
RESEARCH ARTICLE

Down-Regulation of miR-92 in Breast
Epithelial Cells and in Normal but Not
Tumour Fibroblasts Contributes to Breast
Carcinogenesis
Laura Smith1, EuanW. Baxter1, Philip A. Chambers1, Caroline A. Green1, Andrew
M. Hanby1, Thomas A. Hughes2, Claire E. Nash1¤, Rebecca A. Millican-Slater3, Lucy
F. Stead1, Eldo T. Verghese1, Valerie Speirs1*

1 Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom, 2 Leeds Institute of
Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom, 3 St James’s Institute of
Oncology, St James’s University Hospital, Leeds, United Kingdom

¤ Current Address: The Research Institute of the McGill University Health Centre, Montreal, Quebec,
Canada
* v.speirs@leeds.ac.uk

Abstract

Background

MicroRNA (miR) expression is commonly dysregulated in many cancers, including breast.

MiR–92 is one of six miRs encoded by the miR-17-92 cluster, one of the best-characterised

oncogenic miR clusters. We examined expression of miR–92 in the breast epithelium and

stroma during breast cancer progression. We also investigated the role of miR–92 in fibro-

blasts in vitro and showed that down-regulation in normal fibroblasts enhances the invasion

of breast cancer epithelial cells.

Methodology/Principal Findings

We used laser microdissection (LMD) to isolate epithelial cells from matched normal, DCIS

and invasive tissue from 9 breast cancer patients and analysed miR–92 expression by

qRT-PCR. Expression of ERβ1, a direct miR–92 target, was concurrently analysed for each

case by immunohistochemistry. LMD was also used to isolate matched normal (NFs) and

cancer-associated fibroblasts (CAFs) from 14 further cases. Effects of miR–92 inhibition in

fibroblasts on epithelial cell invasion in vitro was examined using a Matrigel™ assay. miR–

92 levels decreased in microdissected epithelial cells during breast cancer progression with

highest levels in normal breast epithelium, decreasing in DCIS (p<0.01) and being lowest in

invasive breast tissue (p<0.01). This was accompanied by a shift in cell localisation of ERβ1

from nuclear expression in normal breast epithelium to increased cytoplasmic expression

during progression to DCIS (p = 0.0078) and invasive breast cancer (p = 0.031). ERβ1

immunoreactivity was also seen in stromal fibroblasts in tissues. Where miR–92 expression

was low in microdissected NFs this increased in matched CAFs; a trend also seen in
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cultured primary fibroblasts. Down-regulation of miR–92 levels in NFs but not CAFs

enhanced invasion of both MCF–7 and MDA-MB–231 breast cancer epithelial cells.

Conclusions

miR–92 is gradually lost in breast epithelial cells during cancer progression correlating with

a shift in ERβ1 immunoreactivity from nuclei to the cytoplasm. Our data support a functional

role in fibroblasts where modification of miR–92 expression can influence the invasive

capacity of breast cancer epithelial cells. However in silico analysis suggests that ERβ1

may not be the most important miR–92 target in breast cancer.

Introduction
MicroRNAs (miRs) are a class of short non-coding RNAs of 21–23 nucleotides that regulate
gene expression and are commonly dysregulated in cancers, including those of the breast [1–
3]. MiRs regulate expression of their target genes by binding to miR recognition elements, typi-
cally within 3’ untranslated regions (UTRs), causing translational inhibition and/or mRNA
cleavage, thereby down-regulating expression of their protein products [4]. MiRs can also
interact with coding regions and/or the 5’UTRs of their target transcripts suggesting numerous
mechanisms by which these sequences can regulate gene expression [5, 6].

MiRs can function as oncogenes or tumour suppressors depending on their target genes.
MiRs of the miR-17-92 cluster, also described as Oncomir–1, are thought to act as oncogenes
and have been shown to promote cell proliferation and reduce apoptosis in lung cancer and
lymphoma [7, 8]. There are 6 members of this cluster; miR–17, miR-18a, miR-19a, miR-20a,
miR-19b-1 and miR-92a-1. Evidence suggests that these miRs exert their oncogenic role within
cells by down-regulating the expression of specific anti-proliferative and/or pro-apoptotic
genes including p63 [9], Bim [10] and components of the transforming growth factor (TGF)-β
pathway [11]. In this regard, we have previously shown that expression of ERβ1 is negatively
regulated by miR–92 in unselected non-microdissected breast cancers, providing a mechanism
for down-regulation of this putative tumour suppressor gene [12]. More recently Nilsson et al.
[13] found that high expression of miR–92 predicted better recurrence-free survival in breast
cancer patients, an unexpected observation for a so-called onco-mir.

There is growing recognition that the tumour stroma can influence the behaviour of tumour
cells, which may define patient outcomes [14, 15]. The most prominent change in breast stro-
mal composition in response to tumourigenesis is an increase in the number of fibroblasts [16,
17]. These are the most common cell type in the breast tumour stroma and are usually known
as cancer-associated fibroblasts (CAFs). A hallmark of CAFs is the much higher proportion of
myofibroblasts within the total fibroblast population, identified by their expression of α-
smooth muscle actin (α-SMA; [17, 18]). CAFs have been shown to increase tumour angiogene-
sis, tumour cell proliferation and the inflammatory response to the tumour. Examples of key
molecules in CAF function include TGF-β [18], stromal cell-derived factor–1 (SDF–1; [17])
and phosphatase and tensin homolog (PTEN; [19]), which typically enhance tumourigenicity.
Studies have uncovered numerous gene regulatory mechanisms responsible for dysregulation
of such molecules in CAFs including changes in promoter methylation [20]and activity of key
transcription factors [21]. However, the contributions of miRs to gene dysregulation in CAFs
remain virtually unknown. In 2012, Zhao and colleagues reported the first miR expression pro-
filing and identified key differences between CAFs and normal fibroblasts [22]. Likewise,
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Verghese et al. showed that miR-26b is down-regulated in CAFs from ER-positive breast can-
cers leading to enhanced epithelial cell migration and invasion [1]. The expression and func-
tion of miR–92 in breast stroma is yet to be addressed; however there is evidence to suggest
that miR–92 expression is associated with macrophage infiltration in breast cancer indicating
that this molecule might play an important role in tumour-stromal interactions [13].

Here, we aimed to examine expression of miR–92 in both the breast epithelium and stromal
compartments during cancer progression and determine whether changing its expression in
fibroblasts might modify the behaviour of breast cancer epithelial cells.

Materials and Methods

Ethics, Tissue and Laser Micro-Dissection (LMD)
Ethical approval was obtained from Leeds East research ethics committee (06/Q1206/180, proj-
ect specific; 09/H1306/108, Leeds Breast Tissue Bank). Tissue samples were pseudo-anon-
ymised and data were analysed anonymously. Fibroblasts were generated from fresh tissue
obtained from patients who gave informed written consent (09/H1306/108). Formalin-fixed
paraffin-embedded (FFPE) tissue blocks containing normal epithelium, DCIS and invasive
breast lesions were obtained from the diagnostic archives of the Leeds Teaching Hospitals NHS
Trust from 9 patients who had been treated for primary breast cancer in our centre. Under the
terms of this project-specific ethics (06/Q1206/180), patient identities were not disclosed to the
research team, hence specific informed consent was not required. Patient characteristics for
these cases are shown in Table 1. H&E-stained sections were reviewed by a specialist breast
pathologist (RM-S) for tissue verification. LMD was performed using a PALMmicrobeam
microdissector using 100X or 200X magnification as described previously [1]. Areas of 5-
10mm2 for each compartment were digitally outlined and catapulted into sterile opaque adhe-
sive caps (PALM). Areas selected were devoid of visible cells other than target cell types. Nor-
mal (NF) and cancer-associated fibroblasts (CAFs) were isolated previously [1] from female
patients with ER positive, HER–2 negative, grade 2 ductal NST cancers with no lymph node
involvement.

Tissue Culture, Transfection, Transduction and Functional Assays
MCF–7, MDA-MB–231, T47D, HB2, BT–474, MDA-MB–453, MDA-MB–468 and BT–
20 cells were maintained in RPMI 1640 medium, supplemented with 5% or 10% heat-inacti-
vated fetal bovine serum (FBS; both Invitrogen), in a 5% CO2 humidified incubator at 37°C.
BimonthlyMycoplasma checks (MycoAlert Mycoplasma detection assay, Lonza) were

Table 1. Pathological features of patients selected for LMD of normal, DCIS and invasive breast lesions (n = 9).

Case Tumour type Size (mm) Age Grade ER PR HER2 LN

1 Ductal NST 26 69 2 + - - N1

2 Ductal NST 14 55 2 + + - N0

3 Ductal NST 20 45 2 + + - N2

4 Ductal NST 16 69 1 + + - N0

5 Ductal NST 14 40 2 + + - N0

6 Ductal NST 55 61 3 - - - N1

7 Ductal NST 27 86 2 + + - N0

8 Ductal NST 28 43 2 + + - N1

9 Ductal NST 30 48 1 + + - N0

doi:10.1371/journal.pone.0139698.t001
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consistently negative and short tandem repeat profiles confirmed cell identity (last tested April
2014). Primary fibroblasts were isolated from breast surgical samples and maintained in
DMEM, supplemented with 10% heat-inactivated FBS, in a 5% CO2 humidified incubator at
37°C [23]. Reverse transfection of ERβ1 and non-targeting control siRNAs (Thermo Scientific),
mirVana™miR–92 inhibitor and negative control #1 (Ambion; #MH10916 and #4464076) or
miRNASelect™ pEP-hsa-mir-92a-1 expression vector (Cell Biolabs, Inc. #MIR-92A-1) and null
control was performed using Lipofectamine 2000 or Lipofectamine RNAiMAX (both Invitro-
gen). Invasion assays were performed as described previously [1, 23]. Briefly, 5x104 primary
fibroblasts were reverse transfected (cells added directly to pre-prepared transfection agents) in
24 well plates and incubated at 37°C for 8h after which the transfection mix was removed and
was replaced with fresh serum-free medium. Meanwhile, 1x104 serum-starved MCF7 or
MDA-MB–231 cells were seeded in serum-free medium into 24 well inserts coated with a
Matrigel™ layer and incubated at 37°C for 2h. After incubation, these inserts were placed inside
the wells which contained the transfected fibroblasts and co-cultured for 48h prior to fixation
of culture inserts and subsequent visualisation with crystal violet (5mg/ml crystal violet, 50%
methanol, 20% ethanol, 30% H20), prior to analysis.

RNA Extraction and Quantitative PCR Analysis
Total RNA extraction was achieved using themirVana™miRNA Isolation Kit (Ambion).
cDNA synthesis was performed using MegaPlex RT primers (Life Technologies) and a Mega-
plex pre-amplification step was undertaken for all analyses from FFPE tissues (Life Technolo-
gies). qRT-PCR analyses were performed on 7500/7900HT machines in triplicates with
Taqman assays (Life Technologies). Relative miR–92 expression was determined using nor-
malisers U6 and RNU48.

DNA Extraction and Pyrosequencing
DNA extraction was achieved using the DNeasy Blood and Tissue Kit (Qiagen). Primers for
amplification and pyrosequencing analysis of the methylation status of MIR17HG were
designed using proprietary pyrosequencing Assay Design Software v2.0 (Qiagen). Primer
sequences are in Table 2. These primers were used to analyse all 10 CpG’s between
chr13:91348952 and chr13:91348988. Assay designs were saved as.xml files and imported to
Pyro Q-CpG Software v1.0.9, which generated a nucleotide dispensation order according to the
manufacturer’s standard parameters. Suitable bisulphite treatment controls were chosen from
the options provided by the software. PCR reactions contained 12.5μl of Qiagen HotStarTaq
Master Mix (Qiagen), additional magnesium chloride to achieve a final concentration of 2mM,
200nM each of forward and reverse primers, 2ul of DNA eluted from the bisulphite conversion
and sufficient water to make a final volume of 25μl. Thermal cycling conditions were 94°C for
12 minutes to activate the Taq polymerase followed by 40 cycles of 94°C for 10 seconds, 55°C
for 20 seconds and 72°C for 30 seconds. PCR products were sequenced by pyrosequencing on a
PyroMark ID system (Qiagen) following the manufacturer’s protocols. Percentage methylation

Table 2. Primers used for pyrosequencing.

Primer Sequence (5’-3’) Genomic co-ordinates (GRCh38/hg38)

Forward GGGGGTTGGGGGATATAAA chr13:91348926–91348944

Reverse (biotinylated) CCTTTTTCAATTCCTTTTCCCTTTAC chr13:91349234–91349209

Sequencing GGGGGATATAAAGGAG chr13:91348933–91348948

doi:10.1371/journal.pone.0139698.t002
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at each of the four CpG sites was calculated by the Pyro Q-CpG Software. Pyrograms and anal-
ysis reports were exported from this software.

Immunohistochemistry
Immunohistochemistry was performed as previously described [24]. Briefly, sections were
dewaxed with xylene and rehydrated through graded ethanol before blocking of endogenous
peroxidase activity in 3% H2O2 (10min). Epitopes were retrieved by heating in a pressure-
cooker in 1% vector antigen unmasking solution (2min) and non-specific binding blocked
using 10% Casein solution (20min). Slides were incubated with mouse anti-ERβ1 antibody
(clone PPG5/10, Serotec) at a 1:20 dilution for 16h at 4°C. Staining was visualised using Envi-
sion kits (Dako, Gostrup, Denmark). Slides were washed in tris-buffered saline and stained in
copper sulphate, Harris’ haematoxylin and finally in Scotts substitute for 1min before dehydra-
tion. Slides were mounted in DPX (Fluka, UK). Stained sections were digitally scanned using
Scanscope XT (Aperio) at 40x magnification and were observed using ImageScope (Aperio).
Nuclear immunoreactivity was scored as percentage of positive cells in relation to total number
of tumor cells present and using the Allred score based on nuclear staining intensity and pro-
portion of positively stained nuclei, which generates numerical values from 0 to 8 [25]. Cyto-
plasmic staining was determined according to [24], where 0, no staining; 1, weak; 2, moderate;
3, strong. Cases were scored independently by two observers (LS and VS). Discordant results
were reevaluated jointly to reach consensus.

Data Mining and Statistical Analyses
BreastMark [26] and Oncomine [27]platforms were used for data mining. High and low
expression of candidate miR–92 targets was quantified as above or below mean expression for
that gene in all patients, respectively. Statistical analyses were performed using Prism (Graph-
Pad) with tests (two-tailed) as described in the text. P values of less than 0.05 were considered
significant.

Results

Reduced Expression of miR–92 in the Breast Cancer Epithelium Is
Associated with Cancer Progression and Poor Prognosis
As Nilsson et al. found that high expression of miR–92 was associated with better patient out-
come [13] we performed an in silico analysis using the BreastMark platform [26]. Similarly, we
found those patients with luminal A breast cancers who expressed high levels of miR–92 had a
better disease free survival (DFS) rate compared to patients expressing low levels (Fig 1); an
observation not expected for a so-called onco-mir.

We then examined expression levels of miR–92 in the breast epithelium during cancer pro-
gression. Our previous work had analysed miR–92 expression in unselected non-microdis-
sected breast tissues. Here, we used LMD to isolate areas of matched normal, DCIS and
invasive tissue from 9 patients with primary breast cancer (Fig 2A–2C) to specifically analyse
expression in breast epithelial cells. Expression of miR–92 was determined by qRT-PCR after
normalisation to U6, RNU48 or the geomean of both house-keepers. We were able to deter-
mine expression in all breast lesions for 6 patients. For 3 patients, we were unable to accurately
determine expression levels from invasive breast tissue due to no detectable expression of either
house-keeper for normalisation. For these 3 patients, we were able to calculate miR–92 expres-
sion in matched normal and DCIS breast tissues. We found that whilst absolute expression lev-
els varied from patient to patient, the pattern was consistent for all but 1 case (patient 6).

miR-92 and Breast Cancer Progression
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Overall, miR–92 levels decreased in epithelial cells during breast cancer progression with high-
est levels observed in normal breast epithelium, decreasing in DCIS (p<0.01) and being lowest
in invasive breast tissue (p<0.01; Fig 2D).

Expression of miR–92 Is Associated with an Altered Subcellular
Location of ERβ1; a Direct miR–92 Target
Next, we sought to demonstrate whether the down-regulation of miR–92 was inversely related
with ERβ1 expression in our patient cohort. We used an immunohistochemical approach to
determine ERβ1 protein expression. This was required due to our previous findings that
expression of ERβ1 is regulated by post-transcriptional mechanisms [28, 29], therefore we con-
sidered protein analysis would provide a more accurate correlation. Nuclear and cytoplasmic
immunoreactivity was assessed. ERβ1 showed predominantly nuclear expression in the normal
breast epithelium (Fig 3A) with no significant difference in nuclear staining through progres-
sion to DCIS and invasive breast cancer (Fig 3B). Interestingly we observed a shift in the locali-
sation of ERβ1 immunoreactivity during breast cancer progression with a significant increase
in cytoplasmic staining observed in DCIS (p = 0.0078; Fig 3C and 3E) and invasive breast
lesions (p = 0.031; Fig 3D and 3E) compared with normal breast tissue. This suggests that
miR–92 might influence the subcellular location of ERβ1. No changes were observed in the
level of staining, only in sub-cellular location.

Down-Regulation of miR–92 Expression in Normal Breast Fibroblasts
Can Influence Behaviour of Breast Cancer Epithelial Cells
As miR–92 levels decreased in the epithelial component during breast cancer progression we
therefore examined the expression level of miR–92 in matched normal fibroblasts (NFs) and
cancer-associated fibroblasts (CAFs) previously micro-dissected from 14 patients with ER-pos-
itive primary breast cancer [1]. CAFs were micro-dissected from the tumour block and NFs
from a block of adjacent normal tissue from the same case. We also analysed expression in 6

Fig 1. In silico analysis using BreastMark [26] shows luminal A breast cancer patients (n = 154) who
expressmiR–92 have improved disease free survival (DFS) rate compared to patients with low
expression levels with a hazard ratio of 0.49 (95% confidence intervals 0.28–0.84; p = 0.008).

doi:10.1371/journal.pone.0139698.g001
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cases of matched primary fibroblasts [1, 23]. miR–92 was stratified into 2 distinct groups of
high and low miR–92 expression in NFs (Fig 4A). Interestingly, expression of miR–92 was
markedly and significantly elevated in CAFs matched with NFs from the low expressing group.
In contrast, miR–92 expression showed little variation in NFs and CAFs from the high-express-
ing group. This pattern was also observed in primary fibroblast cultures (Fig 4B). ERβ1 immu-
noreactivity was also seen in stromal fibroblasts, however the spindle-like shape of these cells
made it impossible to distinguish nuclear and cytoplasmic staining (data not shown).

We next hypothesised that levels of miR–92 in NFs or CAFs directly defines the behaviour
of breast cancer epithelial cells. First, we selected a matched pair of primary NFs and CAFs
with a high base line expression of miR–92 (p<0.05; Fig 5A) and reverse transfected these cells
with an inhibitor for miR–92 or a non-targeting control to significantly reduce expression
(p = 0.006 and p = 0.0057 in NFs and CAFs respectively; Fig 5A). We then used a Matrigel™
invasion assay to assess effects of transfected NFs or CAFs on the invasive capacity of MCF7

Fig 2. Laser micro-dissection (LMD) was used to isolate areas of epithelium in normal (A), DCIS (B) and invasive (C) breast tissue from the same
tissue section. Breast tissue images show examples of the areas captured for patient 4 as a representative example. The expression of miR–92
decreased during breast cancer progression with highest levels observed in normal breast epithelium, decreasing in DCIS and being lowest in
invasive breast tissue (D). *denotes significance of p<0.01.

doi:10.1371/journal.pone.0139698.g002

miR-92 and Breast Cancer Progression

PLOS ONE | DOI:10.1371/journal.pone.0139698 October 5, 2015 7 / 17



miR-92 and Breast Cancer Progression

PLOS ONE | DOI:10.1371/journal.pone.0139698 October 5, 2015 8 / 17



and MDA-MB–231 breast cancer epithelial cells growing on Matrigel™-coated membranes of
Tranwell inserts placed in the dishes which contained the transfected fibroblasts. We found
that down-regulation of miR–92 expression in NFs, but not CAFs, significantly increased the
invasion of both MCF7 (Fig 5B) and MDA-MB–231 (Fig 5C) breast cancer epithelial cells
(p = 0.011 and p = 0.0070, respectively). Representative images of the invasion assays for each
cell line are shown in S1 Fig. Our data support a functional role for miR–92 in fibroblasts and
show that low levels of miR–92 promote a more aggressive breast cancer phenotype in cell
lines representing 2 different molecular subtypes of breast cancer suggesting that changes in
expression of this molecule in NFs can directly impact upon the behaviour of breast cancer epi-
thelial cells.

We then asked whether we could identify any potential targets through which miR–92 may
be functioning in the breast tumour stroma. We identified several validated targets of miR–92
from the miRTarBase [30] and TarBase v6 [31] databases, including ERβ1 (S1 Table), confirm-
ing our previous work [12]. We performed further in silico analyses to correlate expression of
several validated targets of miR–92 in the breast tumour stroma with patient survival using the
Oncomine platform. We used data from Boersma et al. [27]since this was a relevant gene
expression study identifying a stromal gene signature associated with patient outcome in
inflammatory breast cancers (IBC) versus non-IBCs and we had acquired survival data directly
from the corresponding author. For the purpose of our study, we removed the IBC cases
(n = 13) and focused our mining of expression data for non-IBC patients (n = 34) to reduce

Fig 3. Expression of ERβ1 andmiR–92 are not inversely correlated in patients with primary breast cancer. Staining patterns of ERβ1 showed
nuclear expression in the normal breast (A) epithelium (examples shown by red arrows) with no significant difference in nuclear staining during
cancer progression (B). A shift in the localisation of ERβ1 staining was observed with a significant increase in cytoplasmic staining (green
arrows) during progression to DCIS (C, E) and invasive breast cancer (D, E). Blue arrows show ERβ1-negative nuclei. Images of breast tissues
show the staining patterns for patient 4 as a representative example. Horizontal lines represent the mean. Range ± S.D. *denotes significance of
p<0.05; **denotes significance of p<0.01.

doi:10.1371/journal.pone.0139698.g003

Fig 4. Expression of miR92 in normal fibroblasts (NFs) and cancer associated fibroblasts (CAFs) in patient samples (A) and primary fibroblast
cultures (B) by qRT-PCR. *denotes significance of p = 0.0014 between NFs (high and low expressing groups) and NFs and CAFs (ANOVA).

doi:10.1371/journal.pone.0139698.g004
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potential confounding factors. We found that ESR2 (estrogen receptor β) expression within the
breast cancer stroma was not significantly associated with patient outcome (p = 0.9337, Fig
6A) indicative that miR–92 may be functioning via the regulation of alternative targets. How-
ever the expression of two other miR–92 targets, TGFBR2 and BMPR2 showed a non-signifi-
cant trend, potentially indicating that high expression levels of these genes may be associated
with lower rates of patient survival (p = 0.1046 and p = 0.2029, respectively, Fig 6B and 6C).

Expression of miR–92 Is Not Regulated by Epigenetic Mechanisms in
Breast Cancer Epithelial Cells or Fibroblasts
Having shown significant differences in the absolute expression levels of miR–92 in both the
breast epithelium and stromal compartments between individual patients, we performed bisul-
phite sequencing in a panel of breast cancer cell lines and primary fibroblasts to determine
whether expression of this miRNA may be regulated epigenetically. We failed to detect

Fig 5. Down-regulation of miR92 expression in normal fibroblasts (NFs), but not cancer associated fibroblasts (CAFs), significantly enhances the
invasive capacity of breast cancer epithelial cells. Matched NFs and CAFs were reverse transfected with either an inhibitor of miR92 or negative
control (A) and a Matrigel™ invasion assay was used to assess effects on the behaviour of breast cancer epithelial cells 48 hours post-
transfection. Down-regulation of miR92 significantly increased the invasion of MCF7 (B) andMDA-MB–231 (C) cells. Error bars are ± S.D. *denotes
significance of p<0.05; **denotes significance of p<0.01; ***denotes significance of p<0.001.

doi:10.1371/journal.pone.0139698.g005

Fig 6. In silico analyses using the Oncomine platform showed that expression of the ESR2 gene in the breast tumour microenvironment does not
correlate with patient outcome (p = 0.9337) (A). Expression of TGFBR2 (B) and BMPR2 (C) showed a trend towards significance (p = 0.1046 and
p = 0.2029) suggesting that high expression levels of these genes are associated with lower rates of patient survival.

doi:10.1371/journal.pone.0139698.g006
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methylation of CpG islands located within the promoter region of the miR-17-92 cluster (S2
Fig). We therefore concluded that alternative mechanisms of regulation were responsible for
down-regulation of miR–92 expression in breast cancer epithelial cells and fibroblasts during
cancer progression.

Discussion
The oncogenic role for miRs encoded by the miR-17-92 cluster has been well documented in
both haematological malignancies and solid tumours. Evidence has shown these miRs to be
involved in the regulation of cell proliferation, apoptosis and angiogenesis [7, 8] by repressing
transcripts including p63 [9], Bim [10] and components of the TGF-β pathway [11]. O’Donnell
et al. have also shown that this cluster is a direct transcriptional target of c-myc, a transcription
factor that is frequently hyperactive in human cancers [32]. Other lines of evidence using
expression profiling techniques have revealed widespread overexpression of these miRs in vari-
ous tumours including those of the breast. In accordance, our previous data has shown that
ERβ1, a potential tumour suppressor gene in breast cancer, is a direct target of miR–92 and we
found their expression levels to be inversely correlated in unselected non-microdissected breast
tissues, providing a possible mechanism for the down-regulation of ERβ1 during cancer pro-
gression [12].

Importantly, in this study we found through in silico analysis [26] that luminal A breast can-
cer patients with high expression levels of miR–92 have a higher DFS compared to those with
low expression levels. This has also been confirmed by Nilsson and colleagues [13, 33]. In
accordance, LMD of specific epithelial areas from the same tissue showed that miR–92 expres-
sion levels do not increase during breast cancer progression, as expected for an onco-mir and
negative regulator of ERβ1, but rather decrease in expression. This trend was seen in all but 1
case analysed. Interestingly, the pathological characteristics of this case differed from the others
in that this was the only ER-negative case included in the cohort (Table 1). This may suggest
that this phenomenon is dependent upon ER status, however requires analysis of a larger num-
ber of ER-negative samples to test this hypothesis. Given the well-recognised labour intensive
nature of LMD [33], the analysis of a larger cohort of patient samples was not possible. Previ-
ously we have shown miR–92 levels were up-regulated in breast tumours compared with
matched adjacent normal tissues [12]. However, researchers are now beginning to appreciate
that there are often alterations in gene expression in adjacent normal breast tissue [34, 35]. Fur-
thermore, LMD eliminates the theoretical possibility of signals, which may be subtle, being
masked by influences from other cell types within tissues. Although not necessarily directly
comparable to levels in tissue, recent work has examined the impact of circulating miR–92 in
breast cancer; one showed this was reduced significantly in tissue and serum samples from
breast cancer patients compared to those of healthy controls [36], while another showed miR–
92 was elevated in the serum of breast cancer patients [37].

Despite the wealth of evidence for an oncomeric role for miR–92, there exists some contra-
dictory evidence indicating that loss of function might be important in some cancer cells. Loss-
of-heterozygosity (LOH) at the human genomic locus encoding the miR-17-92 cluster,
13q31.3, has been observed in several tumour types and a recent genome-wide analysis of copy
number alterations in cancer revealed that this locus was deleted in 16.5% of ovarian cancers,
21.9% of breast cancers and 20% of melanomas [38]. Likewise, it has been shown that miR–92
can act as a tumour suppressor in breast tumours by inhibiting expression of AIB1 and/ or
cyclin D1 [39, 40]. Nilsson et al. also found that expression of miR–92 was inversely associated
with tumour grade in 144 cases of primary breast cancer and added independent prognostic
information; patients with high levels of miR–92 had a better clinical outcome than patients
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with low levels [13]. Supporting data from this study also showed that down-regulation of
miR–92 expression enhanced the migration of breast epithelial cells in vitro [13].

Interestingly, a shift in the localisation of ERβ1 staining from nuclear to cytoplasmic expres-
sion was observed by immunohistochemistry in breast epithelial cells. We were unable to con-
firm the expression levels and subcellular location of ERβ1 in our patient samples by western
blotting. Although it is possible to assess subcellular location using western blotting, large
quantities of protein are required and limited material was available by LMD. This material
was also formalin-fixed; reliable quantitative protein analysis from formalin-fixed tissues can
be problematic. Previous studies have shown that the localisation of ERβ isoforms can signifi-
cantly influence prognosis in patients with breast [24] and ovarian [41] cancers. Our group
examined cytoplasmic and nuclear expression of ERβ1, ERβ2 and ERβ5 in tissue microarrays
comprising 842 cases of primary breast cancer and showed that patients with cytoplasmic
ERβ2 expression had a significantly worse outcome compared to patients with nuclear staining
[24]. A recent report by Ciucci et al. described an association between nuclear ERβ1 staining
and low tumour grade in 95 patients with ovarian cancer suggesting the subcellular location of
ERβ isoforms may influence their functional role within breast cancer cells [41]. It is possible
that miR–92 may influence the subcellular expression of its targets via direct or indirect mecha-
nisms. Chen and colleagues used microarray analyses to demonstrate that the nuclear-cyto-
plasmic ratio of a large panel of miRs varied considerably between cell lines representing
normal breast (MCF-10A), non-invasive (MCF7) and invasive breast tissue (MDA-MB–231)
[42]. In some cases the same miR presented similar overall expression levels in the 3 breast cell
lines but showed distinct differences in their subcellular expression levels. This led the authors
to speculate that de-regulated subcellular expression of the miRs themselves may be correlated
with breast cancer progression, which may result in the abnormal subcellular expression of tar-
get mRNAs or proteins [42]. It is also possible that miR–92 may be indirectly influencing the
subcellular localisation of targets by regulating the expression of transport and/or shuttling
proteins.

There is growing recognition that the tumour stroma can impact upon tumour cell behav-
iour. Studies have also suggested that altered miR expression in CAFs might be a key regulator
of breast tumour behaviour [1, 22]. Here, the pattern of miR–92 expression between matched
CAFs and NFs seemed to fall into 2 groups; those with high miR–92 expression and those with
low expression in NFs. Interestingly, elevated expression of miR–92 was observed in micro-dis-
sected CAFs matched with NFs from the low-expressing group from patient samples. This
trend was less apparent with primary NFs and CAFs however these cultures suffer from the
drawback of not being exposed to the influences from other cell types present within the
tumour microenvironment which may affect their behaviour and/ or expression profiles. This
observation prompted us to ask whether fibroblasts with high or low levels of miR–92 expres-
sion could define the behaviour of breast cancer epithelial cells. We selected a matched case of
NFs and CAFs with high expression of miR–92 so we could effectively inhibit expression to
assess its effects. It is noteworthy that we did attempt the reverse experimentation via over-
expression of miR–92 in a matched case of NFs and CAFs with low miR–92 expression, how-
ever, in accordance with previous observations, found this had an extremely toxic effect on
these primary cells [1]. Our in vitro data confirmed that miR–92 can play a functional role in
the tumour stroma and showed that fibroblasts with low miR–92 expression enhanced the
invasion of breast cancer epithelial cells representing two different molecular subtypes of breast
cancer. This effect was only seen for NFs and was not observed for CAFs. Analysis of baseline
miR–92 expression in these cells revealed that NFs had a significantly higher level of miR–92
expression prior to inhibition, thus providing a possible explanation for the difference in out-
come between NFs and CAFs. Nevertheless, this demonstrates that loss of miR–92 expression
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may have a role in regulating adjacent epithelial cell phenotype, acting via the stroma. In accor-
dance, Nilsson et al. did not find a significant correlation between miR–92 expression and
SMA-positivity in fibroblasts [13]. However, they found a strong inverse relationship with
macrophage content, potentially indicating a role for miR–92 in the interaction between epi-
thelial cells and immune cells in the tumour stroma compartment [13].

In silico data mining identified potential targets of miR–92 through which this miR may be
mediating its effects in the breast stroma. We have previously shown ERβ1 is a target for miR–
92 [12], however we found that expression of ESR2 within the breast tumour stroma was not
significantly associated with patient outcome. This was in accordance with results from our
study that failed to show an inverse relationship between the expression of miR–92 and ERβ1
in the breast epithelium. However, it is worth highlighting that of the 5 different isoforms
encode by ESR2 only ERβ1 is a direct miR–92 target. It is therefore possible that this relation-
ship may still exist in the breast stroma but is being masked by expression of more abundant
isoforms within these cells. Indeed our previous work has shown expression of ERβ isoforms in
fibroblasts was ranked: ERβ5> ERβ2> ERβ1 [24, 43]. Nevertheless, in the context of this
study, these data are indicative that miR–92 may be functioning via the regulation of targets
other than ERβ1. Interestingly, the expression of TGFBR2 and BMPR2 showed a trend towards
significance and suggests that high expression levels of these genes are associated with lower
rates of patient survival. We recognise the limitations of this observation and mining of a larger
dataset may allow this trend to reach significance; following removal of the inflammatory
breast cancer cases, it was possible to mine data from just 34 patients with invasive ductal
breast cancer. Nevertheless, these observations are in accordance with our data, which suggest
low levels of miR–92 are associated with enhanced invasion and a more aggressive tumour phe-
notype. Low levels of miR–92 would lead to an increase in the expression of TGFBR2 and
BMPR2 and lead to a poorer patient prognosis. The TGFBR2 gene encodes for a member of
the Ser/Thr protein kinase family and has a tumour suppressor or promoter role depending on
cellular context [44]. Busch et al. analysed the expression of TGFBR2 in CAFs in a cohort of
252 invasive breast cancers and found that CAF-specific TGFBR2 expression correlated with
improved recurrence-free survival. Experimentally, they also showed that knock-down of
TGFBR2 in CAFs resulted in increased cell growth, proliferation and clonogenic survival of
breast cancer cells and suggest that regulation of tumour-stromal cross-talk through fibroblas-
tic TGF-β pathway may depend on fibroblast phenotype. The BMPR2 gene also encodes for a
Ser/Thr receptor kinase binding bone morphogenetic proteins as well as members of the TGF-
β superfamily of ligands. The role of BMPR2 remains unclear and reports suggest that this pro-
tein can also have tumour-suppressing and -promoting roles within different cells. Inhibition
of BMPR2 has been shown to inhibit growth and viability of breast cancer cells [45]. In con-
trast, Owens et al. found that BMPR2 had a tumour-suppressive function in mammary epithe-
lia and microenvironment and suggest that disruption can accelerate mammary carcinoma
metastases [46].

Finally, it is known that epigenetic mechanisms including DNAmethylation and histone
modification contribute to expression of some miRNAs, including those of the miR-17-92 clus-
ter [47–51]. Epigenetic regulation of miRNA expression has been described in colorectal, breast
and lung cancers. Here, we hypothesised that epigenetic mechanisms may contribute to the
regulation of miR–92 expression, however we did not detect methylation of CpG islands within
the promoter region located upstream of the miR-17-92 cluster in a range of breast cancer cell
lines or in primary fibroblasts, suggesting other mechanisms are responsible for loss of miR–92
during breast cancer progression.
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Conclusions
We have shown loss of expression of miR–92 in breast epithelial cells during breast cancer pro-
gression with a corresponding shift in expression of one of its targets, ERβ1 from a nuclear to a
cytoplasmic location. This may represent a potential novel mechanism by which miRs can
influence the function of their targets. However in silico analysis suggests that ERβ1 may not be
the most important miR92 target in breast cancer. Finally, while miR–92 expression levels
remained unchanged in stromal fibroblasts, our data support a functional role for this molecule
in fibroblasts and show that down-regulation of miR–92 expression in NFs can influence the
invasive capacity of breast cancer epithelial cells.

Supporting Information
S1 Fig. Invasive capacity of MCF–7 (a-d) and MDA-MB–231 (e-h) cells in response to NFs
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