected to 64 earthquake ground motions that were categorised into 

4 groups according to the U.S. geological survey site classification system. They observed that the 

ductility reduction factor values for flexible-base frame systems are generally smaller than the code-

specified values, especially for softer soil conditions.  

As is well known, seismic design of building structures in modern codes and provisions is based on 

elastic response spectra derived for lightly damped fixed-base SDOF oscillators. Therefore, the code 

design response spectra cannot be directly used for seismic design of flexible-base structures with SSI 

effects. To address this issue, there is a need to provide a link between inelastic seismic demands of 

flexible-base multi-storey buildings and code design spectra for fixed-base SDOF systems. For the first 

time, this study aims to provide such a link through a comprehensive parametric analysis using an 

analytical model to study the seismic response of flexible-base inelastic multi-storey buildings under 

design spectrum-compatible earthquakes. To this end, a large number of nonlinear 1, 5, 10, 15 and 20-

storey SSI models, representing a wide range of buildings founded on shallow foundations, are utilised 

to assess the seismic performance of flexible-base structures subjected to design spectrum-compatible 

earthquakes corresponding to different soil conditions. The effects of soil stiffness, design lateral load 

pattern, fundamental period, number of storeys, structure slenderness ratio and site condition on the 

structural strength and ductility demands are investigated. The results of the SSI systems subjected to 

code spectrum-compatible earthquakes in the parametric study are then used to develop a novel 

performance-based design approach for seismic design of flexible-base multi-storey buildings 

considering the effects of SSI and site conditions. By introducing new strength and MDOF reduction 

factors for SSI systems, the suggested design methodology only requires information from fixed-base 

SDOF elastic design spectra that are available from seismic design guidelines. The proposed design 

methodology is, therefore well suited for practical applications.  

The paper is organised into seven main sections. An outline of the adopted analysis methods is 

presented first, followed by an assessment the effect of influential parameters. The limitations of 

existing strength reduction and MDOF modification factors are then illustrated. The following sections 

present the newly proposed strength reduction and MDOF modification factors, which are then used in 
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a novel approach for performance-based seismic design of MDOF SSI systems. Finally, the efficiency 

of the proposed method is demonstrated through several design examples.  

 

2 Modelling and Assumptions 

2.1 Soil-Structure Interaction Model 

Shear-building models, despite some limitations, have been widely adopted in seismic analyses of 

multi-storey buildings (e.g. [17, 18]) due to their capability of capturing both nonlinear behaviour and 

higher mode effects without compromising the computational effort, which makes them suitable for 

large parametric studies. In shear-building models, each floor is idealised as a lumped mass m 

connected by elastic-perfectly-plastic springs that only experience shear deformations when subjected 

to lateral forces, as shown in Fig. 1(a). The height-wise distribution of stiffness and strength in shear 

building models are assumed to follow the same pattern as storey shear forces derived from the design 

lateral load pattern [17, 18]. This implies that the yield displacement (= storey strength/ storey stiffness) 

is considered to be constant at all storey levels. It should be noted that the design parameters to define 

shear-building models can be obtained based on the results of a single push-over analysis on the fixed-

base structure [18]. To accomplish this, a pushover analysis is conducted on the fixed-base frame 

structure and the relationship between the storey shear force and the total inter-storey drift is extracted. 

The nonlinear force-displacement relationships are then replaced with an idealised bi-linear relationship 

to calculate the nominal stiffness, strength, and yield displacement of each storey. The storey ductility 

can then be calculated as the ratio of maximum inter-storey drift to the storey yield displacement. The 

ductility demand of the multi-storey building is defined as the maximum of the inter-storey ductility 

ratios. In this study, the total mass of each building was uniformly distributed along its height, and the 

height h between floors was assumed to be 3.3m. Rayleigh damping was applied to the shear-building 

models with a damping ratio of 5% assigned to the first mode and to the mode at which the cumulative 

mass participation exceeded 95%. 

A discrete-element model was used to simulate the dynamic behaviour of a rigid circular foundation 

overlying a homogenous soil half-space. This model is based on the idealization of homogeneous soil 
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under a base mat by a semi-infinite truncated cone [19], and its accuracy has been found to be adequate 

for practical applications compared to more rigorous solutions [20]. The stiffness of the supporting soil 

was modelled through a sway and rocking cone model (see Fig. 1(b)), whose properties are given by 

Wolf [21] as follows: 
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where kh, kθ and ch, cθ are the equivalent stiffness (denoted by k) and radiation damping coefficient 

(denoted by c) for the horizontal (denoted with subscript h) and rocking (denoted with subscript θ ) 

motions, respectively. The homogeneous soil half-pace beneath the circular surface foundation with a 

radius r is defined by its mass density r, Poisson�s ratio ν, shear wave velocity Vs and dilatational wave 

velocity Vp. For simplicity, each floor of the superstructure was assumed to have an equivalent radius r, 

so that the centroidal moment of inertia of each floor and the foundation are, respectively, J=0.25mr
2
 

and Jf=0.25mfr
2
, where mf is the mass of the foundation, which was set to ten percent of the total mass 

of the superstructure. 
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Fig. 1. (a) Typical shear building model; and (b) Simplified SSI model 

An additional rotational degree of freedom ϕ, with its own mass moment of inertia Mϕ, is 

introduced so that the convolution integral embedded in the foundation moment-rotation relation can be 
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satisfied in the time domain [21]. It should be noted that for nearly incompressible soil (i.e. 1/3< ν ч1/2), 

the use of Vp would overestimate the rocking radiation damping. This is remedied by adding a mass 

moment of inertia Mθ to the rocking degree of freedom and replacing Vp by 2Vs [21]. The material 

damping of the soil half-space is also modelled by augmenting each of the springs and dashpots with an 

additional dashpot and mass, respectively [22]. In this study, the soil material damping ratio ξg=5% was 

specified at the lowest Eigen-frequency ω0 of an SSI system, which can be calculated iteratively 

according to Veletsos and Nair [23] and Luco and Lanzi [24]. Frequency-dependent impedance 

functions proposed by Veletsos and Verbic [25] were used to derive ω0, which was solved iteratively by 

increasing the frequency of vibration from zero (i.e. static condition) to 10Vs/r until both frequencies 

were equal within 0.1 percent (i.e. |ω-ωssi|≤0.001). It is worth mentioning that some seismic guidelines 

(e.g. [26, 27]) enable the strain-compatible shear wave velocities of soil to be determined from their 

small-strain counterparts by using a site and earthquake intensity dependent stiffness degradation 

relationship. In this way, soil nonlinearity can be approximated using the equivalent linear method if the 

strain-compatible damping is also available.  

2.2 Design Load Patterns, Fundamental periods and Earthquakes 

The lateral seismic force distributions in most building codes (e.g. [28, 29]) follow a pattern which 

is similar to the first-mode deflected shape of lumped MDOF elastic systems. In general, the design 

lateral force Fi at storey i can be expressed as:  
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where V is the total design base shear; wi and hi are the effective weight and height of the floor at level i 

from the ground, respectively; N is the number of storeys; and the exponent k is a function of the 

building�s fundamental period (Tn) which is mainly used to take into account higher mode effects [30]. 

In the present study, six different lateral load patterns were considered for seismic design of multi-

storey shear buildings. A comparison of the distributions of these lateral seismic forces is shown in Fig. 

2(a) with their k values presented in Table 1. Fig. 2(b) illustrates the height-wise storey shear force 

distributions of a 10-storey building with Tn = 1 sec for the adopted load patterns.  
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Table 1. Lateral load patterns used in this study 

Lateral load pattern 
 

Exponent k 

Concentric 
 

N/A (A single load applied at roof) 

Rectangular 
 

0 

Trapezoidal 
 

nT2.05.0 +  

Eurocode 8 
 

1 

IBC-2012 









−+
>
<

nn

n

n

TotherT

Tif

Tif

),5.0(5.01

5.2,2

5.0,1

 
 

Parabolic 
 

nT8.01 +  

 

According to ASCE 7-10 [31], the fundamental period of an MDOF structure can be approximated 

by using the following formula: 

 
x

tottn hCT =                                                               (5) 

where htot is the total height of the structure, while the coefficients Ct and x are related to the type of the 

structural system, as presented in Table 2.  

h
i/

h
to

t

Lateral force/Base shear

0 0.1 0.2 1

Concentric

Rectangular

Trapezoidal

EuroCode 8

IBC 2012

Parabolic

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.2 0.4 0.6 0.8 1 1.2

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
i/

h
to

t

Storey shear/Base shear
 

Fig. 2. Comparison of (a) lateral force distributions; and (b) storey shear force distributions for the 

adopted design load patterns. Examples are shown for the case with N=10 and Tn=1 sec. 

 

Table 2. Ct and x parameters for different structural systems according to ASCE 7-10 [31] 

Structural Type Ct x 

1 Steel moment-resisting frames 0.0724 0.8 

2 Concrete moment-resisting frames 0.0466 0.9 

3 Steel eccentrically braced/Steel buckling-restrained braced frames 0.0731 0.75 

4 All other structural systems 0.0488 0.75 
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In the current design codes, the soil sites are generally classified into several broad categories 

according to an average shear wave velocity measured from the top surface of a site to a depth of tens 

of meters. For example, in IBC-2012 [28] the average shear wave velocity of the top 30 meters of a soil 

deposit, Vs,30, is used to identify different soil classes, as shown in Table 3. In this study, to investigate 

the effect of site condition on the strength-ductility relationship of SSI systems, three sets of spectrum-

compatible synthetic earthquakes were used to represent the IBC-2012 design response spectra 

corresponding to soil classes C, D and E (see Table 3). Each set of the synthetic earthquakes consists of 

fifteen seismic excitations with a Peak Ground Acceleration (PGA) of 0.4g. These ground motions were 

generated artificially by using the SIMQKE program [32] based on pseudo-random phasing with a 

time-varying modulating function. Similar records were also used by Hajirasouliha and Pilakoutas [30] 

to identify the optimum design load distribution for seismic design of regular and irregular shear-

buildings. It is shown in Fig. 3 that the average acceleration response spectrum of synthetic earthquakes 

in each set compares very well with its corresponding IBC-2012 design spectrum. The characteristic 

periods of the design ground motions T0 are also shown in Fig. 3 with the values given in Table 3. This 

period represents the transition point from acceleration-controlled to the velocity-controlled segment of 

a 5% damped design spectrum. 
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Fig. 3. Comparison of mean response spectra of 15 synthetic earthquakes with IBC-2012 code response 

spectra for site classes C, D and E 
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Table 3. Site soil classifications according to IBC-2012. 

Site class Soil profile name Vs,30 (m/s) T0 (sec) ν 

A Hard rock >1500 N/A N/A 

B Rock 760-1500 N/A N/A 

C Very dense soil/soft rock 360-760 0.56 0.33 

D stiff soil 180-360 0.60 0.40 

E soft soil <180 1.10 0.50 

2.3 Modelling Parameters and General Procedures 

The overall dynamic response of a soil-structure system is dependent on the properties of the 

structure compared to those of the soil. This interdependence can be described by using the following 

dimensionless parameters: 

1. The structure-to-soil stiffness ratio a0, which is defined as: 

  
s

n

V

H
a

ω
=0                                                          (6) 

where ωn=2π/Tn is the circular frequency of the fixed-base structure corresponding to its first mode of 

vibration; ܪഥ is the effective height of the structure that can be approximated as 0.7 times the total height 

of the structure htot, according to the ATC-40 provisions [26]; and Vs= Vs,30 is the average shear wave 

velocity of the top 30 meters of the soil deposit.  

2. The slenderness ratio of the structure s, which is given by:  

 
r

H
s =                                                                      (7) 

3. The structure-to-soil mass ratio ഥ݉ : 

 
2rh

m
m

tot

tot

r
=                                                             (8) 

which is set equal to 0.5 for common buildings [11].  

It can be noted that the structure-to-soil stiffness ratio a0, which measures the stiffness of the 

structure relative to that of the underlying soil, is a function of Vs , which is also used to classify soil 

sites in most current seismic codes (see Table 3). Fig. 4 illustrates the practical range of a0 for various 

types of multi-storey buildings located on different site classes according to IBC-2012 [28]. The results 
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are presented as a0 versus Vs,30 on a log-log scale, while the fundamental period of each structural 

system is estimated based on Eq. (5). To cover a wide range of SSI conditions, the abscissa in Fig. 4 

starts at 90 m/s representing the average value of site class E, and ends at 1500 m/s which represents a 

fixed-base condition for common buildings located on site class A. It is seen from Fig. 4 that, for a 

given shear wave velocity, a greater a0 value is always expected for tall buildings. While the maximum 

value of a0 for frame structures is about 2, it is shown that a0 can increase to up to 3 for other structural 

systems. Previous studies demonstrated that the effect of SSI on the seismic performance of common 

structures is usually negligible when a0<0.5 (e.g. [33]). Therefore, this study will mainly focus on a0 

values of 0, 1, 2 and 3 and site classes C, D and E (i.e. very dense to soft soil).    

90 180 360 760 1500
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1.5
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2.5
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Concrete moment-resisting frames

Steel buckling-restrained brace / 
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20 Storey

5 Storey
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Vs,30 (m/s)

a
0

 
Fig. 4. Practical range of a0 for various types of structures located on different soil sites according to 

IBC-2012 [28].  

To investigate the influence of each design parameter on the seismic response of SSI systems, 1, 5, 10, 

15 and 20-storey shear-building models with s=1, 2, 3 and 4 were subjected to the code spectrum-

compatible synthetic earthquakes, considering four levels of inelasticity µ=2, 4, 6 and 8. The mean 

response of the structures was obtained by averaging the results for each set of synthetic records 

representing a specific site-class. For shallow foundations subjected to horizontal motions of a 

vertically propagating shear wave, kinematic interactions can reasonably be ignored [34]. As a result, 

the ground motions were directly applied to the foundation. It should be emphasised that while the 

range of some design parameters investigated in this paper may be much wider than their practical 

values, they are used for comparison purposes. Only the practical design values shown in Fig. 4 were 

used to develop the design methodology for flexible-base structures in this study. 
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The authors developed a programme in MATLAB [35] to conduct nonlinear dynamic analyses of 

MDOF SSI systems. The results were obtained in the time domain using the Newmark�s time-stepping 

method [36]. In order to solve the nonlinear equations, the modified Newton-Raphson�s iterative 

scheme was utilised. A large number of verification analyses were performed to prove the validity of 

the models using various methods. The nonlinear dynamic response of the flexibly-supported structures 

was calculated over a wide range of fixed-base fundamental periods from 0.1 to 3 sec. The general 

procedure for the development of the SSI models and the calculation of the strength demands is 

illustrated in Fig. 5. For each storey in a given simulation, the peak storey ductility ratio was calculated 

as the maximum shear deformation divided by the yield deformation. The maximum value of the peak 

storey ductility ratios was used as the ductility demand of an MDOF building, as done by Santa-Ana 

and Miranda [13], Moghaddam and Mohammadi [37], and Ganjavi and Hao [38]. It should be 

mentioned that this ductility demand excludes the effects of the rigid body movements caused by the 

translation and rotation of the foundation and, therefore, can directly reflect the expected damage of the 

superstructure. In shear building structures, any increase in structural material is normally accompanied 

by an increase in storey strength and, therefore, total structural weight could be considered proportional 

to the sum of all storey shear strengths [20]. In this study, an iterative method was used to calculate 

appropriate strength demands Ftot (defined as the sum of the storey strengths) for the SSI systems to 

achieve a prescribed ductility µt, while maintaining the initial pattern of the strength distribution. It 

should be noted that storey ductility does not increase monotonically when reducing the strength [9], 

which means that there could be more than one strength satisfying a given ductility. In this case, only 

the highest strength was considered [39].  

11 

 



Create the soil-structure model Iterate  to calculate the strength demand

Distribute stiffness ki to each storey 

[Fig. 2(b)] in order to satisfy Tn

Select N, a0, s, ν and Tn values

Assign 5% Rayleigh 

damping to the building

Calculate input parameters for the 

cone model  

Set a target 

ductility µt

Assign an initial strength Ftot and 

distribute to each storey [Fig. 2(b)]

Dynamic response-history analysis 

with the selected ground motion

Calculate the maximum 

storey ductility µ

|µ -µt|ч  

Tolerance 

Adjust 

Ftot

Output strength demand 

Yes

No

Calculate mtot [Eq.(8)]  and distribute 

uniformly to each storey

 

Fig. 5. Flowchart showing the general procedure for evaluation of strength demands of flexible-base 

MDOF buildings.  

 

3 Strength Demands of MDOF SSI Systems 

In this section, the effects of lateral seismic design load pattern, structure-to-soil stiffness ratio, 

structural slenderness and site conditions on the strength-ductility relationship of multi-storey flexible-

base buildings are investigated.  

3.1 Effects of Design Lateral Load Pattern  

The lateral seismic design load pattern can significantly influence the stiffness and strength 

distributions in multi-storey buildings, and hence the displacement and strength demands under seismic 

excitations. Fig. 6 compares the total strength demand Ftot of fixed-base (a0=0) and flexible-base (a0=3) 

10-storey buildings (s=2) designed with different load patterns. Again, Ftot was calculated by summing 

the strength demands of all storeys. It is clear from Fig. 4 that for a typical 10-storey building (a0 values 

between 5 and 20-storey limits), a0=3 corresponds to a soil condition of site class E. Therefore, the 

results in Fig. 6 are the average values from the fifteen spectrum-compatible earthquakes corresponding 

to Class E. Results for other slenderness ratios and site classes showed similar trends to those presented 

in Fig. 6. For better comparison, the strength demands are normalised by the product of the total mass 

of the structure and PGA. The shaded areas on the graphs in Fig. 6 represent the practical range of the 

fundamental period of a 10-storey building with different structural systems calculated using Eq. (5).  
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Fig. 6 shows that the strength demands of the buildings designed according to the concentric and 

rectangular load patterns are always higher than those corresponding to the other load patterns, 

especially for lower values of fundamental period. Within the practical range of the fundamental period 

of a typical 10-storey building (i.e. shaded areas), using the concentric and rectangular load 

distributions can result in up to 1.68 and 2 times higher strength demands, respectively, compared to 

code-based load patterns such as IBC-2012 and Eurocode 8. It should be mentioned that this 

observation is opposite to conclusions made by Ganjavi and Hao [38], where the concentric pattern was 

found to yield the lowest strength demand. The reason for this difference is attributed to different 

definitions of strength demand used in the two studies. The current study calculated the total strength as 

the sum of all storey strengths, whereas Ganjavi and Hao used the base shear strength that corresponds 

only to the strength of the first storey. The total strength demand that is used in the current study can be 

considered proportional to the total structural weight of the shear building [30] and is, therefore, a more 

appropriate parameter to compare the seismic performance of buildings designed according to different 

lateral load patterns.  
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Fig. 6. Total strength demands of (a) fixed-base and (b) flexible-base 10-storey buildings designed 

according to different lateral load patterns, Soil Class E, s=2. 
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Although strength demands corresponding to parabolic, trapezoidal and code-based load patterns 

are not significantly different, especially for the SSI systems, the trapezoidal lateral load pattern is in 

general the most suitable for seismic design of nonlinear short period flexible-base structures (i.e. 

requires minimum total strength to satisfy a target ductility demand) and code-specified design patterns 

are more appropriate for structures with a fundamental period Tn>0.8 sec. This conclusion is in 

agreement with the results reported by Moghaddam and Hajirasouliha [40] for fixed-base shear-

buildings subjected to a group of natural earthquake excitations. 

Based on the concept of uniform damage distribution, it can be assumed that the uniform 

distribution of deformation demands is a direct consequence of the optimum use of material [30]. 

Therefore, the coefficient of variation of storey ductility demands (COVµ) can be used as a performance 

parameter to evaluate the effectiveness of different lateral load patterns. Fig. 7 compares the mean 

COVµ of fixed-base and SSI systems designed according to different load patterns under fifteen 

spectrum-compatible earthquakes corresponding to site class E. As expected, the concentric and 

rectangular patterns resulted in a much higher COVµ compared to other load patterns. Within the 

expected range of periods for 10-storey frames (i.e. shaded areas), the concentric pattern always led to 

the largest ductility dispersion, while the code patterns provided the best design solutions. 
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Fig. 7. Coefficient of variation of storey ductility for (a) fixed-base and (b) flexible-base 10-storey 

buildings designed according to different lateral load patterns, Soil Class E, s=2. 
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3.2 Effects of Structure to Soil Stiffness Ratio and Slenderness Ratio 

Fig. 8 compares the total strength demands of 10-storey buildings, designed according to IBC-2012 

load pattern, with fundamental periods ranging from 0.1 to 3 sec and target ductility demands µ=2 and 8 

for structure-to-soil stiffness ratios a0=0, 1, 2 and 3 (720 models in total). The shaded areas represent 

the expected periods of typical 10-storey frames according to ASCE 7-10 [31]. It should be noted that 

the selected ranges of the design parameters are only for comparison purposes; some cases do not 

represent practical scenarios. For example, as discussed in Section 2.3, a value of 3 for a0 is not suitable 

for common buildings located on soil site class C (see Fig. 4).   
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Fig. 8. Total strength demands of 10-storey structures (s=1) located on (a) class C, (b) class D and (c) 

class E for µ=2 and 8. 

 

Overall, the results shown in Fig. 8 indicate that increasing structure-to-soil stiffness ratio a0 

reduces the structural strength demands of SSI systems in comparison to their fixed-base counterparts, 

especially for lightly nonlinear systems. For instance, Fig. 8(c) shows that for a flexible-base building 
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with a fixed-base fundamental period of 1 sec, s=1, and a0=3, the total strength demand is reduced by 

60% compared to the situation without SSI (i.e. a0=0). This implies that considering SSI in the seismic 

design of typical multi-storey buildings can lead to more cost-effective design solutions with less 

structural weight. This beneficial effect, however, becomes less prominent for highly nonlinear 

structures and the difference between the results of fixed-base and flexible-base systems becomes less 

significant when structures undergo large inelastic deformations (i.e. µ>8). This observation is 

consistent with that made by Veletsos and Verbic [41] and Ghannad and Jahankhah [11], which can be 

explained by the fact that the energy dissipated by the soil medium would be negligible compared to 

that caused by plastic deformations of highly nonlinear structures. 

The effect of slenderness ratio on total strength demand of MDOF SSI systems is investigated in 

Fig. 9 for 10-storey buildings designed according to the IBC-2012 design load pattern. It is shown that, 

in general, slenderness ratio does not significantly affect the strength demands of inelastic systems, 

especially in the high period region (i.e. Tn>1sec). This effect is further reduced by increasing structural 

inelasticity level µ or by reducing the structural stiffness relative to that of the soil a0. On the contrary, 

for lightly nonlinear systems with high a0 values (e.g. a0=3, µ=2), the structures designed with s=1 

exhibit a lower total strength demand than those with higher slenderness ratio (s=2, 3 and 4), especially 

in the low period range. Previous studies showed that SSI systems with s=1 have a much higher 

effective damping ratio than those with greater slenderness ratios (e.g. s=2, 3 and 4), which is more 

pronounced in structures with higher structure-to-soil stiffness ratio a0 [23, 42]. Therefore, it is 

suggested that the difference caused by slenderness ratio in the total structural strength demands is 

mainly attributed to the effective damping of the SSI system ξssi, which increases as the slenderness 

ratio is reduced. The effective damping, however, makes a small contribution to the total energy 

dissipation when compared with that provided by large inelastic deformations, as described previously.    

4 SDOF DUCTILITY REDUCTION FACTOR, Rµ  

The ductility reduction factor Rµ for an SDOF system is generally defined as the ratio of the elastic 

to inelastic base shear corresponding to a target ductility demand. Based on this definition, the 

following equation can be used to calculate Rµ for an SDOF SSI system: 
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where VSDOF(Tn,a0,s,µ=1) and VSDOF(Tn,a0,s,µ= µt) are the required base shear demands for an SDOF 

structure to remain elastic and to achieve a target ductility of µt, respectively. Note that a0=0 

corresponds to a fixed-base condition, whereas a0>0 represents an SSI condition. The ductility 

reduction factor Rµ  in  Eq. (9) only relates to a strength reduction due to the inelastic hysteretic 

behaviour of the structure and, therefore, can be used for both fixed-base and flexible-base buildings.  

s=1 s=2 s=3 s=4

(a)

(b)

Tn (sec) Tn (sec)

(c) 0 1 2 3
0

2

4

6

8

10

12

0 1 2 3
0

2

4

6

8

10

12
0 1 2 3

0

2

4

6

8

10

12

0 1 2 3
0

2

4

6

8

10

12
0 1 2 3

0

2

4

6

8

10

12

0 1 2 3
0

2

4

6

8

10

12

a0=1   µ=2 a0=3   µ=2

F
to

t 
/(

m
to

tP
G

A
)

a0=1   µ=4 a0=3   µ=4

F
to

t 
/(

m
to

tP
G

A
)

a0=1   µ=6 a0=3   µ=6

F
to

t 
/(

m
to

tP
G

A
)

 

Fig. 9. Effect of slenderness ratio on total strength demands of 10-storey SSI systems on soil site class E 

for (a) µ=2, (b) µ=4 and (c) µ=6. 

Fig. 10 compares the ductility reduction factor of SDOF systems for different site classes 

considering various combinations of a0, s and µ. Results are averaged values for 15 synthetic spectrum-

compatible earthquakes corresponding to each site class. Generally, an ascending trend is observed for 

Rµ when increasing the fixed-base natural period Tn, especially in the low period range. This trend, 

17 

 



however, is less pronounced in the high period region. For the rigid-base systems (i.e. a0=0), the Rµ 

curves show two distinct segments that are separated by a transition point at a threshold period. The 

first segment corresponds to a monotonically increasing Rµ with Tn, whereas the second segment 

exhibits an oscillating Rµ around a maximum value, which is much less affected by Tn. This observation 

can be well described by a bi-linear approximation of Rµ versus Tn proposed by Vidic et al. [43], with 

the threshold period almost equal to the characteristic period T0.  
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Fig. 10. Effect of SSI on ductility reduction factor Rµ of SDOF structures located on different site 

classes considering three levels of ductility demands (a) µ=2, (b) µ=4 and (c) µ=8. 

For flexible-base systems shown in Fig. 10, the bi-linear approximation of Rµ spectra seems to 

provide reasonable results, but the threshold periods are considerably lower than T0, especially for 

systems with greater a0 values and higher slenderness ratios. This could be a result of period 

lengthening due to SSI, which causes the transition points to occur earlier in the spectra. It is observed 

that the ductility reduction factor Rµ decreases by increasing the a0 value, which was also reported by 
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Ghannad and Jahankhah [11], who concluded that using a fixed-base reduction factor to design a 

flexibly-supported structure is un-conservative. 

It should be noted that applying conventional Rµ-Tn relationships for seismic design of flexible-base 

structures may not be appropriate, since the slenderness ratio can lead to inconsistent results in Rµ 

spectra. For example, a higher slenderness ratio can either result in a larger (Fig. 10(c)) or a smaller (Fig. 

10(a, b)) Rµ factor for SSI systems with a0=2 and 3 in the long period range. This inconsistency can be 

addressed by presenting the ductility reduction factor in a Rµ versus Tssi format, where Tssi is the 

elongated period of an SSI system that can be calculated according to Maravas et al. [42]. Moreover, it 

was shown in Fig. 8 that the fixed-base and SSI systems practically lead to similar results for highly 

nonlinear structures. This is further verified in Fig. 11, which compares the mean base shear demand of 

SDOF systems with and without considering SSI effects. It is observed that the SSI effect can 

considerably reduce (up to 50 %) the base shear demands of lightly-nonlinear systems (i.e. µ=2), while 

it is almost negligible for highly-nonlinear systems (i.e. µ=8). It can also be noted that, in the short 

period range, flexible-base SDOF structures may experience a lager base shear than their fixed-base 

counterparts for the same level of ductility demand (see Fig. 11(b)). This can be explained by the fact 

that the effective damping ratio of an SSI system could be less than that of the structure in its fixed-base 

condition, especially for those having a higher slenderness ratio [23, 42].  

In an analogy to Rµ for SDOF systems, Ganjavi and Hao [14, 38] proposed that the base shear 

demand of nonlinear MDOF systems can be estimated from the base shear demand of their elastic 

counterparts through a ductility reduction factor given by: 
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where VMDOF(Tn,a0,s,µmax=µt) is the base shear strength of an MDOF structure to avoid the maximum 

storey ductility µmax exceeding the target value µt and VMDOF(Tn,a0,s,µmax=1) is the base shear strength 

demand of an MDOF system to remain elastic during the design earthquake. It should be noted that, 

considering the frequency dependence of the foundation stiffness in SSI systems, calculation of 
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VMDOF(Tn,a0,s,µmax=1) could be difficult for flexible-base MDOF structures and, therefore, Eq. (10) 

cannot be directly used in the seismic design process.  
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Fig. 11. Base shear demands of SDOF structures located on site class E. 

In view of addressing the above mentioned issues, section 5 presents a new strength reduction 

factor RF for SDOF systems based on a definition that is more suitable for performance-based seismic 

design of flexible-base structures, while in section 6 a site and interaction-dependent MDOF 

modification factor RM is introduced to account for the MDOF effects in SSI systems. 

  

5 SDOF STRENGTH REDUCTION FACTOR, RF  

Based on the above discussion, a more practical strength reduction factor definition RF is suggested 

in this study to use fixed-base SDOF elastic design spectra (e.g. from seismic design guidelines) for 

seismic design of nonlinear MDOF SSI systems. 
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Note that if a0=0, RF corresponds to Rµ for fixed-base structures (whose dynamic responses are not 

affected by s), which reflects the reduction only attributed to the nonlinear behaviour of the structures; 

while µt=1 leads to a Rµ associated with the reduction only due to the SSI effects (i.e. inelastic 

hysteretic behaviour of structures is excluded). Therefore, RF defined in Eq. (11) can be interpreted as a 
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strength reduction factor due to the combination of yielding and SSI effects. In this study, based on the 

results of more than 100,000 dynamic analyses of 7200 SDOF systems, the following equation is 

proposed to estimate the strength reduction factor RF: 
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where R is a function of ductility demand µ, structure-to-soil stiffness ratio a0, and slenderness ratio s, 

with its values presented in Table 4. T0 is the characteristic period of the design ground motions as 

shown in Fig. 3. The shape of RF spectra described by Eq. (12) was originally proposed by Vidic et al. 

[43] for design of inelastic fixed-base structures.  

Table 4. Proposed values for R in Eq. (12)  

R 
a0=0 a0=1 a0=2 a0=3 

s=1 s=2 s=3 s=4 s=1 s=2 s=3 s=4 s=1 s=2 s=3 s=4 s=1 s=2 s=3 s=4 

Soil class C 

µ=1 1.0 1.0 1.0 1.0 1.3 1.2 1.2 1.2 2.0 1.7 1.7 1.7 2.8 2.4 2.3 2.3 

µ =2 2.2 2.2 2.2 2.2 2.4 2.2 2.2 2.1 3.2 2.6 2.4 2.5 4.1 3.2 2.9 3.0 

µ =4 3.9 3.9 3.9 3.9 4.1 3.9 3.9 3.9 4.8 4.2 3.9 3.9 5.6 4.5 4.2 4.1 

µ =6 5.4 5.4 5.4 5.4 5.5 5.4 5.3 5.3 6.1 5.6 5.4 5.3 7.0 5.8 5.3 5.2 

µ =8 6.8 6.8 6.8 6.8 6.8 6.7 6.7 6.7 7.4 6.8 6.7 6.6 8.2 7.1 6.5 6.2 

Soil class D 

µ =1 1.0 1.0 1.0 1.0 1.2 1.1 1.1 1.1 1.9 1.6 1.6 1.6 2.7 2.3 2.2 2.2 

µ =2 2.1 2.1 2.1 2.1 2.3 2.3 2.1 2.1 3.0 2.5 2.4 2.4 3.9 3.1 2.8 2.8 

µ =4 3.8 3.8 3.8 3.8 3.9 3.8 3.7 3.7 4.6 4.0 3.8 3.7 5.5 4.4 4.0 4.0 

µ =6 5.3 5.3 5.3 5.3 5.3 5.2 5.2 5.2 5.9 5.4 5.2 5.1 6.8 5.7 5.2 5.0 

µ =8 6.6 6.6 6.6 6.6 6.6 6.5 6.5 6.5 7.2 6.7 6.5 6.3 8.0 6.9 6.5 6.2 

Soil class E 

µ =1 1.0 1.0 1.0 1.0 1.2 1.1 1.1 1.1 1.9 1.6 1.5 1.6 2.7 2.2 2.1 2.1 

µ =2 2.2 2.2 2.2 2.2 2.4 2.3 2.2 2.2 3.1 2.6 2.4 2.4 4.0 3.0 2.8 2.8 

µ =4 4.1 4.1 4.1 4.1 4.1 4.0 4.0 4.0 4.7 4.2 4.0 4.0 5.6 4.5 4.2 4.1 

µ =6 5.7 5.7 5.7 5.7 5.7 5.6 5.5 5.5 6.2 5.7 5.5 5.5 7.0 6.0 5.5 5.4 

µ =8 7.1 7.1 7.1 7.1 7.1 7.0 7.0 6.9 7.5 7.0 6.9 6.8 8.2 7.2 6.8 6.5 

Average 

µ =1 1.0 1.0 1.0 1.0 1.2 1.1 1.1 1.1 2.0 1.6 1.6 1.6 2.7 2.3 2.2 2.2 

µ =2 2.2 2.2 2.2 2.2 2.4 2.3 2.2 2.1 3.1 2.6 2.4 2.4 4.0 3.1 2.8 2.9 

µ =4 3.9 3.9 3.9 3.9 4.0 3.9 3.9 3.9 4.7 4.1 3.9 3.9 5.6 4.5 4.1 4.1 

µ =6 5.5 5.5 5.5 5.5 5.5 5.4 5.3 5.3 6.1 5.6 5.4 5.3 6.9 5.8 5.3 5.2 

µ =8 6.8 6.8 6.8 6.8 6.8 6.7 6.7 6.7 7.4 6.8 6.7 6.6 8.1 7.1 6.6 6.3 
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Fig. 12 compares the mean values of strength reduction factor RF for SDOF SSI systems obtained 

from response-history analyses with those calculated according to Eq. (12). It is shown that the RF 

versus Tn curves follow reasonably closely a bi-linear relationship with the intersection of two linear 

segments approximately corresponding to the characteristic periods of the design spectrum T0 for each 

site class. Regression analyses were done to obtain best-fit values for R in Eq. (12), which minimised 

the sum of the squared residuals over all period points. The residual is defined as the difference between 

the mean value of RF and that calculated by Eq. (12) at a period Tn.  
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Fig. 12. Comparison of the mean strength reduction factors RF with those calculated using Eq. (12) (bi-

linear lines) for SDOF SSI systems (s=1) on (a) site class C, (b) site class D, and (c) site class E. 

 

Table 4 shows that the R values, in general, are not sensitive to the soil site classes, especially for 

lower ductility demands. Therefore, it is suggested that the average R values presented in Table 4, 

which are site-independent, may be used in Eq. (12). As expected, the results indicate that the 
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slenderness ratio of the structure, s, has a negligible effect on R values when the structure-to-soil 

stiffness ratio a0 is small (i.e. a0<1), and hence the SSI effects are not dominant.  

The proposed equation for strength reduction factor RF not only addresses the issues associated with 

the conventional Rµ-Tn relationships discussed in Section 4, but also has two prominent advantages. 

Firstly, it captures the reduction of strength due to the combination of SSI and structural yielding, with 

the SSI effect being negligible for structures with high ductility demands. Secondly, the inelastic 

strength demand of a flexible-base structure can be directly estimated from the elastic response of its 

corresponding fixed-base structure through the reduction factor RF. This implies that by using Eq. (12), 

the calculation of the base shear demand of flexible-base structures does not require the knowledge of 

the elastic response spectra derived for SSI systems, which is ideal for practical design purposes.  

 

6 MDOF MODIFICATION FACTOR (RM) of SSI Systems 

In order to use an SDOF design spectrum for MDOF systems, modifications should be made to take 

into account the higher mode effects. Considering SDOF and MDOF structures with similar mass m and 

fundamental period Tn, the MDOF modification factor for a flexible-base structure can be defined as: 
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where VMDOF(Tn,a0,s,µmax=µt) is the base shear strength for an MDOF structure to avoid the maximum 

storey ductility µmax exceeding the target value µt. Note that when a0=0, Eq. (13) is an expression for the 

fixed-base MDOF modification factor, which was proposed by Nassar and Krawinkler [44] and has 

received much attention in the past two decades [13, 37, 45].  

The base shear strength demand of an inelastic flexible-base MDOF system can be determined from 

the elastic spectrum for an equivalent fixed-base SDOF system by using Eqs. (11) and (13), as follows: 
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In this study, 5, 10, 15 and 20-storey shear buildings are utilised to obtain the MDOF modification 

factor RM for SSI systems, considering various structural types and soil site classes. The buildings are 

assumed to be symmetric and represent typical 5-bay structures having a span length of 6 meters. Using 
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a storey height of 3.3 meters, the slenderness ratios corresponding to 5, 10, 15 and 20-storey buildings 

would be approximately 0.7, 1.4, 2 and 2.7, respectively. The effective foundation radii for swaying and 

rocking modes were calculated based on equating the area Af and moment of inertia If of each floor to 

those of an equivalent circle (i.e. π/fh Ar =  and 4 /4 πθ fIr = ). The fundamental period of the 

buildings was determined according to Eq. (5) for the four different ASCE 7-10 [31] structural types 

listed in Table 2.  

In order to derive a site dependent RM, an averaged shear wave velocity was used to represent each 

site soil condition, that is Vs,30=90, 270 and 560m/s for site classes E, D and C, respectively. Therefore, 

the corresponding a0 value for an MDOF structure located on a specific soil deposit could be estimated 

from Fig. 4. The range of expected a0 values for different SSI systems is presented in Fig. 13, which 

shows higher a0 values for taller buildings and softer soil conditions. It is observed that frame structures 

(i.e. type 1-3) have a lower a0 value compared with other structural systems (i.e. type 4), especially for 

those located on site class E. Therefore, for better comparison, frame structures are presented as one 

group in Fig. 13. It can be noted that the expected a0 values for typical buildings founded on site class C 

(average shear wave velocity of 560 m/s) are close to zero. This implies that the seismic design of 

typical multi-storey buildings on site classes A, B and even C (see Table 3) could be practically done on 

the basis of fixed-base structures.  
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Fig. 13. Variation of a0 with number of storeys for different types of structural systems on various site 

classes. 

The effect of using different structural types (types 1 to 4 in Table 2) on 1/RM is presented in Fig. 14. 

It should be noted that shear buildings, in general, cannot accurately represent all different structural 
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systems and, therefore, the effect of �structural type� in this context is attributed mostly to the expected 

fundamental period of the structures using Eq. (5). As mentioned previously, according to ASCE 7-10 

[31], the expected fundamental period of frame structures (types 1-3) is much higher than type 4 

structures. Therefore, the results in Fig. 14 illustrate lower 1/RM values for type 4 structures compared 

to type 1-3 frame structures.  
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Fig. 14. Effect of structural type on MDOF modification factor for (a) 10-storey and (b) 15-storey 

structures located on Site class E. 

Results for 1/RM (averaged values for the 15 synthetic earthquakes in each set) are illustrated in Fig. 

15, considering various structural types, numbers of storeys, ductility demands and site classes. Since 

the values of MDOF modification factor for frame structures are very close to each other (see Fig. 12), 

the results were averaged for structural types 1-3. As discussed previously, the effect of SSI is expected 

to be pronounced for site class E and insignificant for site class C.  

Fig. 15 shows that, in general, inelastic MDOF structures require a higher base shear strength 

compared to their SDOF counterparts for the same target ductility demand, especially for tall buildings 

on stiff soil deposits. This observation is in agreement with findings presented by Santa-Ana and 

Miranda [13] for fixed-base structures. The results in Fig. 15 show a generally higher 1/RM 

(=VMDOF/VSDOF) ratio for frame structures and stiff soil conditions than for other structural systems and 

soft soil profiles. 1/RM curves also exhibit a general increasing trend with increasing ductility demand 

and number of storeys. Exceptions are observed for site class E where taller structures may have a 

lower value of 1/RM. As foundation soil becomes stiffer, the dependence of 1/RM on ductility demand 

for moderately and highly nonlinear structures (µ=4, 6 and 8) is reduced. For example, the results for 
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site class C (very dense soil) in Fig. 15 show that the effect of ductility demand on 1/RM for structures 

with µ=6 and 8 is practically negligible. This observation is consistent with the results reported by 

Moghaddam and Mohammadi [37], who investigated RM for 5, 10 and 15-storey fixed-base MDOF 

shear buildings. In their study, RM was found insensitive to ductility demand; a simple expression was 

suggested for estimating RM as a function of number of storeys, as illustrated in Fig. 15 for soil class C 

(with minimum SSI effects). The fact that the RM factor proposed by Moghaddam and Mohammadi [37] 

was derived through an averaging process for ductility values µ=2, 4, 6 and 8 is well reflected in this 

graph, since the results are generally bounded by the high and low-ductility limits used in this study.  

5 10 15 20
0

0.5

1

1.5

2

2.5

3

1
/R

M
=

V
M

D
O

F
/V

S
D

O
F

1
/R

M
=

V
M

D
O

F
/V

S
D

O
F

1
/R

M
=

V
M

D
O

F
/V

S
D

O
F

Number of storeys

5 10 15 20
0

0.5

1

1.5

2

2.5

3

5 10 15 20
0

0.5

1

1.5

2

2.5

3

5 10 15 20
0

0.5

1

1.5

2

2.5

3

5 10 15 20
0

0.5

1

1.5

2

2.5

3

 

 

Site Class E Site Class E

Site Class D Site Class D

Number of storeys
5 10 15 20

0

0.5

1

1.5

2

2.5

3

 

 

Site Class C Site Class C

(a) (b)

Moghaddam and Mohammadi 

µ=4

µ=6

µ=8

µ=2Type 1-3 Type 4

Type 1-3 Type 4

Type 1-3 Type 4

µ=4

µ=6

µ=8

µ=2

 

Fig. 15. Site and interaction-dependent MDOF-to-SDOF base shear strength ratio (1/RM) for (a) frame 

structures and (b) all other types of structures. 

The results of this study are used to develop a new practical site and interaction-dependent MDOF 

modification factor RM for flexible-base structures. By assessing a variety of curves to obtain the best fit 
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to the results presented in Fig. 15, the following equation is suggested that is a function of number of 

storeys, ductility demand and site class:  

)()1(1
1 )1000/05.0( N

t

M

cLnN
R

−−+= µ                              (15) 

where N is the number of storeys, µt is target ductility demand, and c is a soil dependent parameter that 

is equal to 1.040, 1.027 and 0.982 for site classes C, D and E, respectively. Although for elastic systems 

(i.e. µt=1) Eq. (15) suggests that base shear strengths of MDOF systems are equal to those of their 

corresponding SDOF systems, the results of this study indicate that for squat and stiff buildings (i.e. low 

fixed-base fundamental periods), the elastic base shear strengths of flexible-base MDOF structures are 

in general lower than those of their SDOF counterparts. However, for tall and very flexible buildings 

(i.e. very long fixed-base fundamental periods), the elastic base shear strengths of flexible-base MDOF 

structures can be much higher than their SDOF counterparts, especially for very soft soil conditions (i.e. 

higher values of a0).  

 

7 Performance-based Design Procedure  

The proposed site and interaction-dependent equations to estimate RF and Rm modification factors 

for SSI systems (Eqs. (11) and (15)) can be obtained based on standard IBC-2012 [28] design spectra 

for different soil classes and, therefore, can be directly used in practical applications. Here, the 

following design procedure is suggested for performance-based seismic design of flexible-base 

structures:   

Step 1: The MDOF structure is initially designed based on fixed-base behaviour (i.e. by ignoring 

the effects of SSI) for gravity and seismic loads according to a design code such as IBC-2012 [28].  

Step 2: The properties of the representative SDOF structure of the fixed-base MDOF system are 

then calculated, including the fundamental period Tn and slenderness ratio s by using Eqs. (5) and (7), 

respectively. The structure-to-soil stiffness ratio a0 and characteristic period T0 are also obtained from 

Eq. (6) and Table 3, based on the expected shear wave velocity Vs,30 of the given site class.  
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Step 3: The base shear demand of the fixed-base elastic SDOF structure )1,0,( 0 == µaTV nSDOF  is 

calculated from the elastic design spectrum by using the fundamental period Tn. 

Step 4: To satisfy the predefined target ductility demand µt, the design base shear of the inelastic 

flexible-base MDOF structure ),,,( max0 tnMDOF saTV µµ = is directly calculated from Eq. (14), where RF 

and RM are obtained from Eqs. (12) and (15), respectively.   

Step 5: The calculated base shear strength is distributed according to the design lateral load pattern 

used in Step 1, and the MDOF structure is designed based on the new seismic design loads. To achieve 

more reliable design solutions, the design process can be repeated from Step 2. However, the results of 

this study show that, if the initial structure is designed based on code-specified design load patterns, one 

iteration would be sufficient for practical applications.  

The efficiency of the proposed performance-based design procedure is demonstrated by using 

several design examples. For this purpose, a number of typical 5, 10, 15 and 20-storey flexible-base 

buildings with, respectively, fixed-base fundamental periods of 0.61, 1.07, 1.48 and 1.87 sec and 

slenderness ratios of 1, 1.5, 2 and 3 were selected. The a0 values were calculated based on the assumed 

shear wave velocities of 90, 270 and 560 m/s for site classes E, D and C, respectively. Following the 

proposed methodology, the buildings were designed for target ductility demands of 2, 4, 6 and 8, and 

were subsequently subjected to the set of 15 synthetic earthquakes representing the IBC-2012 [28] 

design spectrum corresponding to the selected site class (see Fig. 3). The actual ductility demands, 

averaged for the 15 spectrum-compatible earthquakes in each set, are compared with the target values in 

Fig. 16. The comparison shows a very good agreement between the actual and expected ductility 

demands, which proves the reliability of the proposed design procedure for performance-based design 

of flexible-base multi-storey buildings.  

28 

 



0 2 4 6 8 10
0

2

4

6

8

10

 

0 2 4 6 8 10
0

2

4

6

8

10

 

0 2 4 6 8 10
0

2

4

6

8

10

 

5 Storey

10 Storey

15 Storey

20 Storey

5 Storey

10 Storey

15 Storey

20 Storey

5 Storey

10 Storey

15 Storey

20 Storey

Target ductilityTarget ductilityTarget ductility

A
ct

u
a

l 
d

u
ct

il
it

y

(a) (b) (c)

    

Fig. 16. Comparison of the actual ductility demands with target ductility ratios for (a) Site Class C, (b) 

Site Class D, (c) Site Class E.   

 

8 Conclusions 

The effects of soil-structure interaction on the strength and ductility demands of multi-storey shear 

buildings were investigated. A large number of 1, 5, 10, 15 and 20-storey structures with a wide range 

of fundamental period, target ductility demand, slenderness ratio and structure-to-soil stiffness ratio 

were subjected to three sets of synthetic spectrum-compatible earthquakes corresponding to different 

soil classes. Based on the results of this study, the following conclusions can be drawn: 

• Using concentric, rectangular, trapezoidal, parabolic and code-specified design load patterns 

(IBC-2012 and Eurocode-8) to design flexible-base MDOF structures showed that the code-

specified load patterns are, in general, more suitable for long period structures, whereas the 

trapezoidal pattern provides the best design solution for short period flexible-base structures. 

• For common building structures with low-to-medium ductility demands under spectrum-

compatible earthquakes, increasing structure-to-soil stiffness ratio a0 can considerably reduce 

(up to 60%) the structural strength demand in comparison to similar fixed-base structures. This 

implies that for most typical buildings considering SSI in the design process can lead to more 

cost-effective design solutions with less structural weight. 

• To satisfy a target ductility demand for SSI systems with similar fixed-base fundamental 

periods and structure-to-soil stiffness ratios, the total structural strength increases by increasing 

the slenderness ratio s, especially in the short period range (i.e. Tn<0.5sec). 
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• By using the results of more than 40,000 SDOF and MDOF systems under spectrum compatible 

earthquakes, simple equations were introduced to calculate the site and interaction-dependent 

MDOF modification factor (RM) and strength reduction factor (RF) for flexible-base structures 

by taking into account the effects of both SSI and inelastic hysteretic behaviour of the structure. 

• Based on the results of this study, a practical performance-based design procedure was 

proposed to calculate the strength demand of an MDOF flexible-base structure to satisfy a 

predefined target ductility demand. The reliability and efficiency of the method was 

demonstrated by using several design examples. 
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