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Abstract

For the first time, a plume-in-grid approach is implemented in a chemical transport

model (CTM) to parameterize the effects of the non-linear reactions occurring within

high concentrated NOx plumes from lightning NOx emissions (LNOx) in the upper tro-

posphere. It is characterized by a set of parameters including the plume lifetime, the5

effective reaction rate constant related to NOx-O3 chemical interactions and the frac-

tions of NOx conversion into HNO3 within the plume. Parameter estimates were made

using the DSMACC chemical box model, simple plume dispersion simulations and the

mesoscale 3-D Meso-NH model. In order to assess the impact of the LNOx plume ap-

proach on the NOx and O3 distributions at large scale, simulations for the year 200610

were performed using the GEOS-Chem global model with a horizontal resolution of

2
◦ ×2.5

◦
. The implementation of the LNOx parameterization implies NOx and O3 de-

crease at large scale over the region characterized by a strong lightning activity (up to

25 and 8 %, respectively, over Central Africa in July) and a relative increase downwind

of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July) are derived.15

The calculated variability of NOx and O3 mixing ratios around the mean value accord-

ing to the known uncertainties on the parameter estimates is maximum over continental

tropical regions with ∆NOx [−33.1; +29.7] ppt and ∆O3 [−1.56; +2.16] ppb, in January,

and ∆NOx [−14.3; +21] ppt and ∆O3 [−1.18; +1.93] ppb, in July, mainly depending on

the determination of the diffusion properties of the atmosphere and the initial NO mix-20

ing ratio injected by lightning. This approach allows (i) to reproduce a more realistic

lightning NOx chemistry leading to better NOx and O3 distributions at the large scale

and (ii) focus on other improvements to reduce remaining uncertainties from processes

related to NOx chemistry in CTM.
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1 Introduction

Lightning emissions are one of the most important sources of nitrogen oxides (NOx ≡
NO+NO2) in the upper troposphere (WMO, 1999; Hudman et al., 2007). Lightning

emitted NOx (LNOx) impact the tropospheric ozone burden (Stockwell et al., 1999;

Hauglustaine et al., 2001; Grewe, 2007), and the hydroxyl-radical (OH) concentrations5

influencing the oxidizing capacity of the atmosphere (Labrador et al., 2004; Banerjee

et al., 2014). Lightning flashes including cloud-to-ground and intra-cloud flashes pro-

duce reactive nitrogen species which are detrained in the cloud anvil (Weiss et al.,

2012) and released directly in the upper troposphere. Because of an ozone production

efficiency (OPE) 4 to 20 times larger in the upper troposphere than in the middle or low10

troposphere (Sauvage et al., 2007a; Martin et al., 2007), effects of LNOx on chemistry

are expected to be stronger in the upper troposphere (Pickering et al., 1990; Hauglus-

taine et al., 1994; Zhang et al., 2003; Choi et al., 2009). The longer NOx lifetime in the

upper troposphere (1–2 weeks) allows the long-range transport of LNOx through the

large circulation patterns (Hemispheric Transport of Air Pollution, HTAP report, 2010:15

http://www.htap.org/).

Although the importance of the LNOx emissions on the upper tropospheric chem-

istry is well known, it remains highly uncertain with a best estimate of 2–8 TgNyr
−1

(Schumann and Huntrieser, 2007). Lightning NOx emissions are associated with deep

convection (horizontal scale ∼ 10 km) and correspond to the “sub-grid” in global chem-20

ical transport models (horizontal resolution hundreds of kilometers). This implies that

the impact of the lightning NOx emissions should be parameterized for inclusion into

a large scale model. Global models commonly used convection proxies such as the

cloud-top-height (Price and Rind, 1992) and the updraft intensity to estimate the light-

ning flashes. Flashes simulated by CTMs are commonly constrained by satellite obser-25

vations (Sauvage et al., 2007b; Murray et al., 2012) such as measurements from the

space-borne Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

on TRMM (Christian et al., 2003; Tost et al., 2007). The lightning NOx emissions are
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then redistributed according to a vertical profile generally a “C-Shape” profile (Pick-

ering et al., 1998) a priori defined depending on season, latitude and continent/ocean

location. Also, corrections on the calculations of lightning NOx emissions using satellite

observations (SCIAMACHY, Martin et al., 2007) and in-situ measurements (INTEX-NA,

Hudman et al., 2007) are usually applied.5

Despite the success in simulating the lightning NOx emissions, the small scale nature

of the flashes and the non-linear chemistry (Lin et al., 1988) of the atmosphere will

lead to biases on the large scale with instantaneous dilution of gases in the large

grid box volume. It seems likely that this will lead to an overestimate of the OPE and

an underestimate of the nitric acid (HNO3) production. For instance, by forcing NOx10

concentration in GEOS-Chem grid box over Southeast Asia to represent the measured

lightning plumes, Cooper et al. (2014) estimate a ratio for O3 to HNO3 produced leading

to a 15 molmol
−1

OPE in lightning plumes, that reinforces the fact that instantaneous

dilution in global model implies issues in sub-grid chemistry.

In this work, a realistic lightning NOx chemistry as well as a plume parameterization15

is implemented into a global chemical transport model (CTM) allowing reproducing

more accurately the large scale NOx and O3 distributions. The plume approach used in

this study was previously developed by Cariole et al. (2009) for aircraft NOx emissions

in the LMDz-INCA and MOBIDIC models and also implemented to deal with the ship

NOx emissions (Huszar et al., 2010). This approach avoids the double count in the20

CTM calculation of the emitted NOx, first instantaneously diluted into the point grid

and second as the plume form. In addition, the plume parameterization is the first that

considers the NOx from lightning as a plume with the transport of the related non-linear

chemistry effects. NOx from lightning emissions are emitted in the upper troposphere

characterized by strong winds that allows large scale transport of trace species. Thus, it25

is relevant to consider a plume growth from lightning emissions, which could be diluted

long time after the initial lightning pulse, downwind of emissions. Consequently, the

plume parameterization previously developed for aircraft exhausts has been adjusted

34094
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to LNOx emissions and implemented into the GEOS-Chem global chemical transport

model.

Section 2 gives a description of the GEOS-Chem model in which the plume-in-grid

parameterization is implemented and models used to evaluate the diffusion properties

of the atmosphere and to determine parameters characterizing the physics and chem-5

istry of the lightning NOx plume. A concise description of the plume approach is then

presented in Sect. 3 followed by a detailed explanation of the determination of param-

eters related to LNOx emissions. Section 4 summarizes the results of the simulations

performed with GEOS-Chem and finally these results and the sensitivity on NOx and

O3 variations of the parameterization are discussed in Sect. 5.10

2 Models

Three different models are used in this evaluation and are described in this section.

GEOS-Chem is used to provide a global framework to assess the impact of lightning

NOx. Meso-NH is used to provide estimates of the plume diffusion timescales and

DSMACC is a box model used to assess the non-linear chemistry in the plume.15

2.1 The GEOS-Chem chemical transport model

The GEOS-Chem chemical transport model (Bey et al., 2001) is a global 3-D model

of atmospheric composition driven by assimilated meteorology from the Goddard

Earth Observing System (GEOS-5) of the NASA Global Modeling Assimilation Of-

fice (GMAO). The 09-01-01 version (http://wiki.seas.harvard.edu/geos-chem/index.20

php/GEOS-Chem_v9-01-01) of the CTM has been used in this study. The model trans-

ports 43 tracers to describe tropospheric O3-NOx-VOC chemistry. The horizontal res-

olution is 2
◦ ×2.5

◦
and 47 vertical levels are defined from the ground to 80 km altitude.

The CTM includes modules for emissions, transport, chemistry, deposition, aerosols

and surface.25
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The large-scale advection of tracers is performed using the TPCORE advection

scheme (Lin and Rood, 1996) corresponding to a semi-lagrangian flux method. Shal-

low and deep moist convection processes are carried out using the Relaxed Arakawa–

Schubert scheme (Moorthi and Suarez, 1991). Mixing in the lower atmospheric layers

is represented by a non-local scheme of the planetary boundary layer described by5

Lin and McElroy (2010). The wet deposition for water-soluble aerosols and for gases

follows Liu et al. (2001) and Amos et al. (2012). Aerosol scavenging by ice crystals

and cold/mixed precipitation is also reproduced in the model (Wang et al., 2011). The

dry deposition is associated to a scheme which calculates bulk surface resistance in

series (Wesely, 1989). Photolysis rates are calculated with the Fast-JX code (Bian and10

Prather, 2002). The atmospheric chemistry is resolved using the SMVGEAR solver (Ja-

cobson and Turco, 1994) with more than 300 species and 785 chemical reactions. Het-

erogeneous chemical reactions are represented on the surface of the sulfate aerosols

(Bey et al., 2001) and mineral dust (Martin et al., 2002). Effects of aerosols on the pho-

tolysis rates are based on Martin et al. (2003). Primary NOx and VOCs (Volatile Organic15

Compounds) emissions are separated depending on sources. Global anthropogenic

emissions are given by the GEIA (Wang et al., 1998) and EGDAR (Olivier, 2005) in-

ventories and regional anthropogenic emissions are specially estimate for US (NEI05),

Canada (CAC), Mexico (BRAVO), Europe (EMEP) and East Asia (Streets et al., 2006;

Zhang et al., 2009). Fossil fuel emissions are provided by EPA and STREETS 200620

inventories (Yevich and Logan, 2003), biomass burning emissions by GFED inventory

(Lobert et al., 1999), and biogenic emissions by the MEGAN model calculations (Guen-

ther et al., 2012). In addition, NOx from soil emissions are calculated by an algorithm

depending on temperature and precipitation (Yienger and Levy, 1995).

The lightning NOx emissions calculation is initially based on the cloud-top-height25

parameterization (Price and Rind, 1992, 1994) with a “C-shaped” profile describing

LNOx vertical distribution (Pickering et al., 1998; Ott et al., 2010). Lightning flashes are

constrained using the climatologies from the LIS/OTD observations (Sauvage et al.,

34096
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2007b; Murray et al., 2012). Global lightning NOx emissions are also constrained to

6 TgNyr
−1

in order to match to satellite observations (Martin et al., 2007).

2.2 The Meso-NH model

The Meso-NH model is an atmospheric model developed jointly by the Labora-

toire d’Aérologie and by CNRM-GAME (http://mesonh.aero.obs-mip.fr/mesonh51). The5

model includes a non-hydrostatic and anelastic system of equations (Lafore et al.,

1998) and has a complete set of parameterizations allowing to reproduce physical pro-

cesses such as radiation (Gregory et al., 2000), atmospheric turbulence (Cuxart et al.,

1999), convection (Bechtold et al., 2000), microphysics related to warm clouds (Co-

hard and Pinty, 2000), and atmospheric ice (Pinty and Jabouille, 1999; Lascaux et al.,10

2006). Meso-NH includes also on-line chemistry (Tulet et al., 2003, 2006). The model

deals with large (synoptic) to small (large eddy) scales. In this study, the Mesonh-49

version was used in order to compare the horizontal diffusion coefficient (Dh) estimate

within the anvil of thunderstorms from in-situ measurements to a modeling ideal case

of a convective cell.15

2.3 The DSMACC chemical box model

The Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC) is

a simple box model developed for improving our understanding of the tropospheric

chemistry (Emmerson and Evans, 2009). The model is composed of the KPP chem-

ical pre-processor (Damian et al., 2002) to solve differential equations representing20

the chemical system. The TUV (Tropospheric Ultraviolet and Visible Radiation Model)

photolysis scheme is used, which calculates the spectral irradiance, the spectral ac-

tinic flux, photodissociation coefficients (J values) (Madronich and Flocke, 1999), and

biologically effective irradiance. The chemical scheme used derives from the Mas-

ter Chemical Mechanism (MCM, http://mcm.leeds.ac.uk/MCM/), (Jenkin et al., 1997;25

34097
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Saunders et al., 2003), which contains 17 000 elementary reactions of 6700 primary,

secondary and radical species.

In order to study the chemical interactions that could occur in the undiluted plume

fraction, a set of short simulations was carried out with the DSMACC chemical box

model as explained in the Sect. 3.2.2.5

3 Plume parameterization for lightning NOx emissions

3.1 General description

The LNOx plume parameterization is based on a method initially developed by Cari-

olle et al. (2009) for NOx emissions related to aircraft exhausts later adapted to ship

emissions of NOx (Huszar et al., 2010). In this approach, the plume effects at sub-grid10

scale are represented via a fuel tracer, to follow the amount of the emitted species

in the plume and an effective reaction rate for the ozone production and nitric acid

production/destruction during the plume’s dilution into the background (Cariolle et al.,

2009; Paoli et al., 2011). The parameterization requires a proper estimation of the

characteristic plume lifetime during which the non-linear interactions between species15

are important and simulated via specific rates of conversion. The approach ensures

the mass conservation of species in the model. This is the only method which consid-

ers a plume evolution related to the local NOx emissions allowing the transport of the

non-linear effects occurring at smaller scale than the model grid.

3.1.1 Physical plume formulation20

Following Cariolle et al. (2009), a passive tracer (from the perspective of the usual

model chemistry) is added to the model to represent NOx emitted by lightning. Rather

than increasing the concentration of the NOx tracer in the model, lightning NOx emis-

sions now increase the concentration of this new tracer which is transported in the

34098
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standard way by advection and turbulence. Plume chemistry is considered to be signif-

icant when the concentration of the lightning NOx tracer is higher than a critical NOx

content, hereafter denoted rl. Above this value the lightning NOx tracer is transferred

to the normal NOx tracer at a rate described by a plume lifetime (τ), which is an ex-

ponential decay constant. This corresponds to an exchange time scale between the5

lightning NOx plume and the background NOx. The continuity equation related to the

tracer evolution is detailed by the Eq. (1).

∂rLNOx

∂t
+ 〈FLNOx

〉 = I −
1

τ
× rLNOx

(1)

where rLNOx
, is the concentration (in moleculescm

−3
) of the NOx lightning tracer in

the model grid (note that all overlined terms referred to grid average quantities in the10

CTM), FLNOx
≡ ∇× (rLNOx

u)+∇× (Dt∇rLNOx
) and it corresponds to the flux divergence

related to the large-scale transport of the tracer (advection and turbulent diffusion, in

moleculescm
−3

s
−1

), I is the injection rate of NOx (in moleculescm
−3

s
−1

) and τ is the

plume lifetime (in seconds).

The calculation of τ requires evaluating the mass fraction of the lightning NOx (M(t))15

corresponding to the undiluted fraction of the plume and characterized by a NOx con-

centration above the rl critical value. In other words, the plume boundary is defined

by the critical value rl depending on the time of day. The NOx mass, M(t) decreases

monotonically to zero until t = Tl for which the tracer concentration is everywhere below

the rl threshold. The plume lifetime is obtained by an exponential function depending20

on the mass (Eqs. 2 and 3):

M(t) =

∫

Vp

ρ× rp ×dV (2)

τ =

+∞
∫

t0=0

exp(−t/τ)×dt =
1

M(t0)

Tl
∫

t0=0

M(t)×dt (3)

34099
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where Vp is the volume of the plume, ρ is the density of the air, rp is the NOx concentra-

tion within the plume (moleculescm
−3

) and Tl is the time for which the concentration rp

is everywhere below the critical value rl. The calculation of the plume lifetime, by simple

plume dispersion simulations, depends on (i) the initial emissions of NOx by lightning,

(ii) the rl value, and (iii) the dispersion properties of the atmosphere (related to the hor-5

izontal diffusion coefficient, Dh) and is detailed on the Sect. 3.2.3. Note that the mean

dispersion properties of the atmosphere were associated with the horizontal diffusion

only. The vertical diffusion is less efficient than the horizontal one (Cariolle et al., 2009)

and it is not considered in this study. In addition, the vertical dispersion of the plume is

related to the vertical distribution of LNOx a priori forced in the GEOS-Chem model by10

the C-shape profile (Ott et al., 2010) and it is beyond the scope of this study.

3.1.2 Plume chemistry of NOx, O3 and HNO3

Once the lightning NOx is emitted, it is transferred to model’s background NOx based

on the lifetime of the plume (τ). Thus, the continuity equation for the NOx species

emitted in the plume and released to the large scale can be deduced as described by15

the Eq. (4).

∂rNOx

∂t
+ 〈FNOx

〉 = +
1

τ
× rLNOx

×αNOx
×EINOx

+Lss (4)

where rNOx
, is the concentration of NOx (moleculescm

−3
) in the model grid, αNOx

is the

molecular mass ratio between the air and NOx species, EINOx
is the emission index for

NOx (in gkg
−1

) and Lss are the large-scale sources and sinks (in moleculescm
−3

s
−1

)20

such as natural and anthropogenic emissions, photochemical reactions, mixing, and

conversion to reservoir species.

We consider a fairly simple chemistry within the plume as described below. The

increase of the nitrogen oxides concentration in the upper troposphere leads to ozone

production through the reaction of NO with peroxyde (HO2), CH3O2, or RO2 radicals25
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from the OH oxydation as shown by the Reaction (R1).

NO+RO2 −→ NO2 +RO (R1)

In the case of large NOx injection by lightning, the NOx content (∼ 40 ppt in unpol-

luted atmosphere) becomes of the same order (a few ppb, according to in-situ mea-

surements, Dye et al., 2000; Huntrieser et al., 2002) than the surrounding ozone5

(60±24 ppb) (Jaéglé et al., 1998). The ozone evolution within the plume is described

by the Reactions (R2)–(R6).

NO2 +hν(λ < 400nm) −→ NO+O (R2)

NO+O3 −→ NO2 +O2 (R3)

O+O2 +M −→ O3 +M (R4)10

O+NO2 −→ NO+O2 (R5)

O+O3 −→ 2O2 (R6)

From these equations we can define an Ox family (Ox ≡ O+O2 +NO2) where the only

net loss of Ox is by reactions between atomic oxygen and NO2 or O3. The sums of the

concentrations as detailed by the Eqs. (5)–(7) (Cariolle et al., 2009).15

d(O+O3)

dt
= +k2 ×NO2 −k3 ×NO×O3 −k5 ×O×NO2 −2×k6 ×O3 ×O (5)

d(O+O3 +NO2)

dt
= −2×k5 ×O×NO2 −2×k6 ×O3 ×O (6)

d(NO+NO2)

dt
= 0 (7)

where ki correspond to the rate constants for the Ri reactions.

Thus two processes occur to O3 in the plume at daytime. On short timescales Ox is20

conserved. Lightning emissions of NO in the plume are converted into NO2 but as NO2

is in Ox family, there is net conservation of Ox. However, on long timescales Ox can be
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destroyed through the reaction of O with NO2 and O3. Both of these processes need

to be considered.

The first regime (regime I) occurs at low concentrations of NOx (relative to O3). Under

these conditions the Reaction (R5) is slow. There is the rapid equilibrium between NO,

NO2 and O3 (Reactions R2–R4). As a consequence, O3 is converted into NO2 and5

can be restored later after dilution of the plume depending on the balance between

NO and NO2 at the large scale (Cariolle et al., 2009). Overall Ox is conserved. In this

regime NO emitted reacts with the available O3 until the NO to NO2 ratio in the plume

reaches that in the background. Thus the impact on the O3 background concentration

is to reduce it by the number of molecules of NO emitted multiplied by the background10

NO2 to NOx ratio. The effect of the first regime on the ozone burden is expressed by

the Eq. (8).

∂rO3

∂t
+ 〈FO3

〉 = −
1

τ
× rLNOx

×αNOx
×EINOx

×

(

NO2

NOx

−E

)

×δ +Lss (8)

where rO3
is the concentration of O3 (moleculescm

−3
) in the model grid, E is the

NO2

NOx

ratio in the initial emissions, δ is equal to 1 during the day and 0 at nighttime, Lss are15

the sources and sinks of ozone such as photochemical production, transport from the

stratosphere, surface deposition, photolysis reactions, and photochemical destruction.

The second regime (regime II) occurs at high concentrations of NOx (relative to O3).

Under these conditions the rate of Reaction (R5) is large. The non-linear chemical

interactions between NOx and O3 occur with different rates than in the background20

atmosphere. To account for this, Cariolle et al. (2009) introduced an effective reaction

rate constant (Keff), which is related to the production or the destruction of the odd

oxygen (Ox) within the plume. Keff is expressed by the Eq. (9).

Keff =

∫Tl

t0

∫

Vp
K × rP

NOx
× rP

O3
×dVp ×dt

rO3
×
∫tl
t0

∫

Vp
rP
NOx

×dVp ×dt
(9)

34102



ACPD

15, 34091–34147, 2015

Modeling

lightning-NOx

chemistry at sub-grid

scale

A. Gressent et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

where rP
NOx

and rP
O3

are the concentrations of nitrogen oxides and ozone within the

plume and K is the rate of NOx-O3 reaction within the plume.

The analysis of the chemical reactions related to the two regimes shows that O3 ≫ O

and k5×NO2 is more efficient than k6×O3 as a sink for Ox (Cariolle et al., 2009). Thus,

the Eq. (6) is simplified to give the Eq. (10).5

d(O3 +NO2)

dt
= −2×k5 ×O×NO2 (10)

Consequently, Keff can be simplified to Eq. (11).

Keff =

2×
(

∫T
k5 ×O×NO2 ×dt

)

(

NOx ×
∫T

Ox ×dt
)

(11)

The calculation of Keff is detailed in Sect. 3.2.4. Considering the two regimes related

to the sub-grid plume chemistry, the ozone burden is described by the Eq. (12) at10

daytime and nighttime. Note that at nighttime there is no direct impact due to the ozone

plume chemistry on its burden as δ = 0. Only indirect effects are expected from NOy

chemistry.

∂rO3

∂t
+ 〈FO3

〉 =−
1

τ
× rLNOx

×αNOx
×EINOx

×

(

NO2

NOx

−E

)

×δ −Keff × rLNOx
×ρ

×αNOx
×EINOx

× rO3
×δ +Lss (12)15

In addition, we consider the conversion of NOx into HNO3 within the plume. This con-

version takes place in two different ways depending on the day or night atmospheric

conditions. During the day, NO2 reacts with OH to give HNO3 directly and it is charac-

terized by the coefficient β1. While at nighttime the conversion of NOx to HNO3 occurs
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through N2O5 formation followed by a heterogeneous hydrolysis reaction, which corre-

sponds to β2. These two fractions are unitless.

In summary, the equation system solved at large scale by the CTM for lightning NOx

source is detailed by the Eqs. (13)–(15).

∂rNOx

∂t
+ 〈FNOx

〉 = +
1

τ
× rLNOx

× (1−β1 ×δ −β2 × (1−δ))×αNOx
×EINOx

+Lss (13)5

∂rHNO3

∂t
+ 〈FHNO3

〉 = +
1

τ
× rLNOx

× (β1 ×δ +β2 × (1−δ))×αNOx
×EINOx

+Lss (14)

∂rO3

∂t
+ 〈FO3

〉 = −

(

1

τ
×

(

NO2

NOx

−E

)

+Keff × rO3
×ρ

)

× rLNOx
×αNOx

×EINOx
×δ +Lss (15)

where rNOx
, rHNO3

and rO3
correspond to the NOx, HNO3 and O3 concentrations aver-

aged over the grid cell of the model, respectively.10

In this study, the tropospheric chemistry and especially the LNOx plume chemistry

is considered both at daytime and nighttime since all reactions are not initiated during

the day. The chemical interactions during the night correspond mainly to the reactions

of O3 and O with NO and NO2 as well as the NOx deactivation and the chemistry of

the nitrogen reservoir species (HNO3, N2O5 and PAN) and the nitrate radical (NO3).15

NO3 is the main oxidant in night conditions and it is produced from the slow oxidation

of NO2 by O3 (Reaction R7).

NO2 +O3 −→ NO3 +O2 (R7)

The other dominant source of NO3 is the destruction of N2O5 (Reaction R8), but as

N2O5 is formed from NO3 (Reaction R9), the two species act in a coupled manner.20

N2O5 +M −→ NO3 +NO2 +M (R8)
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NO3 +NO2 +M −→ N2O5 +M (R9)

As mentioned previously, N2O5 is a determinant species for the tropospheric chemistry

at nighttime allowing the HNO3 formation by the heterogeneous reaction on the particle

surface (aerosols and ice crystals). During the day, NO3 rapidly undergo photolysis to

produce NO or NO2. In addition, NO3 reacts very quickly with NO which is more con-5

centrated at daytime than at nighttime (Reaction R10) but NO3 is very low at daytime.

However, this reaction can take place during the night especially for a plume character-

ized by high NO concentrations (lightning emissions) which is transported both during

the day and night.

NO3 +NO −→ NO2 +NO2 (R10)10

Furthermore, the nitrate radical can potentially reacts with VOCs. The reaction of the

unsaturated hydrocarbons such as, isoprene, butenes, and monoterpenes, with NO3

leads to the HNO3 formation (Monks, 2005) (Reaction R11).

NO3 +RH −→ HNO3 +R (R11)

Considering NO3 reaction with alkenes, an additional mechanism is found initiating15

a complex chemistry allowing to form NO2 or organic nitrates (Monks, 2005). Finally,

NO3 can initiate the VOCs oxidation via peroxy radical production (Reaction R12). That

way, it can involve as a chain propagator (Reactions R13–R17).

NO3 +Organic Compound −→ R+Products (R12)

R+O2 +M −→ RO2 +M (R13)20

RO2 +NO3 −→ RO+NO2 +O2 (R14)

RO+O2 −→ R′R′′CO+HO2 (R15)

HO2 +O3 −→ OH+2O2 (R16)

HO2 +NO3 −→ OH+NO+O2 (R17)
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The reactions of HO2 with ozone (Reaction R16) or NO3 (Reaction R17) imply OH

production. Also, the reaction of ozone with alkenes allows to form OH during the night

(Reaction R18) (Aumont, 2005).

Alkene+O3 −→ v1OH+ v2HO2 + v3RO2 (R18)

The Reaction (R18) occurs when ozone concentrations remain sufficiently high in night5

conditions, in other words for polluted atmosphere.

In this context, we consider different values at daytime and nighttime for the plume

lifetime, the effective reaction rate constant and for the fraction of NOx conversion into

HNO3 within the plume. Distinguishing day and night chemistry is linked with the fluc-

tuation of the critical rl value (below which the sub-grid plume chemistry is negligi-10

ble) depending on atmospheric conditions. Therefore, if rl changes with sunlight, the

plume lifetime changes also. Note that except the β2 fraction, this night chemistry is

not considered by the initial plume approach developed by Cariolle et al. (2009), which

considers NOx plumes from aircraft exhausts only at daytime.

Figure 1 summarizes all elements which define the plume approach and how it has15

been adapted and implemented into the model.

3.2 Parameter calculations for lightning NOx emissions

In order to reproduce more accurately the lightning NOx sub-grid chemistry, some

points should be considered: (i) the latitude (NOx emissions by lightning are higher

in tropics than in midlatitudes), (ii) the sunlight conditions (day and night) which im-20

pacts photochemistry and heterogeneous chemistry, (iii) the plume evolution with its

own physical characteristics (the lifetime and the dispersion properties); and finally (iv)

chemical interactions within the plume related to high concentrated fraction of NOx

considerably higher than background concentrations. In the following section, physical

and chemical characteristics of the plume associated with lightning NOx source have25

been defined.
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3.2.1 Dynamical conditions

The horizontal diffusion coefficient (Dh) is a key parameter of the atmospheric dynami-

cal conditions in determining the dispersion of the lightning NOx plume. Dh is used as

the dispersion constraint for the simple plume dispersion simulations carried out in or-

der to estimate the plume lifetime and the effective reaction rate constant. The diffusion5

coefficient was defined by running the 3-D mesoscale Meso-NH model but mainly from

previous in-situ measurement in thunderstorm anvil.

The Meso-NH mesoscale model was used (see Sect. 2.2) to investigate Dh. A sim-

ple convective cell forced by warm bubble and initialized by a radiosounding at the

beginning of the simulation was run as an ideal case. Simulations were realized for10

a domain of 24 km in the two horizontal directions and the grid horizontal resolution is

∆x = ∆y = 1 km and ∆z = 500 m. The convective cell is located at 43.29
◦
N latitude and

0
◦

longitude (Klemp and Wilhelmson, 1978). Simulations of 6 h were made allowing the

complete development and the dissipation of the convective cell. Dh has been calcu-

lated within the anvil using the mixing length diagnostic variable, hereafter denoted L,15

as described by the Eq. (16) (Cuxart et al., 1999).

Dh =
2

3
×
L

4
×e

1
2 (16)

At the mature stage of the cell, Dh was calculated as 100 m
2

s
−1

within the upper levels

of the convective cell (i.e. in the anvil, defined empirically).

In addition to modeling estimate, we used in-situ measurements to calculate Dh.20

Turbulence measurements were performed by a B-757 commercial aircraft along a fight

from the west of Kansas to the north of Missouri and corresponding to a trajectory

of more than 500 km (Trier and Sharman, 2008). These in-situ measurements were

accomplished from 07:00 to 10:00 UTC the 17 June 2005, during the development of

a mesoscale convective system (MCS). This MCS is associated with a turbulence event25

characterized by the measurement of the atmospheric eddy dissipation rate (ǫ) and the

turbulence kinetic energy (TKE) above and within the cloud anvil. The higher values of ǫ
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(ǫ1/3 ∼ 0,4 m
2/3

s
−1

) were recorded between 11.3 and 11.6 km altitude corresponding

to the cloud anvil levels. In addition, for this MCS, the TKE was about 1 m
2

s
−2

at the

locations of the highest ǫ values.

According to these observations, the turbulent diffusivity (Eq. 17) was estimated

above the anvil of the MCS (http://www.ral.ucar.edu/projects/turb_char/) such as: Dh >5

0.1 m
2

s
−2

. Then, Dh was calculated within the anvil such as: Dh = 15 m
2

s
−1

using the

same formulation (Eq. 17). This last estimate seems to be the most common value

compared to the diffusion coefficient value of 20 m
2

s
−1

used by Cariolle et al. (2009),

close to the tropopause level and the Dh value calculated for contrails (15 m
2

s
−1

) in the

upper troposphere (Knollenberg, 1972).10

Dh =
(TKE)

2

ǫ
(17)

The Dh estimate using Meso-NH model is high compared to the results from mea-

surements and corresponds to the upper limit of the calculated diffusion coefficients

and could be associated with the turbulence in the convective cloud. However, it is

important to note that usually most numerical simulations are performed with 1-D tur-15

bulence models. What is interesting in the use of Meso-NH in this study is that the

3-D turbulence is solved. This simulation provides an additional estimate of Dh allow-

ing comparison with the calculation from in-situ measurements. Moreover, studies on

the diffusivity in cloud anvils are uncommon. It is necessary to conduct additional work

in the future on that issue again constrained with new in-situ measurements of the20

atmospheric turbulence in the anvil.

In order to cover all of horizontal diffusivity estimates discussed in this section the

range of values 0.1, 15 and 100 m
2

s
−1

was used. Hereafter, the results are detailed for

the central value Dh = 15 m
2

s
−1

. Sensitivity tests depending on the uncertainty asso-

ciated with the parameter estimate are performed and presented later in Sect. 4.3.25
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3.2.2 The NOx critical plume content (rl)

The rl critical value is the NOx concentration within the undiluted phase of the plume

below which the non-linear chemistry can be neglected (Sect. 3.1). It has been esti-

mated using the 0-D DSMACC chemical box model (Sect. 2.2). Initial conditions for

simulations carried out with the DSMACC box model are from outputs of the GEOS-5

Chem model. Especially, initial atmospheric parameters and atmospheric background

concentrations of species correspond to the average of the GEOS-Chem outputs (i)

from 8 to 11 km, (ii) for two latitude regions (tropics and midlatitudes), and (iii) for the

year 2006 (Table 1).

In order to focus on chemistry interactions only between chemical species of interest10

and removing the mixing influence and sunlight fluctuations, short simulations (i.e. one

hour each) were run with the DSMACC model. The effects of the day or night conditions

were carefully considered carrying out separate simulations at daytime and nighttime.

Simulations were run for a large range of initial NO concentrations from 0.01 ppb to

1 ppm. The rl value is defined from the NO value for which the
∂Ox

dt
trend is perturbed.15

In other words, rl is associated to the second derivative of Ox, i.e. the curve optimums

on Fig. 2. The rl threshold was defined as to be 0.1 and 0.25 ppb during the day and

night for midlatitudes and 0.1 and 0.75 ppb during the day and night in tropics (Fig. 2).

Note that the midlatitudes and the tropics were separated because of the large dif-

ferences in LNOx emissions between the two regions in terms of the number of flashes20

in a particular convective cell which is higher in the tropics according to the LIS/OTD

climatologies (Christian et al., 2003). This last point is important for the plume lifetime

estimate detailed in the following section.

3.2.3 The plume lifetime τ

The plume lifetime (τ) depends directly on (i) the initial NO pulse from lightning emis-25

sions, (ii) the rl critical value, and (iii) the diffusion properties of the atmosphere. The

plume lifetime also depends on the initial size of the plume. Here we use a width of
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500 m to refer to an ensemble of spikes at the cloud scale. τ is crucial for the physical

description of the NOx plumes and it has been computed in carrying out dispersion

simulations of a simple plume assumed to be cylindrical. The simple model is com-

posed of 30 levels of dispersion. In the model, the standard atmospheric conditions

are represented by temperature, pressure and species concentrations of the back-5

ground atmosphere which are similar to the initial conditions used for the DSMACC

simulations. As a reminder, initial conditions are from GEOS-Chem outputs averaged

(i) from 8 to 11 km, (ii) for two latitude regions (tropics and midlatitudes), and (iii) for the

year 2006 (Table 1). Simulations are initialized by a NO pulse from lightning emissions

(hereafter denoted NOi ) and the plume dispersion depends on the Dh value estimated10

in Sect. 3.2.1.

The initial tracer concentrations NOi related to lightning NO emissions at the scale

of a convective cell (gathering several flashes together) in midlatitudes were defined

according to previous aircraft measurement campaigns. Especially, the STERAO cam-

paign recorded NO spikes of magnitude from 1–10 ppb related to lightning activity15

in thunderstorms occurring 9–10 July 1996 over the northern Colorado (Dye et al.,

2000; Stith et al., 1999). Lange et al. (2001) measured NO spikes of 3.5 ppb dur-

ing the STREAM campaign associated with a matured storm over the Ontario. Sev-

eral peaks of NO mixing ratios from 0.7–6 ppb were also observed during EULINOX

(Huntrieser et al., 2002) over Germany in July 1998. The LINOX aircraft campaign20

recorded NO spikes from 0.75–1.25 ppb (Huntrieser et al., 1998) related to thunder-

storm over Europe, the 30 July 1996. From these studies, the NO concentration asso-

ciated with the electrical activity in thunderstorms occurring over midlatitudes was de-

termined as NO
mean, Midlats

i
= 3.4 ppb (NO

min, Midlats

i
= 0.7 and NO

max, Midlats

i
= 10 ppb).

Because there are much fewer LNOx measurements in the tropics and in order to25

be consistent with the LNOx emissions defined in the GEOS-Chem model, the ra-

tio RLNOx
=

LNO
Midlatitudes
x

LNO
Tropics
x

was defined as in the CTM. During the year 2006, the rela-

tive midlatitudes and tropics LNOx contribution was about RLNOx
= 0.33. This result
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is in agreement with higher LNOx emissions in these regions rather than in midlat-

itudes. The value of NO mixing ratio injected by lightning in tropics was defined as

NO
mean, Tropics

i
= 10.2 ppb (NO

min, Tropics

i
= 2.8 and NO

max, Tropics

i
= 29.7 ppb).

Once NOi estimate was completed, the calculation of the plume lifetime was

achieved using the detailed formulation given in Sect. 3.1.1. The results for τ are sum-5

marized in Table 2. Hereafter, the results are detailed for NO
mean
i in Sect. 4 and sen-

sitivity tests are carried out using all NOi values for midlatitudes and tropics (Sect. 5).

Model calculations for NO
mean
i and Dh = 15 m

2
s
−1

provide a minimum plume lifetime of

3 (6) h for midlatitudes and maximum plume lifetime of 9 (21.3) h for tropics at daytime

(nighttime).10

3.2.4 The effective reaction rate constant (Keff)

The non-linear chemistry within the plume has been considered in calculating the ef-

fective reaction rate constant (Keff), which is used to compute the formation of the

secondary species (Ox and HNO3) within the plume. That corresponds to the evolution

of odd oxygen depending on the O and O3 reactions with NO2 and NO, and also on the15

NOx activation (day) or deactivation (night) with the HNO3, N2O5 and PAN chemistry.

Keff is calculated according to the Eq. (11) of the Sect. 3.1.2 using the same sim-

ple plume dispersion simulations than those carried out to define the plume lifetime

(Sect. 3.2.3).

Results for Keff are summarized in Table 3. Model calculations using NO
mean
i20

and Dh = 15 m
2

s
−1

give a Keff value of 5.49×10
−19

molecules
−1

s
−1

cm
−3

(4.55×

10
−19

molecules
−1

s
−1

cm
−3

) in midlatitudes and 3.64×10
−19

molecules
−1

s
−1

cm
−3

(2.98×10
−19

molecules
−1

s
−1

cm
−3

) in tropics, at daytime (at nighttime).

Keff estimations obtained in this study are very low as well as those calculated by

Cariolle et al. (2009), for the plume chemistry related to aircraft exhausts. In this pre-25

vious work, Keff varies from 1.0 to 4.2×10
−18

molecules
−1

s
−1

cm
−3

with a mean value

close to 3×10
−18

molecules
−1

s
−1

cm
−3

depending on the NOx loading. The very low
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value for Keff point out that the plume parameterization implies a delay of the production

of ozone at the large scale rather than its destruction within the plume.

3.2.5 The fractions of NOx conversion to HNO3 (β1 and β2)

The fractions β1 and β2 represent the NOx conversion into HNO3 within the plume at

daytime and nighttime respectively. They were computed using the DSMACC chemical5

box model.

The β1 coefficient was calculated for day conditions depending mainly on the OH

concentration. The conversion of NOx into HNO3 at nighttime (β2 coefficient) is re-

lated to the heterogeneous reaction of N2O5 and so depends on particles (aerosols

and ice crystals) concentration and their lifetime. This is directly linked with the sur-10

face density and the radius of particles in the anvil region of thunderstorms, which

is highly uncertain. We defined these values using in situ measurements. The sur-

face area (ST) and the radius (R) for aerosols are defined such as: ST = 0.28 m
−1

and

R = 1 µm
−1

(Huntrieser et al., 2002) and for ice, ST = 0.03 m
−1

and R = 30 µm
−1

(Knol-

lenberg et al., 1993). In addition, the reaction probabilities of NOx on aerosols and15

ice crystals γaerosols
N2O5

= 0.02 (Evans and Jacob, 2005) and γ ice
N2O5

= 0.03 (Sander et al.,

2006), respectively, were used for our box model simulations. These values correspond

to the probability that a N2O5 molecule impacting an aerosol or an ice crystal surface

was subjected to react. The results for β1 and β2 coefficients are summarized in Ta-

ble 4.20

The estimate of β1 fraction does not show significant variation neither between lati-

tudes regions nor depending on NOi . The minimum β1 value is 1.34×10
−4

for tropical

regions and NO
min
i , and the maximum β1 value is 1.88×10

−4
for midlatitudes and

NO
max
i . The study of production and destruction rates for day conditions taking into ac-

count all reactions pathways (not shown here) demonstrates that production of HNO325

during the day is mainly determined by reaction of NO3 with formaldehyde (HCHO)

and acetaldehyde (CH3CHO). Surprisingly, HNO3 formation via the NO2+OH reaction
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seems to be less efficient. This result could be explained by the low initial concentra-

tions of OH used for the DSMACC simulations and it is in agreement with the small

β1 values. Then, the averaged β2 coefficient is higher by a factor 10 compared to β1

with a minimum value of 0.24×10
−3

in tropics for NO
max
i and a maximum estimate

of 14.4×10
−3

in midlatitudes for NO
min
i . The analysis of the production and the de-5

struction rates for night conditions taking into account all reactions pathway shows that

the predominant reaction in the HNO3 evolution is N2O5 +H2O (or the heterogeneous

reaction on the aerosols and ice crystals surface).

4 Results: CTM simulations

In this section, the effects of the lightning NOx plume parameterization, i.e. the influ-10

ence of sub-grid processes related to lightning emissions, on the NOx and O3 tropo-

spheric distributions at large scale are evaluated. Then, the parameterization sensitivity

to initial NO mixing ratio injected by lightning (NOi ), Dh, β1 and β2 coefficients is an-

alyzed to quantify the variability of the results regarding the plume-in-grid parameter

calculations.15

4.1 Implementation of the LNOx plume parameterization

The implementation of the lightning NOx plume parameterization into the GEOS-Chem

model requires specifying the system of continuity equations related to the plume

chemistry solved at large scale by the model (Sect. 3.1.2, Eqs. 13–15). Lightning NOx

emissions calculated in each grid box (in moleculescm
−2

s
−1

) by the model are directly20

used to compute the injection rate I (s
−1

) of NO at each chemical time step of the

simulation. Then, we consider the following setup: αNOx
= 1 and EINOx

= 1, in order to

represent the mixing ratio of the undiluted fraction of NOx by the tracer (rLNOx
). Fur-

thermore, lightning produce only NO among NOx species thus E = 0 in the Eq. (15).
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Finally, the ratio
NO2

NOx

is the relative balance between NO and NO2 in the diluted phase

at large scale reproduced by the model.

4.2 Impact of LNOx emissions on the NOx and O3 distributions

We perform a spin-up of six months (from July 2005 to January 2006) in order to

obtain a steady state in the model after activation of the plume parameterization. Then5

simulations were run for the entire year 2006. The transport and the convection time

steps are 15 min and the emissions and the chemical time steps are 30 min.

In the following, standard simulation refers to simulation with standard lightning NOx

emissions i.e. instantaneously diluted in a grid cell, while modified simulation refers to

simulation considering the plume parameterization and then sub-grid chemistry. Note10

that the modified simulation was run using mean values for the initial NO mixing ratio

(NO
mean, Midlats

i
= 3.4ppb and NO

mean, Tropics

i
= 10.2ppb) and Dh = 15 m

2
s
−1

. The Base

Case (BC) experiment corresponds to the standard simulation minus the standard sim-

ulation without lightning NOx emissions. The P1 experiment corresponds to the modi-

fied simulation minus the standard simulation without lightning NOx emissions. The P215

experiment is the same as the P1 experiment but without considering the nitrification

mechanism in the modified simulation (i.e. β1 = β2 = 0). In addition, sensitivity tests

were performed for P1 defined by the modified simulation using the minimum and the

maximum values for Dh, NOi , β1 and β2 coefficients. All experiments are summarized

in Table 5.20

Lightning emissions rates and the associated LNOx tracer distributions are first dis-

cussed, then the effects of the implementation of the plume parameterization (P1) com-

pared to the experiment without the plume-in-grid development (BC case) is presented.
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4.2.1 Lightning emissions and LNOx tracer distributions

Figure 3 displays the geographical distributions of the 9 km lightning NOx emissions

(a), the related LNOx tracer distributions (b) and the LNOx tracer zonal averaged (c)

in January (top panels) and in July (bottom panels) reproduced by the CTM from

the P1 experiment. These results are shown for an approximate detrainment level5

(9 km altitude) where the LNOx are the most concentrated. In January, the highest

emissions of NOx from lightning (4−6×10
9

moleculescm
−2

s
−1

) are located in the

Southern Hemisphere around the tropics over West Australia and Central-South Africa.

Also, the model gives low LNOx emissions (< 3×10
9

moleculescm
−2

s
−1

) over South

America and North America especially over the Gulf of Mexico. In July, the high-10

est LNOx emissions (4−6×10
9

moleculescm
−2

s
−1

) are calculated in the Northern

Hemisphere over North America, North of India, Central Africa and Sahel. In addition,

LNOx emissions are modeled over Europe and over East Asia but to a lesser extent

(< 2×10
9

moleculescm
−2

s
−1

).

The lightning NOx tracer introduced into the model represents the lightning NOx15

emissions affected by the transport and the exponential decay depending on the plume

lifetime. Figure 3 shows that the tracer distribution is consistent with the lightning NOx

emissions. However, it is important to note that the plume lifetime is a key factor in the

evolution of the LNOx tracer mixing ratio. A long plume lifetime (several hours to sev-

eral days) allows the intercontinental transport of LNOx plumes. The representation of20

the sub-grid chemistry and the transport of the non-linear chemistry effects related to

the plume consideration becomes important for the chemistry of the regions located far

downwind from source regions. According to its preliminary calculation (Sect. 3.2.3),

the plume lifetime is longer in tropics (9 and 21.3 h for day and night conditions, respec-

tively) than in midlatitudes (3 and 6 h, for day and night conditions, respectively). So,25

the LNOx tracer is characterized by a shorter lifetime as a plume over North America

than over Central Africa and around the Sahel while the model simulated less impor-

tant emissions over these regions especially in summer. In boreal winter, the mixing

34115



ACPD

15, 34091–34147, 2015

Modeling

lightning-NOx

chemistry at sub-grid

scale

A. Gressent et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

ratio of the lightning NOx tracer calculated by the model is about 0.21 ppb over Central

and South Africa, 0.18 ppb over West Australia and 0.11 ppb over South America. In

summer, the tracer mixing ratio is simulated as 0.21, 0.32 and 0.16 ppb over Central

Africa, North India and North America, respectively. The lightning NOx tracer is mainly

reproduced at altitudes where lightning NOx are produced and detrained (in the upper5

troposphere) as shown in panels (c) in Fig. 3.

4.2.2 Impact of lightning on NOx and O3 distributions with the plume

parameterization

The difference between P1 and BC experiments (P1−BC) was calculated in order to

quantify the changes on NOx and O3 mixing ratios at large scale implied by the imple-10

mentation of the plume-in-grid parameterization into GEOS-Chem. Figures 4 and 5 dis-

play the geographical distributions of the NOx, HNO3, PAN and O3 absolute changes

(in ppb) in January and in July, respectively. The 9 km altitude level was chosen be-

cause of the most significant variations at this altitude compared to the rest of the

troposphere.15

In boreal winter, LNOx plume chemistry leads to a maximum decrease at large scale

over regions of emissions of 120 ppt for NOx and a decrease of 68 ppt for HNO3 and

16 ppt for PAN over Central and South Africa. These variations are associated with

a maximum O3 decrease of 2.8 ppb over regions of emissions. A similar NOx, HNO3,

PAN and O3 reduction is obtained in other areas of high LNOx emissions (i.e. over20

West Australia and South America). Downwind of LNOx emissions the opposite effect

is observed for NOx and HNO3 species with maximum increase of 40 ppt for NOx and

13.5 ppt for HNO3 observed over South Atlantic and Indian Ocean. Generally, PAN still

decreases over oceans but in a lesser extent compared to regions of LNOx emissions,

with a maximum reduction of 9 ppt. O3 response is a maximum increase of 1.13 ppb25

around area where the transport is effective and especially over the oceans. In sum-

mer, maximum decreases of 140 ppt for NOx and 60 ppt for HNO3 and 24 ppt for PAN

are calculated by the CTM leading to a maximum O3 decrease of 2.4 ppb over Cen-
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tral Africa (reduction also observed over North America and North India). Downwind of

lightning emissions, increase of NOx and HNO3 is observed with a maximum value of

30 and 38 ppt, respectively. PAN reservoir species also still decreases slightly down-

wind with 2 ppt changes. Finally, that leads to maximum O3 increase of 0.7 ppb.

Note that the production of PAN is limited by the supply of NOx or non-methane5

volatil organic compounds (NMVOCs). Above continental lightning sources regions,

NMVOCs are uplifted by deep convection but with lower NOx due to the activation of the

plume parameterization. That implies a less efficient PAN production in these regions.

Downwind of lightning sources regions (oceanic regions), NOx increases because of

the LNOx transport in plume form but there is less NMVOCs available to produce PAN.10

Therefore, the production is limited leading to an overall lower PAN production in P1.

In order to provide a full overview of the effects of the plume parameterization, the rel-

ative difference between the P1 and BC experiments (i.e. (P1–BC)/BC) was calculated

integrated throughout the troposphere. Figures 6 and 7 show zonal averaged of NOx

(upper panels) and O3 (bottom panels) relative changes (in %) integrated throughout15

the troposphere for regions of interest for January and July, respectively. During bo-

real winter, the highest NOx (O3) decreases of 10 % (5 %) in West Australia, then 20 %

(6 %) in Central Africa are calculated. These negative variations are mainly calculated

between 400 hPa and the tropopause level for NOx and ozone. South America is char-

acterized by a decrease of 20 % of the nitrogen oxides and 1 % of ozone. Over this20

region, variations are significant in the entire troposphere for both species. In contrast

to the continent decrease, NOx increase is observed over the major part of South At-

lantic and Indian Ocean with 14 and 20 % maximum, respectively. The O3 response in

an increase of 1 % near the tropopause and it becomes higher close to the surface of

about 4 %. In summer, there is a NOx (O3) decrease of 25 % (8 %) over Central Africa,25

20 % (2 %) over North India, and 5 % (0.5 %) over North America. Also, South Atlantic

and Indian Ocean (located downwind of lightning NOx emissions) are characterized by

a maximum increase of 18 % for NOx and 2 % for O3.
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As a result, the sub-grid chemistry associated to the LNOx emissions implies (i) a de-

crease of the nitrogen oxides and ozone mixing ratios at large scale over regions char-

acterized by intense lightning emissions and (ii) an increase of these species downwind

of emissions. Especially the plume parameterization related to the lightning NOx leads

to:5

1. Significant effects on NOx mixing ratio (±20 %): these effects on nitrogen oxides

are important because NOx is the first criterion which is constrained in a CTM in

order to determine the global LNOx production (6 TgNyr
−1

in the GEOS-Chem

model).

2. Lower effects on O3 mixing ratio (±5 %): these limited impacts on ozone could be10

explained by compensatory effect of the NOy species (mainly conversion of NOx

into (i) HNO3 within the plume or (ii) PAN).

The effects of the plume parameterization are simulated over the entire troposphere

mainly for ozone. Indeed, the spreading of effects on ozone to the lower free tropo-

sphere is related to the subsidence areas of the Walker circulation. These regions are15

characterized by accumulation and creation of ozone for low altitude levels. Neverthe-

less, the maximum NOx and O3 variations are calculated for altitude levels associated

with a mean detrainment level. The realistic representation of the sub-grid processes

(P1 experiment) related to the LNOx plume is in contrast with the simplified instanta-

neous dilution in the grid cell of the lightning NOx emissions (BC experiment).20

The plume approach allows the conversion of NOx into HNO3 during the plume life-

time. In addition, the high NOx concentration within the plume (much higher than the

background content) leads to the O3 titration and more generally to the Ox destruc-

tion within the plume. The most important impact of the plume parameterization is the

transport of the LNOx emissions as a plume and the transport of the associated non-25

linear chemistry effects leading to a delay of the O3 production at large scale. In other

words, O3 is less produced over the regions with intense lightning NOx emissions than

downwind of LNOx emissions by photochemical reactions from NOx.
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4.3 Plume sensitivity to the estimated uncertainties of parameter calculations

4.3.1 The Atmospheric dynamical conditions and the initial NO mixing ratio

injected by lightning

The impact of (i) the diffusion properties of the atmosphere (Dh) and (ii) the initial

NO mixing ratio injected by lightning (NOi ) are analyzed. Dh and NOi are the two5

key parameters in the determination of the physical and chemical characteristics of

the plume. The modified simulation characterizing the P1 experiment was run for the

ranges of the horizontal diffusion coefficients and the initial NO mixing ratio injected by

lightning. It is important to note that for these sensitivity tests, β1 and β2 coefficients

remain constant using their mean values. τ and Keff values related to these simulations10

are those previously calculated (Sect. 3) and summarized in Tables 2 and 3. Figure 8

displays τ (upper panels) and Keff (bottom panels) variations depending on Dh and NOi .

As expected, the strongest the horizontal diffusion is the most efficient the dispersion of

the plume is. In both, midlatitudes and tropics, τ decreases when Dh becomes larger.

In addition, τ increases with the initial NO mixing ratio injected by lightning. In contrary,15

Keff increases with Dh coefficient in the two regions of the globe.

The variability of NOx and O3 mixing ratios around the mean value for regions and

seasons depending on the known uncertainties associated with parameter calculations

have been quantified. Figure 9 shows the intervals of variability of NOx and O3 (∆NOx

and ∆O3, respectively) at 9 km altitude reproduced by GEOS-Chem depending on Dh20

and on the initial NO mixing ratio (NOi ). Note that for the sake of readability, the scale

of NOx and O3 changes differs by region. Results are also summarized in Table 6.

We chose representative continental areas such as Florida and Congo, which corre-

spond to regions characterized by intense electrical activity for midlatitudes and trop-

ics, respectively. North and South Atlantic were selected to represent regions down-25

wind of NOx emissions, for mid-latitude and tropic variations, respectively. The high-

est ranges of NOx and O3 changes are obtained for continental tropical regions with

∆NOx [−33.1; +29.7] ppt and ∆O3 [−1.56; +2.16] ppb, in January, and ∆NOx [−14.3;
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+21] ppt and ∆O3 [−1.18; +1.93] ppb, in July. The largest variation range associated

with the tropical continents could be explained by the largest difference on parameter

values defining the plume in this region (especially NOi ). The smallest intervals are ob-

served over continental mid-latitude regions for winter with ∆NOx [−1.7; +1.8] ppt and

∆O3 [−0.16; +0.72] ppb and over oceanic tropical regions in summer such as ∆NOx5

[−11.5; +2.6] ppt and ∆O3 [−0.14; +0.92] ppb. As a result, the variability of NOx and

O3 species to the parameter uncertainties is a few ppt for NOx and less than 2 ppb for

O3.

4.3.2 Coefficients related to the nitrification mechanism (β1 and β2)

In order to estimate the variability of the NOx and O3 mixing ratios related to the uncer-10

tainties on β1 and β2 fractions (Table 7), the difference between P1 experiment using

β1 and β2 mean values and P1 experiment using minimum and maximum β1 and β2

coefficients has been calculated. This implies that τ and Keff are constant.

In January, the highest variability on NOx mixing ratio is ∆NOx [−2.3; +0.9]×10
−2

ppt

over continental tropical regions and ∆O3 [−10; +11]×10
−4

ppb over tropical ocean15

on O3, while mid-latitude oceanic areas show minimum ranges on NOx and O3 with

∆NOx ±2.3×10
−2

ppt associated with ∆O3 [−9; +4]×10
−4

ppb. In July, the maximum

ranges are calculated over oceans in midlatitudes for NOx such as ∆NOx [−21.1;

+6.6]×10
−2

ppt and in tropics for O3 with ∆O3 [−30; −2]×10
−4

ppb. Finally, the small-

est intervals, ∆NOx [−0.9; −0.4]×10
−2

ppt and ∆O3 [−24; −6]×10
−4

ppb, are simu-20

lated for tropical ocean and mid-latitude continent, respectively.

In addition, the impact of the nitrification mechanism was assessed comparing the

P1 experiment using mean β1 and β2 values and P2 experiment for which β1 = β2 = 0.

As a result, taking into account NOx conversion into HNO3 using the mean β fractions

calculated in this study does not imply strong changes in NOx and O3 distributions25

(∆NOx < 10
−4

ppb and ∆O3 < 10
−2

ppb).
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In the case of significant values of β fractions, the rate of the nitrification mechanism

should imply a delay of the O3 formation from the NOx in the plume because of the

NOx storage into HNO3. On the other hand, HNO3 is considered as a one of the main

sink for NOx species undergoing wet deposition and seemingly limiting their affect on

global ozone.5

The sensitivity tests point out the limited effect of the NOx conversion to HNO3 within

the plume using our β1 and β2 estimates. The variability on NOx and O3 mixing ratios

related to β coefficients is about a few ppt. That could be explained by small β values

resulting from our estimate unlike Cariolle et al. (2009) highlighted the significant influ-

ence of these fractions in the case of aircraft NOx emissions. In our study, we can easily10

suppose that the increase of the β1 and β2 coefficients should be in agreement with

the work of Cooper et al. (2014) in reducing the underestimation of HNO3 production

induced by NOx emissions from lightning. Further estimates of β should be realized

using future observations in cloud anvil of primary species, aerosols and particules

needed for NOx conversion at daytime and nighttime to improve the determination of15

these parameters. β1 coefficient is particularly dependent on the HOx radicals, which

could vary significantly within the cloud anvil in part because of the transport of perox-

ides from the lower troposphere by convective uplift (Wennberg et al., 1998). Then, the

determination of β2, corresponding to the NOx conversion fraction into HNO3 via N2O5

formation during nighttime is considerably dependent on (i) the estimate of aerosols20

and ice crystal concentration and their lifetime within the cloud anvil which is highly

uncertain according to measurement campaigns and (ii) on the reaction probability on

aerosols γaerosol
N2O5

and ice crystals γ ice
N2O5

from laboratory studies extrapolations.

According to results presented in this section, sensitivity tests show the predomi-

nance of the initial NO mixing ratio injected by lightning (NOi ) and the diffusion prop-25

erties of the atmosphere (Dh) in the variability of the NOx and O3 mixing ratios around

the mean value in response to the plume-in-grid parameterization in the CTM. In win-

ter, the NOx and O3 variability is the highest for continental regions in the tropics and

the smallest variability is calculated for midlatitudes. In summer, the most important
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variability of NOx and O3 is simulated in tropics over regions characterized by intense

LNOx emissions while the least significant sensitivity is obtained still in the tropics but

downwind of emissions (mainly over oceans).

5 Conclusions

For the first time, a realistic lightning NOx chemistry is implemented as a plume param-5

eterization into a global chemical transport model. The key parameters characterizing

the lightning-related plume were estimated depending on two main criteria, i.e. the NO

mixing ratio injected by lightning (NOi ) and the atmospheric diffusion coefficient (Dh).

According to the NOi and Dh ranges, the plume lifetime (τ) and the effective reaction

rate constant (Keff) for NOx-O3 chemical interactions were estimated as follow:10

– τ = [0.01;68.5] h;

– Keff = [0.77;23]×10
−19

molecules
−1

s
−1

cm
−3

.

Also, for the conditions defined by NO
mean
i and Dh = 15 m

2
s
−1

:

– τ is 3 (6) h in midlatitudes and 9 (21.3) h in tropics at daytime (nighttime);

– Keff is 5.49×10
−19

molecules
−1

s
−1

cm
−3

(4.55×10
−19

molecules
−1

s
−1

cm
−3

)15

in midlatitudes and 3.64×10
−19

molecules
−1

s
−1

cm
−3

(2.98×10
−19

mole-

cules
−1

s
−1

cm
−3

) in tropics at daytime (nighttime).

Finally, the fractions of NOx conversion into HNO3 within the plume are β1 =

[1.34;1.88]×10
−4

, and β2 = [0.24;14.4]×10
−3

for day and night conditions respectively.

GEOS-Chem simulations performed using mean value for NOi and Dh = 15 m
2

s
−1

20

reveal nitrogen species and ozone changes compared to the instantaneous dilution.

A decrease of NOx and O3 mixing ratios at large scale over the regions of strong

LNOx emissions is observed mainly in the Northern Hemisphere in summer and in
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the Southern Hemisphere in winter. In the troposphere, maximum decrease of 20 %

(6 %) in January and 25 % (8 %) in July for NOx (O3), are found over Central Africa. In

contrast, an increase of NOx (O3) downwind of emissions is simulated of 20 % (4 %) in

January and 18 % (2 %) in July. The LNOx plume parameterization allows the transport

of the effects on the non-linear chemistry occurring within the plume and the conversion5

of NOx to the nitrogen reservoir species (mainly HNO3). However, the most significant

impact is the transport of the LNOx as a plume. That implies a delay of (i) the NOx

release into the point grid and (ii) ozone production from NOx emitted by lightning

flashes corresponding to the decrease of the NOx and O3 mixing ratios at large scale

over regions of emissions and their increase over transport pathway.10

The variability of the NOx and O3 mixing ratios around the mean value depending on

the known uncertainties on the plume physics and chemistry key parameters has been

estimated. The highest sensitivity is obtained for continental tropical regions with ∆NOx

[−33.1; +29.7] ppt and ∆O3 [−1.56; +2.16] ppb, in January, and ∆NOx [−14.3; +21] ppt

and ∆O3 [−1.18; +1.93] ppb, in July. Concerning β1 and β2 fractions, the highest vari-15

ability depending on the fraction uncertainties for NOx is ∆NOx[−2.3;+0.9]×10
−2

ppt

over continental tropical regions, and ∆O3 [−10; +11]×10
−4

ppb for O3 over tropical

ocean in January. In summer, the maximum ranges are calculated over oceans in mid-

latitudes for NOx such as ∆NOx[−21.1;+6.6]×10
−2

ppt and in tropics for O3 with ∆O3

[−30; −2]×10
−4

ppb. Accordingly, parameters leading to the highest uncertainties on20

results and which drive the plume-in-grid parameterization are NOi and Dh.

This study demonstrates the importance to consider the plume-in-grid chemistry re-

lated to the lightning NOx emissions occurring at smaller scale for global calculations.

Taking into account the plume dilution into the background atmosphere in time and

space with the transport of the NOx and O3 non-linear chemistry effects and the con-25

version of NOx into HNO3 reservoir species, implies more realistic NOx and O3 concen-

trations in CTM. The plume-in-grid approach, by allowing realistic sub-grid chemistry

will allow improving the different steps in the lightning NOx emissions modeling such

as the convection process, the calculation of the NO molecules produced by lightning
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discharges depending on regions according to recent and future satellite observations,

and also processes like HNO3 scavenging and HNO3 uptake by ice crystals.
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Table 1. The initial atmospheric parameters and background concentrations of chemical

species from GEOS-Chem outputs for the DSMACC chemical box model simulations.

TEMP PRESS O3 NO NO2 HNO3 HNO4 PAN N2O5 CO

Units (K) (hPa) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppt) (ppb)

Midlatitudes 228 313 67 0.04 0.01 0.15 0.02 0.1 2 94

Tropics 240 313 26 0.03 0.003 0.02 0.006 0.03 2.3 93

OH HO2 H2O2 CH2O CH4O2 C3H8 C5H8 C2H4O C3H6O

Units (ppb) (ppt) (ppt) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb)

Midlatitudes 0.2 4 0.4 0.06 0.1 0.47 0 7.5 4

Tropics 0.06 6 0.34 0.03 0.17 0.13 7.5 7.5 4
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Table 2. The plume lifetime τ (h) calculated for midlatitudes and tropics depending on the

initial NO mixing ratio injected by lightning emissions (NOi , ppb) and the horizontal diffusion

coefficient (Dh, m
2

s
−1

) for day (upper table) and night conditions (bottom table).

Day

τ (h) Midlatitudes Tropics

NOi (ppb) 0.7 3.4 10 2.8 10 29.7

Dh = 0.1 (m
2

s
−1

) 1.55 8.14 23.9 4.40 23.1 67.9

Dh = 15 (m
2

s
−1

) 0.1 3.17 18.6 0.27 8.90 52.8

Dh = 100 (m
2

s
−1

) 0.01 0.47 4.17 0.04 1.32 11.7

Night

τ (h) Midlatitudes Tropics

NOi (ppb) 0.7 3.4 10 2.8 10 29.7

Dh = 0.1 (m
2

s
−1

) 1.62 8.19 24.1 4.74 23.4 68.5

Dh = 15 (m
2

s
−1

) 0.31 6.19 22 2.77 21.3 66.4

Dh = 100 (m
2

s
−1

) 0.05 1.23 10.6 0.43 10.5 55.4
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Table 3. The effective reaction rate constant Keff (10
−19

molecules
−1

s
−1

cm
−3

) in midlatitudes

and tropics depending on the initial NO mixing ratio injected by lightning emissions (NOi , ppb)

and the horizontal diffusion coefficient (Dh, m
2

s
−1

) for day (upper table) and night conditions

(bottom table).

Day

Keff (10
−19

molecules
−1

s
−1

cm
−3

) Midlatitudes Tropics

NOi (ppb) 0.7 3.4 10 2.8 10 29.7

Dh = 0.1 (m
2

s
−1

) 1.28 1.24 1.51 0.77 1.2 1.83

Dh = 15 (m
2

s
−1

) 8.44 5.49 5.43 7.79 3.64 4.13

Dh = 100 (m
2

s
−1

) 12.1 16.4 14.4 23 19.8 13

Night

Keff (10
−19

molecules
−1

s
−1

cm
−3

) Midlatitudes Tropics

NOi (ppb) 0.7 3.4 10 2.8 10 29.7

Dh = 0.1 (m
2

s
−1

) 1.28 1.24 1.51 0.77 1.10 1.83

Dh = 15 (m
2

s
−1

) 4.84 4.55 5.43 2.3 2.98 4.13

Dh = 100 (m
2

s
−1

) 7.36 8.39 6.73 6.45 3.94 5.16
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Table 4. The fractions of NOx conversion into HNO3 within the plume (β1 and β2) in midlatitudes

and tropics depending on the initial NO mixing ratio injected by lightning emissions (NOi , ppb)

and on particles for day (upper table) and night conditions (bottom table).

Day

β1 (10
−4

) Midlatitudes Tropics

NOi (ppb) 0.7 3.4 10 2.8 10 29.7

Aerosols 2.53 3.34 3.45 2.51 2.95 2.6

Ice 0.23 0.3 0.3 0.2 0.23 0.3

Mean 1.38 1.8 1.88 1.34 1.59 1.47

Night

β2 (10
−3

) Midlatitudes Tropics

NOi (ppb) 0.7 3.4 10 2.8 10 29.7

Aerosols 14.3 9.89 8 4.9 1.69 0.24

Ice 14.4 9.96 8.06 4.89 1.70 0.24

Mean 14.4 9.92 8.03 4.88 1.7 0.24

34135



ACPD

15, 34091–34147, 2015

Modeling

lightning-NOx

chemistry at sub-grid

scale

A. Gressent et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Table 5. Values of the parameters for the plume parameterization corresponding to the experi-

ments P1 and P2.

Parameters Experiments

P1 P2

Dh (m
2

s
−1

) 0.1 15 100 15

NOi (ppb) Min Mean Max Min Mean Max Min Mean Max Mean

Midlatitudes 0.7 3.4 10 0.7 3.4 10 0.7 3.4 10 3.4

Tropics 2.8 10.2 29.7 2.8 10.2 29.7 2.8 10.2 29.7 10.2

β1 Mean 0 Min Mean Max

β2 Mean 0 Min Mean Max
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Table 6. The variability of NOx (in ppt) and O3 (in ppb) depending on the horizontal diffusion

coefficient (Dh, m
2

s
−1

) and on the NOi mixing ratio (ppb) injected by lightning for midlatitudes

(Florida and North Atlantic) and tropics (Congo and South Atlantic) in January and July.

January July

Midlatitudes Tropics Midlatitudes Tropics

Florida North Atlantic Congo South Atlantic Florida North Atlantic Congo South Atlantic

∆NOx± [−1.7;+1.8] [−8.2;+1.7] [−33.1;+29.7] [−6.5;+6.9] [−9.3;+5.4] [−21.1;+6.6] [−14.3;+21] [−11.5;+2.6]

∆O3± [−0.16;+0.72] [−0.12;+0.53] [−1.56;+2.16] [−0.49;+0.94] [−0.44;+1.01] [−0.49;+0.66] [−1.18;+1.93] [−0.14;+0.92]
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Table 7. The variability of NOx (in ppt, ×10
−2

) and O3 (in ppb, ×10
−4

) depending on β1 and β2

values for midlatitudes (Florida and North Atlantic) and tropics (Congo and South Atlantic) in

January and July. Experiment P1, using Dh = 15m
2

s
−1

and NO
mean
i , performed with the GEOS-

Chem model.

January July

Midlatitudes Tropics Midlatitudes Tropics

Florida North Atlantic Congo South Atlantic Florida North Atlantic Congo South Atlantic

∆NOx± [−1.6;−0.06] [−2.3;−2.3] [−2.3;+0.9] [+0.3;+0.6] [−3.3;+1.4] [−21.1;+6.6] [+0.4;+2.1] [−0.9;−0.4]

∆O3± [−9;+5] [−9;+4] [−3;+22] [−10;+11] [−24;−6] [−6;+19] [−8;+17] [−30;−2]
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Figure 1. The lightning NOx plume parameterization based on the Effective Reaction Rate

approach.
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Figure 2. rl critical value and odd oxygen trends from DSMACC chemistry box model simula-

tions for midlatitudes (solid line) and tropics (dotted line) (a) at midnight (upper panel) and (b)

at midday (bottom panel).
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Figure 3. (left panels, a) Geographical distributions at 9 km altitude of lightning NOx emissions,

(middle panels, b) the geographical distributions of the related LNOx tracer (in ppb) and (right

panels, c) the zonal averaged of the LNOx tracer (in ppb), for January (top) and July (bottom).

Experiment P1, using Dh = 15 m
2

s
−1

and NO
mean
i , performed with the GEOS-Chem model.
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Figure 4. Geographical distributions of NOx, HNO3, PAN, and O3 variations (in ppb) at 9 km

altitude for January from the absolute difference between P1 and BC experiments. P1 was

performed using Dh = 15 m
2

s
−1

and NO
mean
i with GEOS-Chem.
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Figure 5. Geographical distributions of NOx, HNO3, PAN, and O3 variations (in ppb) at 9 km al-

titude for July from the absolute difference between P1 and BC experiments. P1 was performed

using Dh = 15 m
2

s
−1

and NO
mean
i with GEOS-Chem.
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Figure 6. Zonal averaged NOx (upper panels) and O3 (bottom panels) variations (in %) over the

regions characterized by strong NOx emissions for January (the yellow solid line represents the

tropopause level), from the relative difference between P1 and BC experiments ((P1–BC)/BC).

P1 was performed using Dh = 15 m
2

s
−1

and NO
mean
i with GEOS-Chem.
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Figure 7. Zonal averaged NOx (upper panels) and O3 (bottom panels) variations (in %) over

the regions characterized by strong NOx emissions for July (the yellow solid line represents the

tropopause level), from the relative difference between P1 and BC experiments ((P1–BC)/BC).

P1 was performed using Dh = 15 m
2

s
−1

and NO
mean
i with GEOS-Chem.
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Figure 8. The plume lifetime (τ, upper panels) and the effective reaction rate constant (Keff,

bottom panels) depending (i) on the horizontal coefficient diffusion (Dh, m
2

s
−1

) for midlatitudes

(left panels) and tropics (right panels) and (ii) on the NO mixing ratio injected by lightning (NOi ,

in ppb).
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Figure 9. The NOx (a) and O3 (b) variability at 9 km altitude depending on the horizontal co-

efficient diffusion (Dh, m
2

s
−1

) and on the NO mixing ratio injected by lightning (NOi , ppb) for

midlatitudes (Florida and North Atlantic) and tropics (Congo and South Atlantic). Intervals are

hatched in January and non-hatched in July. Markers correspond to the NOx variations sim-

ulated for Dh = 0.1 m
2

s
−1

(red ones), Dh = 15 m
2

s
−1

(blue ones) and Dh = 100 m
2

s
−1

(green

ones).
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