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Summary 
1. There is little consensus on how agriculture will meet future food demands 

sustainably. Soils and their biota play a crucial role by mediating ecosystem services 

that support agricultural productivity. However, a multitude of site-specific 

environmental factors and management practices interact to affect the ability of soil 

biota to perform vital functions, confounding the interpretation of results from 

experimental approaches. Insights can be gained through models which integrate the 

physiological, biological and ecological mechanisms underpinning soil functions.  

2. We present a powerful modelling approach for predicting how agricultural 

management practices (pesticide applications and tillage practices) affect soil 

functioning through earthworm populations. By combining energy budgets and 

individual-based simulation models, and integrating key behavioural and ecological 

drivers, we accurately predict population responses to pesticide applications in 

different climatic conditions.  

3. We use the model to analyse the ecological consequences of different weed 

management practices. Our results demonstrate that an important link between 

agricultural management (herbicide applications and zero, reduced and conventional 

tillage) and earthworms is the maintenance of soil organic matter (SOM).  

4. We show how zero and reduced tillage practices can increase crop yields while 

preserving natural ecosystem functions. This demonstrates how management practices 

which aim to sustain agricultural productivity should account for their effects on 

earthworm populations, as their proliferation stimulates agricultural productivity.  

5. Synthesis and Applications.  Our results indicate that weed management that relies on 

tillage has longer term effects on soil biota than pesticide control, if the herbicides 

have short dissipation times. If pesticides known to be toxic to earthworms are 
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applied, the risk of exposure will be reduced if irrigation is stopped around application 

time or if application is carried out during dry periods. Similarly, if the organic 

content of the soil is increased the recovery rate of earthworm populations can be 

increased. However, effects are not necessarily additive and the impact of different 

growing practices on earthworms will depend on their timing and the environmental 

conditions. Our model can be used to estimate the overall impact of different 

combinations of crop management activities in different regions to explore how 

earthworm populations respond.  If our models are linked to crop yield models the 

costs and benefits of different crop solutions for both yields and biota could be 

estimated and aid optimisation of the trade-off between different ecosystem services. 

 

Keywords: agriculture; earthworm; ecosystem services; energy budget; pesticides; 

population modelling; tillage; weed management.  

 

Introduction 
Fertile soils are a crucial element of food security, providing the basic foundation of 

agroecosystems. However, soil erosion exceeds soil formation in many arable systems 

(Amundson et al. 2015).  Indeed, declining crop yields indicate diminishing returns from 

fertiliser applications (Tilman et al. 2002), whilst current mechanical practices (e.g. tillage) 

continue to accelerate soil erosion (Montgomery 2007). At the same time, the provision of 

essential ecosystem services from soils (e.g. soil formation, nutrient cycling and food 

production; MEA 2005) depends on the regulatory functions of soil biota (Dominati et al. 

2010; Amundson et al. 2015).). Accordingly it has been argued that sustainable agricultural 

intensification could be achieved through management practices (e.g. reduced tillage and 

pesticide applications) which preserve the essential functions of keystone soil species 

(Badgley et al. 2007).  

 

Keystone species in soils include earthworms, which act as ecosystem engineers both directly 

through digestion and burrowing activities and indirectly by encouraging other beneficial soil 

organisms (Blouin et al. 2013; Jones et al. 1994; Darwin 1881). They often constitute the 

most abundant animal biomass in terrestrial ecosystems (Lavelle & Spain 2001) and are 

important indicators of soil quality (Doran & Zeiss 2000). Management practices which 

optimise soil environmental conditions (e.g. soil organic carbon (SOM) and soil moisture) 

also stimulate earthworm biomass production (Lavelle et al. 2006). In turn the effects of 

earthworm activity on soil aggregate stability, nutrient cycling and soil carbon dynamics 

improve crop yields (Brown et al. 1999; Scheu 2003).  

 

Although changes in agricultural management may increase the soil biota biomass, 

sustainable yield increases are unlikely to be achieved long-term in the absence of external 

inputs. For example, weed control is necessary to decrease competition with crop plants. In 

addition, different agricultural systems affect the soil biota in diverse ways, which depend on 

specific combinations of farm management practices and environmental factors. This makes 

the results of experimental field studies hard to extrapolate for different environmental 

conditions. Thus, tools are needed to better predict how land management practices affect the 

provision of ecosystem services through their effects on important soil biota.  

 

Population models have been used to predict how populations will respond to anthropogenic 

environmental change, but most ignore the underlying mechanisms. Many focus only on the 

level of populations or individuals, rather than representing the processes which link both 

levels of biological organisation (Forbes et al. 2008). Whereas statistical models or models 
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that merely project current situations (e.g. matrix models) are little suited for extrapolating 

outside the range they have been parameterised for, mechanistic models that capture key 

biological, physiological and ecological mechanisms underpinning system functioning have 

much better predictive power (Grimm & Railsback 2012). Such models could offer greater 

insights into how management practices alter ecosystem functioning through effects on 

individual organisms (e.g. Railsback & Johnson 2014).  

 

The combination of energy budget and individual-based population models has shown 

promise for explaining population dynamics from individual physiological mechanisms in 

aquatic systems (Martin et al. 2013). In terrestrial systems spatio-temporal dynamics of both 

individuals and their environment must be modelled since they crucially affect population 

dynamics (Harrison 1993). Here, we present a novel mechanistic model for predicting effects 

of agricultural management on earthworm populations that in turn allows us to predict crop 

yields using a crop yield–earthworm biomass relationship derived using literature data. We 

use the model to investigate agricultural weed management practises.  

 

To incorporate the multiple factors (e.g. climate, soil type, intensity, timing and type of 

management practices) needed to better understand the relationship between management 

practices and earthworm populations in spatially explicit soil profiles we developed a novel 

individual-based energy budget model (Johnston et al. 2014a, 2014b). Here, we validate the 

published model presented in Johnston et al. (2014b) by comparing model outputs with 

independent field data and explore the effects of different weed management scenarios, 

including pesticide application and tillage practices, with the aim of linking ecosystem-level 

functions to dynamic populations.  
 

Methods  
 

The Model 
We apply a previously published model of earthworm distribution and abundance in soil 

profiles to simulate population dynamics in different agricultural management scenarios. We 

model Aporrectodea caliginosa, the dominant earthworm species in conventionally managed 

arable agroecosystems. The model combines an energy budget model and an individual-based 

simulation model. For full details of the energy budget model for the earthworm Eisenia 

fetida see Johnston et al. (2014a) and development of the model for field populations of A. 

caliginosa see Johnston et al. (2014b). The Netlogo programme code is provided in 

Appendix S1 of the Supporting Information. The implementation of the model is copyrighted 

to Alice Johnston and licensed under the GNU General Public Licence.  

 

The energy budget model describes how individuals ingest food from their environment and 

allocate available energy to life cycle processes (maintenance, reproduction, growth and 

energy storage) (Fig. 1).  

 

 
Fig. 1. Structure of the energy budget model. The thickness of solid arrows indicates priorities for allocation of 

energy obtained from food. Equations show maximum daily allocation rates which depend on individual 
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bodymass, M, temperature, T, and parameters as defined in Table 1 in Appendix S2. A(T) is the Arrhenius 

function of temperature (Johnston et al., 2014b). 

 

Energy budget parameters were calculated from laboratory data relating A. caliginosa growth 

and reproduction rates under optimal environmental conditions (Table 1 in Appendix S2). 

When individuals experience sub-optimal conditions (e.g. low temperature or food 

availability) metabolic rates are reduced (Johnston et al. 2014b).  

 

Model soil profiles spanned 2 m (horizontal) × 0.5 m (vertical), comprising 5 × 5 cm soil 

patches characterised by temperature, water content, texture, bulk density and soil organic 

matter (SOM; where SOM = soil organic carbon (SOC) × 1.42 after Guo & Giffard 2002) 

content. Daily fluctuations in soil conditions were modelled according to observed seasonal 

and vertical patterns (Fig. 2; for full details see Johnston et al. 2014b). 

 

 
Fig. 2. Modelled soil organic matter (SOM) dynamics with soil depth, presented as mean proportions of the 

maximum measured value. 

 

Individuals move through the soil profile in response to food quality and soil water content in 

neighbouring soil patches. In general, soil water increases and food quality (SOM) decreases 

with depth, causing the vertical distribution of the population to change in response to daily 

environmental fluctuations. Aestivation (a period of inactivity) is triggered when soil 

conditions become too dry: individuals then use their energy reserves to pay the energetic 

costs of maintenance (Johnston et al. 2014b). 
  

Pesticide Effects 
Pesticides were applied to soil patches and effects on individuals were modelled according to 

dose-response curves which specify relationships between pesticide concentration and 

metabolic parameters (growth constant (rB), maximum rate of energy allocation to 

reproduction (rm) and survival). Full details of the dose-response curve methods are presented 

in Johnston et al. (2014a). Here, the dose-response curves were parameterised for effects of 

the fungicide carbendazim and a hypothetical herbicide on A. caliginosa. Carbendazim is 

used as a toxic standard in risk assessment field trials due to its acute effects on earthworm 

populations, and so provides a useful pesticide application scenario to validate our model. We 

use a hypothetical herbicide to model herbicide applications realistic of general agricultural 

practice. The curves are of the form: 

 𝑅(𝐶) =  𝑒𝑘𝐶                                                           Eq. 1 
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where R(C) is the response at concentration C (mg/kg) and k is the toxicity coefficient. k was 

estimated for carbendazim by a least sum of squares fit to the data of Lofs-Holmin (1982), 

recorded as a proportion of the control (Fig. 3a). Although the data of Lofs-Holmin (1982) 

are for benomyl, carbendazim is its principle metabolite and the two are used interchangeably 

in regulatory studies as toxic standards. Moreover, whilst alternative methods such as the 

Hills equation (Hill, 1910) provide a slightly better fit to the data, these introduce additional 

parameters and our aim here is to provide a simple model of pesticide effects. Full details and 

justifications are provided in Appendix S3. We also modelled effects of a hypothetical 

herbicide using fictitious data (Fig. 3b). The response curves specify how rB and rm are 

affected by the pesticide relative to values in control conditions given in Table 1 in Appendix 

S2. Estimated values of the toxicity coefficient (k) for growth, reproduction and survival are -

2.66,-1.28 and -1.05 for carbendazim (Fig. 3a and Appendix S3) and -0.06,-0.04 and -0.006 

for the hypothetical herbicide (Fig. 3b), respectively. We also assumed that carbendazim 

leads to an increase in maintenance costs, either to eliminate the toxin or repair toxic damage 

(e.g. Givaudan et al. 2014), assuming a linear relationship between the maintenance 

parameter B0 and C following: B0(C) = B0 (4.5 × C).  

 

 
Fig. 3. Modelled dose-response relationships specifying the effects of pesticide concentrations on life cycle 

traits for: a) carbendazim derived from the laboratory data of Lofs-Holmin (1982) and b) a hypothetical 

herbicide on growth (asterisks, solid line), reproduction (triangles, dashed line) and survival (circles, dotted line) 

represented as a proportion of the life cycle trait in control conditions.  

 

Tillage Effects 
Effects of zero (our control treatment), reduced and conventional tillage to a soil depth of 0, 

10 and 20 cm respectively (Kassam et al., 2009) were simulated on both earthworm mortality 

and soil physical conditions (soil water content, SOM and bulk density). SOC is 0.7 – 1.8 kg 

C/m
2
 less in the top 15 cm of soils under conventional tillage than in zero tillage systems 

(Kern & Johnson 1993). Soil bulk density follows a similar pattern, declining by around 0.13 

g/cm
3 

in the top 30 cm of soils under conventional tillage compared to zero tillage (Balesdent, 

Mariotti & Boisgontier 1990). These declines in soil properties under tillage are represented 

as a proportion under zero tillage control conditions in Figure 4. To model these effects we 

assume that SOM and bulk density are altered to soil depths of 10 cm for reduced and 20 cm 

for conventional tillage practices. Moreover, soil properties decline or increase exponentially 

with time during the use of tillage practices and after the cessation of tillage, respectively 

(Francis & Knight 1993). Based on these studies, SOM and bulk density, which in the model 

together represent food availability and quality, decrease with time under consecutive tillage 

years and increase after cessation of tillage practices as outlined in Fig. 4. We also assumed a 

soil temperature increase of 0.70 ºC and soil water content decrease of 0.04 cm/cm
3
 following 

tillage (Pelosi et al. 2008). Direct earthworm mortality during tillage is assumed to be 50 % 

in the tilled soil layer for adults and juveniles (Marinissen 1992). 
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Fig. 4. Modelled effects of tillage on SOM and bulk density over time, represented as a proportion of the soil 

property under zero tillage control conditions.  
 

Simulation Experiments  
The model was set up to simulate experiments to validate the model or to explore effects of 

different agricultural management approaches on ecosystem services. In each experiment 

model populations were stabilised for 50 years with the relevant environmental 

measurements before results were recorded as the mean of four model replicates for each 

time point. 

 

Model Validation 
The model was set up to mimic the conditions of independent field trials used to validate the 

model. In the field trials earthworm populations were monitored in control conditions and in 

response to toxic-standard (carbendazim) applications.  

 

Control Conditions 

Field trials were conducted in Germany (G1, G2, G3) (Klein 2010a, b & c) and Spain (S1, 

S2) (Klein 2013a & b), under varied soil and climatic conditions (Table 1 and see Appendix 

S4 for full details of the environmental and management conditions for each field study). Soil 

temperature and water content measurements were taken directly from the study reports (see 

Fig. 1 in Appendix S4); SOM measurements (used to calculate food energy content, Ex) were 

used to model seasonal and vertical fluctuations in food quality (Fig. 2). Soil water content 

and texture were both used to calculate the soil water potential of model patches, which 

together with SOM drives movement of individuals through the soil profile (details given in 

Johnston et al. 2014b).  
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Table 1. Variations in mean annual soil conditions between the five independent field trials conducted in 

Germany (G1, G2, G3) or Spain (S1, S2). Soil measurements present the annual mean and standard 

deviation for the top 5 cm of the soil profile (N = 365). 

 G1 G2 G3 S1 S2 

Soil texture Poor clay silt Loamy Silt Loamy Silt Sandy loam Sandy loam 

SOM (%) 2.04 ±0.31 2.31 ±0.36 2.58 ±0.40 6.04 ±0.93 3.35 ±0.52 

Soil temperature (°C) 9.81 ±7.18 10.38 ±6.94 8.88 ±7.26 13.18 ±4.61 12.72 ±4.72 

Soil water potential (-kPa) 18.21 ±9.44 9.83 ±3.20 6.69 ±1.33 14.60 ±4.14 16.63 ±10.44 

 

Carbendazim Applications  

Toxic-standard simulations followed control conditions as outlined above. Carbendazim 

application was in April or May in the German field trials and June in the Spanish field trials. 

Carbendazim was applied at a rate of 10, 000 g a.i./ha to the top 5 cm of the model soil 

profile on the specified dates. Post-application concentrations were modelled using simple 

first-order exponential degradation. The time taken for the pesticide to degrade to 50 % of the 

application rate (DT50) was taken as 20 days (Jones et al. 2004; Li & Nelson 1985).  

 

Goodness of Fit 

The goodness of fit of the model outputs to independent data is measured using the 

coefficient of determination (R
2
). R

2
 values were calculated as: 1 – (residual sum of 

squares)/(total sum of squares)), with values closer to 1 representing better agreement 

between observed and predicted values. As our model parameter values are not estimated 

from the data conventional statistical methods of assessing R
2 

values are not applicable here. 

We suggest that values of R
2 

> 0.5 indicate a good fit (Johnston et al., 2014b).  
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Model Application: Weed Management Scenarios 
Weed management scenarios were investigated by simulating hypothetical herbicide 

applications accompanied by zero, reduced or conventional tillage. The environmental 

conditions (soil temperature, water content and SOM dynamics) used for these simulations 

were those of German field trial G1, (see Table 1 and Appendix S4).    

 

Herbicides 

Hypothetical herbicide applications were simulated at concentrations producing 10 and 20 % 

effects on individual life cycle processes (growth, reproduction and mortality as in Fig. 3b). 

These magnitudes of effect are realistic for general agricultural practice as higher effects 

would likely fail the initial tiers of ecological risk assessment. The herbicide was applied to 

the top 5 cm of the model soil profile in May, with a DT50 value of 100 days.  

 

Tillage 

Zero, reduced and conventional tillage was simulated to a soil depth of 0, 10 and 20 cm 

respectively, with direct effects on earthworm mortality (50 %) and indirect effects on soil 

conditions (SOM, bulk density, soil water content and temperature) in the tilled layers.  

 
Model Prediction of Crop Yield 
We modelled how the different weed management scenarios described in the previous section 

affected earthworm populations and crop yield. The modelled regression fit to published data 

(selected from the literature irrespective of tillage practices and herbicide applications) on the 

relationship between earthworm population biomass and crop yield is presented in Fig. 5. 

Studies included in the regression analysis were limited by the available data on earthworm 

biomass and crop yields measured under the same conditions. Full details of the database are 

presented in Table 1 of Appendix S5. From these relationships we estimated the potential of 

different tillage and herbicide practices to influence agricultural productivity (crop yields) via 

modelled earthworm biomass under the different weed management scenarios modelled here 

and the regression relationship shown in Fig. 5.  

 

 
Fig. 5. Modelled relationship between crop yield and earthworm biomass (R

2 
=0.63, p < 0.001). See Table 1 in 

Appendix S5 for full study details.  

 

Results  
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Model Validation 
We validated our model by comparing its outputs with records of earthworm population 

biomass in five independent field trials, in each of which a toxic-standard pesticide 

application using carbendazim was paired with a control (Fig. 6). The earthworm population 

biomass model outputs are available in the University of Reading repository CentAUR 

(http://centaur.reading.ac.uk/). The model provides excellent agreement with the field data in 

all control populations and in four out of five toxic-standard populations. The field trials 

differed in their environmental conditions; three were conducted in Germany (Figs 6a – f) 

and two in Spain (Figs 6g – j) (Table 1).  

 

 

http://centaur.reading.ac.uk/
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Fig. 6. Model validation against independent field data, presenting comparisons of model outputs (grey lines 

represent the continuous model output and the solid black line is the mean for the sample dates) and independent 

field data (symbols represent replicates and the dashed line is the mean) of earthworm population biomass in 

control conditions (left-hand panels) and in response to carbendazim (10,000 g/ha) (date of application 

represented by the triangle;(right-hand panels). Data and model simulations are of three German: G1 (a, b), G2 

(c, d), G3 (e, f), and two Spanish: S1 (g, h) and S2 (i, j) field trials. 

 

Model results can be explained in terms of the way individuals move; the spatial choice of 

modelled individuals is a trade-off between favourable soil water and food quality conditions. 

When soil is sufficiently moist, individuals move to more energy rich soil towards the surface 

(Johnston et al. 2014b). The vertical distribution of individuals in the soil profile then 

determines how exposed the population becomes to management practices. Thus, the toxic 

effects of pesticide applications in the top 5 cm of the soil profile occur when environmental 

conditions are sufficiently favourable (wet) for earthworm movement to and within surface 

layers. Accordingly, the variation in population-level effects in Fig. 6 was a consequence of 

different soil water conditions during pesticide application. For instance, favourable soil 

water conditions during pesticide applications in Germany increased population exposure to 

pesticide applications at the soil surface in April or May (Figs 6b, d and f). In contrast, dry 

soil conditions during pesticide applications in Spain (Fig. 6j) reduced population exposure, 

and our model captures the following recovery in population biomass.  

 

As our model assumes that conditions in the toxic-standard treatment and control were the 

same – except for application of carbendazim – the model was not able to replicate the 

population increase observed in the toxic standard of field trial S1 in October and December 

(Fig. 6h). Due to the unusual observation of increased population biomass following 

application of a very toxic pesticide the results of field trial S1 are omitted from  the 

overview of the model’s fit to the data presented in Fig. 7a  (R
2 

= 0.92).  

 

We tested the sensitivity of model outputs to the removal of model components by simulating 

the four field trials without pesticide effects on mortality (Fig. 7b) or by excluding aestivation 

(Fig. 7c) and directional movement (Fig. 7d) and found that all model components were 

necessary to achieve good model agreement with the independent data.  

 

 
Fig. 7. Predicted versus observed values for mean earthworm population biomass (g/m

2
) responses to 

carbendazim in the three German (G1: , G2: , G3: ) and one Spanish (S2: ) field trial/s for a) the presented 

model (R
2 
= 0.92), b) for when pesticide effects on mortality are removed (R

2 
= 0.68), c) when aestivation due to 

dry soil conditions is excluded (R
2 
= 0.51), and d) when movement is assumed to be random (R

2 
= 0.50).   

 

This extensive validation showed the model accurately predicts earthworm population 

responses to pesticide applications under field conditions.  

 

Model Application: Weed Management Scenarios 
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Here, we present model simulation results for seven different weed management scenarios: 

zero, reduced and conventional tillage practices, each with or without applications of a 

hypothetical herbicide at 10 or 20 % effect (on growth, reproduction and survival) 

concentrations (Fig. 8).  

 

All of the simulated weed management systems resulted in initial declines in earthworm 

biomass, but populations stopped falling by the end of the 10 year application period (Fig. 8). 

Ten years after cessation of the treatments, earthworm populations that had experienced zero 

tillage and herbicides had fully recovered (green and blue lines), those experiencing reduced 

and conventional tillage had not (orange and red lines).  

 

 
Fig. 8. Effects of weed management practices on earthworm population biomass, presented as a proportion of 

the population under zero tillage conditions without herbicide applications (black horizontal line). There were 

two tillage treatments: a) conventional (CT) and b) reduced (RT) tillage. Each was applied either without 

herbicide (orange lines) or with herbicide applications at 20 % effect concentrations (red lines), and compared to 

the effects of zero tillage (ZT) combined with herbicide applications at 10% (green line) or 20 % (blue line) 

effect concentrations. Tillage and/or herbicides were applied annually for 10 years (shaded area), after which the 

treatments were stopped and populations observed for a further 10 years.  

 

Earthworm populations took longer to recover after the ten year application period in the 

conventional tillage scenarios than the other weed management scenarios because 

conventional tillage has negative effects on soil physical conditions. A reduction in the SOM 

and soil water content of tilled soils makes the environment less favourable for earthworm 

activity, and these conditions become increasingly adverse with tillage depth. In contrast, 

herbicide applications have direct effects on earthworm life cycle processes (survival, growth 

and reproduction) and these effects depend on individuals becoming exposed in the surface 

layers of soil. Hence, as in the model validation results in Fig. 6, herbicide effects are subject 

to the relationship between environmental conditions (e.g. SOM and soil water conditions) 

and individual behaviour (e.g. movement and aestivation), together with herbicide toxicity.  

 

When herbicides are applied alongside conventional tillage (Fig. 8a), the population’s 
exposure to pesticides was altered by the effect of tillage practices on soil conditions. Less 

favourable conditions in the top 20 cm of the soil profile reduced population exposure to 

herbicide applications in the top 5 cm, which then had no additional effects, compared to 

tillage alone. In contrast, at reduced tillage to a depth of 10 cm, the effects of herbicides 

together with tillage were smaller than herbicide applications with zero tillage after 10 years 

of treatment (red vs blue lines in Fig. 8b). Here, mechanical disturbance reduced the 

population-level effects of herbicide applications by making the surface soil layers less 

favourable and direct earthworm mortality, thus reducing herbicide exposure. Nevertheless, 
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population recovery was slower after tillage ceased due to the long-term effects of 

mechanical disturbance on soil organic matter (Figure 4). Thus, management intensity drove 

the overall population-level effect, with population recovery declining as depth of tillage and 

level of herbicide application increased (Figs 8 and 9).  

 

 
Fig. 9. Effects of increasing tillage depths (left) and herbicide effect concentrations under zero tillage (right) on 

modelled earthworm population biomass relative to control after 10 years of annual applications (triangle 

symbols and solid line) and 10 years after the cessation of management practices (20 years, asterisk symbols and 

broken line). 

 

Model Prediction of Crop Yield 

The beneficial effects of larger earthworm populations on crop yields under conservation 

(reduced and zero) tillage practices with hypothetical herbicide applications causing 20 % 

effects were modelled using the relationships outlined in Fig. 5. Here, we make the 

assumption that the relationship between earthworm biomass and crop yield is causative. 

However, these mechanisms are not yet fully understood and other potential relationships are 

mentioned in the Discussion. Earthworm biomass increases of 48 % and 83 % led to crop 

yield improvements of 21 % and 35 % under reduced and zero tillage practices, compared to 

conventional tillage systems, respectively (Table 2). These values were hard to validate 

because of inconsistencies in reported changes in soil conditions and crop yields with tillage 

practices because of unknown effects of climate, soil type and other management practices.  
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Table 2. Estimated effects of various tillage practices with 20% effect concentration herbicide applications 

on earthworm biomass as modelled here and crop yields. Relative input costs and carbon emissions for the 

different management scenarios are taken directly from Harper (1996) and Kern & Johnson (1995). 

Tillage practice Earthworm 
biomass (g/m2) 

Crop yield 
(tonnes/ha) 

Input Cost 
(US$/ha/year) 

Carbon emissions 
(kg C/ha/year) 

Conventional 27.1 2.18 16.05 53 

Reduced 40.0 2.63 16.47 45 

Zero 49.7 2.95 14.76 29 

Reference 

 

Our model Fig. 5 Harper (1996) Kern & Johnson 

(1995) 

 

Discussion 
Validation of our model showed excellent model fits to earthworm population dynamics from 

independent field trial data for both toxic-standard and control scenarios under different 

climatic conditions. We argue that the model predicted population dynamics accurately under 

diverse field conditions because it captured the key mechanisms driving the physiological and 

behavioural ecology of earthworms. Parameter values for individuals were derived from 

standardised laboratory conditions, and so good model agreement with independent field 

studies under different environmental conditions demonstrates the model’s ability to 

extrapolate beyond its parameterisation range (Fig. 6). Although our approach was complex 

in comparison to more classical models, our fits to independent data were excellent (R
2 

= 

0.92). Reduced agreement between the model and data when key processes were omitted 

emphasise the importance of including the mechanisms underpinning biological complexity 

(Fig. 7). 

 

Simulation models are needed to deliver useful predictions about systems under novel 

conditions (Grimm & Railsback 2012). However, a common perception is that increasingly 

realistic (and therefore complex) models become tied to specific scenarios, whilst simpler 

models provide more generic insights (Evans et al. 2013). This view ignores the fact that 

when the interactions between ecological drivers and individual physiology are represented, 

numerous extrapolations between environmental conditions are possible. Mechanistic models 

like the one presented here are thus both realistic and generic. Similar realism and generality 

have been achieved by Martin et al. (2013) but in simpler environments lacking spatial 

heterogeneity, which here affects population exposure through individual behavioural 

decisions.  

 

Weed management and soil fertility are at the heart of successful farming (Lewis et al. 1997). 

Yet there is often a trade-off between them because traditional weed management through 

frequent tillage diminishes soil biota and soil fertility. Alternatively under conservation 

agriculture the use of selective herbicides is necessary, but these also have the potential to 

affect soil biota. Our simulations of different weed management scenarios show that in 

contrast to herbicides, effects of different tillage practices on earthworms are driven by SOM 

losses at different soil depths, alongside direct mortality, which is more long lasting and 

detrimental to soil biota (Fig. 8). These results demonstrate how the spatio-temporal extent of 

management induced soil changes drives soil biota population level responses (Fig. 9). 

Moreover, a lack of additive effects when herbicides are applied alongside tillage, compared 

to tillage practices alone, indicate how the effects of single management practices on the 

biota can outweigh those of others. Hence, it is important to assess different management 

practices together to understand the impact of agricultural systems on soil functioning. These 

results depend on the environmental fate of the pesticide (which controls the vertical and 

temporal exposure profile) as well as the toxicity of applied pesticides in specific 
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environmental situations. Thus, simulations for particular earthworm communities, 

pesticides, soil types and climate properties may be needed. Nevertheless, these results do 

suggest that the preservation of SOM should be brought to the forefront of sustainable 

production systems. Although this is not a new discovery (Kassam et al. 2009), our model 

provides the means for optimising farm management solutions for different regions, crops 

and growing systems. 

 

Ecosystem services are a key concept in agroecosystem management (e.g. EFSA 2010; Galic 

et al. 2012). Still, current risk assessments of management systems often only consider one 

factor at a time, whilst farming faces a multitude of ongoing difficulties with pest, pathogen 

and weed control as well as herbicide resistance in zero tillage systems (Owen & Zelaya 

2005). Our results highlight that investigation of single factors (e.g. herbicides) can lead to 

practices that cause greater risks (e.g. tillage) being overlooked. To further illustrate the 

utility of the model for agricultural managers, we predict how the multiple effects of different 

weed management practices on soil functioning alter the delivery of a specific provisioning 

ecosystem service (crop yields) (Table 2). Using a relationship derived from literature data on 

earthworm populations and crop yields (Fig 5 and Table 1 in Appendix S5), our model 

predicts that crop yields could increase by an average 28 % using zero or reduced tillage 

together with herbicides. This agrees well with observations that earthworm presence in 

agroecosystems lead to an average 25 % increase in crop yield (van Groenigen et al. 2014). 

However, these calculations are somewhat crude, ignoring the multiple feedbacks between 

biological populations and the physical environment.  

 

Although positive relationships have been observed between earthworm population 

abundance and SOC stocks, water regulation and nutrient mineralization, the specific 

mechanisms underlying relationships between earthworms and plant production are not fully 

understood (van Capelle, Schrader & Brunotte 2012). The recent meta-analysis by 

van Groenigen et al (2014) suggested that earthworms stimulate plant production through the 

release of nitrogen from crop residues and SOM, whilst Spurgeon et al (2013) found that the 

proliferation of earthworm communities under reduced tillage, compared to conventional 

systems, increased the provision of soil structure and hydrology-related ecosystem services. 

However, observations on the effect of zero and reduced tillage on crop yields are highly 

variable globally (Pittelkow et al. 2015). Integration of the feedbacks between management 

practices, soil properties and crops in modelling approaches like the one presented here could 

elucidate the underlying mechanisms. Although we do not integrate these feedbacks here 

our estimates of earthworm effects on crop yield serve to illustrate how better soil 

management (e.g. reduced tillage and herbicide applications) could increase crop yields 

whilst preserving natural ecosystem functions and reducing fuel and herbicide costs (Table 

2).  

 

Soil erosion in agricultural systems is a major threat to food security (Amundson et al. 2015) 

and earthworms are key ecosystem engineers providing important benefits to soil health 

(Blouin et al. 2013). Our results indicate that tillage has long term effects on soil biota via 

direct mortality and structural changes to the soil. In contrast, weed management by 

herbicides may have toxic effects but these are, at least under some circumstances, of a 

shorter duration. If pesticides known to be toxic to earthworms are applied, the risk of 

exposure will be reduced if irrigation is stopped around application time or if application is 

carried out during dry periods. Similarly, if the organic content of the soil is increased the 

recovery rate of earthworm populations can be increased. However, effects are not always 

additive and the impact of different crop management practices on earthworms will depend 
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on both timing and environmental conditions. Our model can be used to estimate the overall 

impact of different crop solutions in different regions to see which ones pose the least overall 

risk to earthworm populations.  Linking of our model to crop yield models would support 

estimates of the costs and benefits of different crop solutions and help optimise the trade-off 

between different ecosystem services.  
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