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Abstract: The production of hydrogen-enriched syngas from the thermo-chemical 

conversion of biomass was studied using Ni/CaAlOx catalysts prepared by co-

precipitation method. The effect of Ca addition with different molar ratios of Ca:Al (1:3, 

1:2, 1:1, 2:1, 3:1) on the properties and catalytic behaviour in relation to syngas 

production and the coke formation on the surface of the catalysts were investigated. 

Catalysts were characterized by BET, XRD, TPR, SEM, and TEM. The SEM and TEM 

results showed that rod-shaped nano-particles were highly dispersed on the surface of the 

catalyst. The particle size of NiO was slightly affected with the increase of Ca content in 

the catalyst. It appeared that the selectivity of CO was increased and the selectivity of 

CO2 was reduced with the increase of Ca addition to the catalyst. For example, CO2 

concentration was reduced from 20 to 12 Vol.%, when the molar ratio of Ca/Al was 

increased from 1:3 to 3:1 for the Ni/CaAlOx catalyst; it is suggested that the water gas 

shift reaction was inhibited and CO2 reforming reactions were promoted in the presence 

of the catalyst with higher Ca content. The CO/H2 molar ratio could be manipulated by 

changing the Ca content in the catalyst, while the H2 concentration remained almost 

constant (around 45 Vol.%). Thus, using the Ni/CaAlOx catalyst developed in this work 

could provide a promising route to control the syngas composition, which is an important 

factor for syngas applications.  

Keywords: Biomass; Pyrolysis; Co-precipitation; Calcium: Ni-catalyst 
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 1. Introduction   

The consumption of fuels and chemicals continues to increase with the development of 

the world’s economy [1, 2]. As a versatile building block in the chemical industry and 

fuel synthesis, synthesis gas (syngas) plays an important role in industry [3-5]. Currently, 

syngas production largely depends on fossil sources through the reforming process [6]. 

For sustainable development, great attention has been focussed on the production of 

syngas from renewable resource. Biomass, including agriculture and forest wastes is one 

of the most abundant renewable resources; it has been considered as a promising raw 

material to partially replace fossil resources in syngas production in the future [7-12].  

Biomass gasification has been widely practiced for syngas production due to its high 

thermal efficiency [12]. However, this process has challenges towards large-scale 

development, i.e. low hydrogen production and high tar content in the syngas [13, 14]. 

Catalysts are well-known for their capability for accelerating biomass conversion through 

lowering activation energy, and for enhancing catalytic reforming to produce syngas [12, 

15, 16]. For example, reduction of tar and significant increase in production of syngas 

have been achieved by adding olivine and alumina catalysts to biomass gasification using 

a conical spouted bed reactor [15]. Cheah et al. [17] carried out biomass gasification 

using a nickel cerium olivine catalyst; they reported that the presence of catalyst resulted 

in a significant improvement of H2-enriched syngas production. In addition, the 

improvement of hydrogen production was reported by adding Fe/CaO catalyst to a 

continuous-feed fluidized bed reactor [16]. Supported noble metal catalysts such as Rh, 

Ru and Pt have been reported to effectively increase syngas yield [18-21]. However, the 

high cost of these noble metals limits the wide applications of biomass gasification in 

industrial practice.  

At present, low-cost transition metal catalysts such as Ni-based catalysts have been 

widely used as effective alternatives to noble metal-based catalysts in biomass 

gasification or steam reforming processes [14, 22]. Ni based catalysts are generally 

prepared by impregnation method by loading Ni or NiO particles on catalyst supports 

such as alumina and silica for gasification or reforming. The physical structure and 
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chemical composition of catalyst supports influence the characteristics of Ni catalysts e.g. 

Ni dispersion and consequently their catalytic performance for gas production from 

biomass gasification. For a better Ni dispersion, various nano-porous supports such as 

MCM-41 [23, 24], zeolite [25], and SBA-15 [26, 27] have been utilized to confine the 

size of Ni nano-particles inside the pores of the catalyst support.  This type of confined 

reaction space with uniform Ni particles could enhance the production of H2-enriched 

syngas. However, the nanopores of catalysts have diffusion limitations for large-

molecular weight biomass compounds and thus reduce the catalytic performance for 

syngas production [13].  

Another efficient method to enhance Ni dispersion is to induce a strong metal-support 

interaction by incorporating rare-earth or alkaline metals in the catalyst system. It has 

been reported that introducing Zr, Ce, and Mg into a silica support markedly promoted Ni 

dispersion [28-31].  Based on these previous contributions, it is desirable to prepare a 

highly dispersed Ni catalyst using non-porous supports without diffusion limitation. 

However, using rare-earth metals as promoters to Ni-based catalysts is costly. In this 

study, we introduced Ca, a low cost and highly abundant metal, into alumina supports for 

preparing uniform and fine Ni nano-particles with high dispersion for H2-enriched syngas 

production from biomass through a pyrolysis-reforming process, using a two-stage 

reaction system.  

 

2. Experimental   

2.1 Biomass sample and catalyst synthesis 

Wood sawdust with a size less than 0.2 mm was used as raw biomass material in this 

work. The biomass sample contained 6.4 wt.% moisture, 74.8 wt.% volatiles, 18.3 wt.% 

fixed carbon and 1.2 wt.% of ash, as reported in our previous work [24].  In addition, the 

biomass contents of C, H, O and N were 47.1, 5.9, 46.9 and 0.1 wt.%, respectively. 

The catalysts were prepared by a co-precipitation method with an initial Ni-loading mole 

ratio of 20 mol%. Ni (NO3)3·6H2O(≥99%),  Ca (NO3)3·4H2O(≥99%),  
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Al 2(NO3)3·9H2O(≥99%) were purchased from Sigma-Aldrich. Precursors with the 

desired Ni-Ca-Al ratios were prepared by dissolving a certain amount of metal salts in 

deionized water. After the precipitation, the suspension was aged under agitation for an 

hour and then filtered under vacuum. The filter cake obtained was rinsed with deionized 

water several times followed by drying at a temperature of 80 °C overnight. The solid 

products were calcined at 800 °C for 4h with a heating rate of 1 min-1 in static air. The 

catalysts obtained were labeled as Ni/CaAlOx(A:B), where A:B represented the mole 

ratio of Ca to Al. 

2.2 Catalyst characterization 

BET surface area of the fresh catalysts was analyzed by N2 adsorption and desorption 

isotherms on a Quanta chrome Autosorb-1. X-Ray Diffraction (XRD) analysis was 

carried out by using a SIEMENS D5000 in the range of 10°-70° with a scanning step of 

0.02° using Cu KĮ radiation (0.1542 nm wavelength). A scanning electron microscope 

(SEM) (LEO 1530) coupled to an Energy Dispersive X-ray spectroscope (EDXs) system 

was used to investigate the surface morphology and the element distributions of the 

catalysts. Temperature programmed reduction (TPR) using H2 was employed to analyze 

the reduction behavior of the fresh catalysts by using a modified thermogravimetric 

analyzer (SDT Q600); during the TPR experiment, fresh catalysts were loaded in an 

alumina pan and placed in the thermogravimetric analyzer furnace which was purged by 

a gas flow containing 15% H2 and 85% N2 with a flow rate of 100 mL min-1, and heated 

from room temperature to 900 oC at a heating rate of 10 oC min-1. 

Temperature-programmed oxidation (TPO) of the reacted catalysts was carried out using 

a Stanton-Redcroft thermogravimetric analyzer (TGA and DTG) to determine the 

properties of the reacted catalysts. About 10 mg of the reacted catalyst was heated in an 

atmosphere of air at 15 °C min-1 to a final temperature of 800 °C, with a dwell time of 10 

min.  

2.3 Experimental process 
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Pyrolysis-reforming of biomass was carried out with a fixed bed, two-stage reaction 

system.  The first stage involved pyrolysis of the biomass and the pyrolysis gases were 

passed directly to the second stage where catalytic reforming took place as reported in 

our previous work  [32]. During the experiment, N2 (80 ml min-1) was used as carrier gas. 

0.5 g of biomass was placed inside a crucible and held in the first pyrolysis reactor. 0.25 

g of sand or catalyst was placed in the second reactor. The temperature of the second 

reactor was initially heated to the set point (800 °C). Then the first reactor was heated to 

the pyrolysis temperature (500 °C) at a heating rate of 40 °C min-1 and kept at that 

temperature for 30 min. Water for steam reforming was injected into a location between 

the two reactors with an injection rate of 0.05 g min-1 when the temperature of the 

pyrolysis reactor reached 150 °C. 

The products from pyrolysis/catalytic reforming were cooled using air and dry ice to 

collect the condensed liquid. Non-condensed gases were collected using a TedlarTM gas 

sample bag. Around 20 min more time was allowed to collect the non-condensed gases to 

ensure complete reaction. The amounts of injected water and the condensed liquid were 

calculated by weighing the syringe and condensers before and after the experiment, 

respectively. Experiments were repeated to ensure the reliability of the results.   

Non-condensed gases collected in the TedlarTM gas sample bag were analysed off-line by 

gas chromatography (GC). H2, CO and N2 were analyzed with a Varian 3380 GC on a 60-

80 mesh molecular sieve column with argon carrier gas, whilst CO2 was analyzed by 

another Varian 3380 GC on a HayeSep 80-100 mesh column with argon carrier gas. C1-

C4 hydrocarbons were analyzed using a Varian 3380 gas chromatograph with a flame 

ionization detector, with an 80-100 mesh HyeSep column with nitrogen carrier gas.   

 

3. Results and discussion  

3.1 Textural properties of Ni/CaAlOx catalysts   
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The BET surface areas of the Ni/CaAlOx catalysts were between 46 and 83 m2 g-1 and are 

reported in Table 1. It seems that the BET surface area did not change proportionally with 

the increase of Ca content in the catalyst support.  

XRD patterns of the Ni/CaAlOx catalysts shown in Figure 1 may be used to identify the 

crystal species present in the catalysts. It can be seen that the main phases on the catalysts 

were CaO, Ca(OH)2, NiO, and NiAl2O4NiO was present as separated metal particles and 

there were no detectable alloyed or inter-metallic Ca-Ni nanoparticles present. It should 

be noted that the catalysts were not pre-reduced prior to the experiments, and the NiO 

particles will be converted into active Ni particles by the produced H2 and CO during the 

process of pyrolysis-reforming of biomass [33]. The diffraction peaks at 2 theta values of 

32.2°, 53.9°, 64.2° and 67.5° were identified as CaO, and the diffraction peaks at 2 theta 

positions of 18.1°, 28.7°, 34.2°, 47.2° and 50.9° were identified as Ca(OH)2. Ca(OH)2 

present on the catalysts may be derived from the hydrolysis of CaO by ambient moisture 

in the environment [34]. It was noted that CaCO3 was not observed from XRD analysis of 

all the fresh catalysts. It has been reported that carbonation of CaO is slower compared 

with rapid hydration and the generated Ca(OH)2 layer may act as a protective layer to 

prevent carbonation of CaO [34]. The diffraction peaks at 2 theta values of 37.3°, 43.3°, 

and 62.9° are assigned to NiO. The broad characteristics of the NiO peaks demonstrated a 

low crystallinity and high distribution of metal phases. In addition, the diffraction peaks 

at 2 theta values of 37.0°, 45.0°, 59.6° and 65.5 ° were assigned to NiAl2O4.  

With the increase of Ca content changing from the Ni/CaAlOx (1:3) to Ni/CaAlOx (3:1), 

the peak intensity of CaO and Ca(OH)2 increased. In contrast, the peak intensity and 

position of NiO barely changed when the Ca/Al ratio was increased from 1:3 to 3:1, 

indicating that there were only slight differences of size and distribution of NiO for the 

catalysts with different Ca contents. This corresponds with the calculated sizes of NiO 

particles (around 10 nm) from XRD analysis (Table 1). However, it was reported that the 

size of NiO can range widely over many nanometers depending on the composition of the 

catalysts [35, 36]. Wu et al. [37] have reported that when using Ni/La2O3 prepared by 

impregnation methods for glycerol steam reforming, the partial substitution of La by Ca 
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caused  gradual increase of Ni particle size and significantly affected catalyst metal 

dispersion. Kariny et al. [38] reported that Ni-Ca/Al2O3 catalyst prepared by 

impregnation method has an increased size of Ni with the increasing of Ca content. It is 

demonstrated that the addition of Ca in the Ni/CaAlOx prepared by co-precipitation 

method in this work may favour size uniformity and dispersion of Ni, which are 

beneficial for catalytic reactions for syngas production from thermo-chemical conversion 

of biomass, as more active catalytic sites are available. High metal dispersion in the Ca-

added catalysts prepared by co-precipitation makes Ca a promising candidate as a catalyst 

promoter. In addition, maintaining the size of active sites in the Ni/CaAlOx catalyst 

enables a controlled investigation into the influence of different amounts of Ca addition 

to the catalyst in relation to syngas production with little interference from the particle 

size of the active metal sites.     

Figure 2 shows SEM images of the fresh Ni/CaAlOx catalysts. The surfaces of the 

catalysts were covered with fine spherical particles. The size of the spheres was around 

100 nm. Limmanee et al.[34] has reported that substitution of Mg2+ and Zn2+ with Ca2+ 

resulted in highly dispersed metal oxide crystallites at a calcination temperature of 

800 °C. The spheres are assumed to be a mixture of NiO, Ca(OH)2, CaO and Ni-spinels. 

Furthermore, holes with different sizes were found on the surface of the catalysts, which 

could be attributed to the release of CO2 during catalyst calcination [39]. In order to 

observe the catalyst structure, TEM images of selected catalysts with the ratio of Ca/Al of 

1:1 and 3:1 are shown in Figure 3. For the Ni/CaAlOx (3:1) catalyst, it can be clearly seen 

that the surface was dominantly covered by rod-shaped Ca(OH)2 with a size of around 15 

nm, and NiO with a size of 10 nm which were sparsely embedded. This is in accordance 

with the crystal size calculated by XRD analysis (Figure 1), which shows a particle size 

of about 18.1 nm for Ca(OH)2 and 9.3 nm for NiO, respectively. For the Ni/CaAlOx (1:1) 

catalyst, Ca(OH)2 exhibited a spherical shape with a size of around 15 nm. NiO particles 

on the surface of the Ni/CaAlOx (1:1) catalyst have a similar size with that on the surface 

of the Ni/CaAlOx (3:1) catalyst, i.e. around 10 nm. The sizes of particles on the surface of 

the Ni/CaAlOx (1:1) catalyst observed by TEM are also consistent with the XRD analysis, 

i.e., 15.3 nm for Ca(OH)2 and 9.0 nm for NiO, respectively. It is further suggested that 
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the increasing content of Ca in the catalysts increased the size of Ca(OH)2, however it has 

little influence on the size of the active nickel-based phase in the Ni/CaAlOx catalysts.  

The reducibility of Ni/CaAlOx catalysts with various Ca/Al molar ratios was investigated 

by H2-TPR, and the reduction profiles are shown in Figure 4.  All the fresh catalysts are 

characterized by three main reduction peaks: the first peak is centered at around 400 °C 

which might be assigned to the reduction of bulk NiO oxides [40]. The second reduction 

peak between 450 and 600 °C might be attributed to complex NiO species which have 

stronger interaction with the CaO modified Al2O3 support [41]. The third reduction peak 

around 800 °C could result from the reduction of NiAl2O4 spinel phases [42-44]. For the 

Ni/CaAlOx (1:3) catalyst with 19.7% CaO content, the intensities of the three peaks were 

similar, indicating that the three fractions of NiO species were evenly distributed. 

However, with the stepwise increase of CaO content to around 50%, the relative intensity 

of reduction peaks for bulk NiO showed an obvious increase. It indicates that the increase 

of Ca content in the Ni/CaAlOx catalysts contributes to the increase of the fraction of 

bulk NiO species. Hou et al. [40] reported that the presence of an excess amount of Ca 

(Ca/Ni ≥ 0.2) in a Ni-Ca/Al2O3 catalyst prepared by impregnation method covered the 

surface of the Al 2O3 support and hindered the interaction between Ni and support [41]. In 

this work, the increase of Ca content might occupy more surface area of the alumina 

support and reduce the interactions between Ni and the catalyst support; thus resulting in 

an increas in the fraction of bulk Ni-species with the increase of Ca content. In addition, 

the reducibility of a Ni-Al catalyst was reported to be increased by adding La metal [45].   

                                                                                                                                                                                                                      

3.2 Pyrolysis/steam reforming of sawdust over Ni/CaAlOx catalysts 

Catalytic steam reforming of pyrolysis product gases derived from biomass sawdust 

pyrolysis was carried out at 800 °C to evaluate the performance of the developed 

catalysts with different Ca/Al molar ratios. The mass balance calculated for each 

experiment is shown in Table 2. Char residue was obtained in the pyrolysis stage. The 

yield of char residue in terms of the amount of biomass sample is around 38 wt.% for all 

the experiments, as the pyrolysis stage was not affected by the type of catalyst 
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downstream. Compared with  pyrolysis-reforming of biomass without catalyst (using 

sand), it was found that with the addition of catalyst, the yields of total gas and hydrogen 

greatly increased, from around 30 to 50 wt.%  and from 2 to >10 mmol g-1 biomass, 

respectively. It is difficult to determine a clear influence of Ca content on total gas yield 

from Table 2. Quincoces et al. [46] has also reported that there were no important 

influences of Ca addition on methane reforming; It was suggested that small 

modifications of crystal size were obtained for Ni-Al catalyst containing different 

amounts of Ca, which is consistent with our results in relation to the changes of crystal 

size as presented in Table 1. However, the highest gas yield (65.2 wt.%) was obtained 

using the Ni/CaAlOx (1:2) catalyst, which might be related to the catalyst with the highest 

BET surface area (Table 1), which promoted more contact between reactants and 

catalytic sites. In addition, the Ni/CaAlOx (1:1) catalyst showed a lower gas yield (55.87 

wt.%) compared with the Ni/CaAlOx (1:2) and the Ni/CaAlOx (2:1) catalysts, which 

might also be due to the Ni/CaAlOx (1:1) catalyst which had a lower BET surface area 

(Table 1).   

From Table 2, it seems that hydrogen production was increased slightly from 12.97 to 

15.57 mmol g-1 biomass, when the catalyst was changed from the Ni/CaAlOx (1:3) to the 

Ni/CaAlOx (1:2); with the further increase of Ca content, the hydrogen production was 

reduced slightly to 14.32 mmol g-1 biomass using the Ni/CaAlOx (3:1) catalyst.  

The performance of the catalyst during biomass pyrolysis-reforming was also compared 

using the product gas concentrations (N2 carrier gas free), as shown in Figure 5. In the 

absence of catalyst, CO concentration was about 45 Vol.% and H2 concentration was 

about 18 Vol.%. In the presence of Ni/CaAlOx catalyst, the concentration of H2 increased 

markedly to about 45 Vol.%, and the concentration of CO reduced to about 30 Vol.% 

(except for the Ni/CaAlOx (3:1) catalyst). It is suggested that the water gas shift reaction 

(Reaction 1) was significantly enhanced by the introduction of the catalysts for the 

reforming of primary products from pyrolysis-reforming of wood sawdust [24, 47]. In 

addition, the concentrations of hydrocarbon gases (CH4 and C2-C4) were largely reduced 

as shown in Figure 5 in the presence of catalyst, indicating steam reforming of 
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hydrocarbons (Reaction 2) was effectively promoted by adding the Ni-based catalyst 

prepared in this work.  

CO + H2O ļ CO2+H2                                                              Reaction 1 

CxHy + 2xH2O ĺ xCO2+(2x+y/2)H2                                                           Reaction 2 

CO2 + CH4 ļ 2CO + 2H2                                                             Reaction 3 

Hydrogen concentration was slightly changed when the catalysts with different Ca/Al 

molar ratios were used for thermo-chemical conversion of biomass. From Figure 5, CO 

concentration increased from about 30 to 45 Vol.%, and CO2 concentration reduced from 

20 to 12 Vol.%, when the molar ratio of Ca/Al was increased from 1:3 to 3:1 for the 

Ni/CaAlOx catalyst; this might be ascribed to the inhibition of the water gas shift reaction 

(WGSR) (Reaction 1). In addition, the reduction of CO2 concentration with the increase 

of Ca content might be due to the promotion of CO2 reforming reactions (e.g. Reaction 3). 

It is known that the acidic sites of nickel-based alumina catalysts resulted in coke 

deposition during reforming reactions [48]. The addition of Ca into a Ni-Al catalyst has 

been reported to significantly increase the basicity of the catalyst [49]. In this work, it is 

suggested that the increase of basic sites promoted the methane dry reforming reaction 

(Reaction 3) with the increase of Ca content in the  Ni/CaAlOx catalyst; this is consistent 

with the other reports, where CO2 conversion was enhanced during methane dry 

reforming by increasing the Ca content in a Ni-Ca-based catalyst [41].  

Here, it is suggested that the addition of Ca promoted the metal dispersion and affected 

the equilibrium through adsorption on the enhanced basicity sites. NiO and NiAl2O4 (as 

identified in the XRD analysis of the fresh catalysts, Figure 1) have been reported to 

provide active Ni sites for methane dry reforming [50]. From the TPR analysis of the 

fresh catalysts, it seems that the fraction of NiO species was increased with the increase 

of Ca addition. Therefore, it is proposed that in this work, NiO species play key roles to 

provide active sites for methane dry reforming (Reaction 3) and possibly other hydrogen 

carbon reforming reactions for CO production. Ni has also been reported as active sites 

for the WGSR [51]; however, the increase of NiO fraction in the catalyst with the 
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increase of Ca addition did not enhance the WGSR.  Here we suggested that the water 

gas shift reaction has been significantly affected by the basicity of the catalyst introduced 

by the addition of Ca. 

From Figure 5, it is demonstrated that the concentration of syngas (H2 and CO) was about 

80 Vol.% using the Ni/CaAlOx (1:3) catalyst, and increased to about 90 Vol.% when the 

Ca/Al molar ratio was increased to 3:1 (the Ni/CaAlOx(3:1) catalyst), while the 

concentration of H2 was almost constant. In addition, with the addition of the catalyst, the 

H2/CO molar ratio increased significantly to about 1.63 from 0.38. A range of H2/CO 

molar ratio between 1.01 and 1.63 was obtained using different Ni/CaAlOx catalysts 

(Table 2). It is therefore suggested that using the Ni/CaAlOx catalyst prepared in this 

work the H2/CO molar ratio in syngas can be manipulated, by controlling the content of 

Ca in the catalyst system; since it appears that the selectivity to CO or CO2 was related to 

the Ca content in the Ni/CaAlOx catalyst. 

3.3 Coke formation analysis using temperature programmed oxidation 

Coke deposition is one of the most problematic factors causing catalyst deactivation 

during catalytic thermo-chemical conversion of biomass [52, 53]. The characteristics of 

coke formation on the reacted Ni/CaAlOx catalysts were investigated using temperature 

programmed oxidation (TPO). Figure 6 shows TGA results of TPO analysis for the 

reacted catalysts. It can be seen that two types of carbon were formed on the surface of 

the majority of the reacted catalysts corresponding to a two-stage weight loss. For all the 

catalysts except the Ni/CaAlOx (1:3), the weight loss which occurred at around 410 °C 

might be assigned to the oxidation of amorphous carbons. The weight loss at higher 

oxidation temperature (around 600 °C) might be assigned to filamentous carbon [54]. 

However the reacted Ni/CaAlOx (1:3) catalyst showed a three-stage weight loss in the 

TPO analysis, which occurred at around 270, 560 and 710 °C, respectively. The weight 

loss around 400 °C was normally deemed as heavy hydrocarbon depositions, and the one 

at 560 °C may be attributed to the oxidation of amorphous carbons [47, 55]; the weight 

loss at around 710 °C for the reacted Ni/CaAlOx (1:3) catalyst can be assigned to 

filamentous carbons for the reacted  Ni/CaAlOx (1:3) catalyst [53, 56]. It is noted that 



12 

 

weight increase was observed at around 550 °C from Figure 6 in particular for the 

catalysts with high Ca content, demonstrating that oxidation of Ni might happened during 

the TPO analysis. It is known that Ni could be produced from the reduction of NiO 

during the pyrolysis-reforming reactions. 

It was reported that high dispersion of nickel metal particles and the basicity of the 

support surface benefited the resistance to coke deposition, since water splitting into 

hydroxyl (OH-) groups could be enhanced during reforming reactions due to the high 

nickel dispersion and support basicity, which thus promoted carbon elimination reaction 

with hydroxyl groups [14]. The use of Ni/Al2O3 catalysts in the thermo-chemical 

conversion process is known to have problems of coke deposition on the surface of the 

catalyst due to the presence of acid sites [48]. In this work, Ca was added to the catalyst 

system to improve the catalyst basicity in order to reduce coke formation during 

pyrolysis-reforming of biomass. It is reported that the increase of basicity of a catalyst by 

adding Ca could promote steam-coke reactions, which resulted in a decrease of coke 

deposition on the surface of the catalyst during the steam reforming of biomass [49]. The 

reacted Ni/CaAlOx (1:3) catalyst showed the highest coke formation (about 20 wt.%); 

this might be because the Ni/CaAlOx (1:3) catalyst has the lowest alkaline metal (Ca) 

addition which corresponded to the lowest catalyst basicity compared with the other 

Ni/CaAlOx catalysts. The amount of coke deposition on the surface of the reacted catalyst 

was estimated from the weight loss of reacted catalysts from the TPO analysis, with the 

assumption that the weight increase from Ni oxidation was insignificant.  

For the other reacted Ni/CaAlOx catalysts, coke formation was less than 10 wt.% of the 

weight of the reacted catalyst. It seems that the coke deposition on the surface of the 

reacted catalyst was reduced when the Ca/Al molar ratio was increased from 1:3 to 3:1. 

However, as shown in Figure 6, amorphous carbon was largely formed on the reacted 

Ni/CaAlOx (3:1) catalyst (weight loss around 400 °C), indicating that there might be an 

optimal content of Ca addition to the catalyst in order to minimize coke formation. 

Amorphous carbons are known to easily deactivate catalyst by encapsulating catalytic 

active sites. 
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4. Conclusions 

As an alkaline metal, Ca is attractive to promote catalytic activity in thermo-chemical 

conversion of biomass due to its low cost and high abundance in nature. In this study, a 

series of Ni/CaAlOx catalysts promoted by different contents of Ca were prepared by co-

precipitation method, and were investigated for H2-enriched syngas production from the 

pyrolysis-reforming of sawdust biomass. The following conclusions were proposed: 

1) High dispersion of NiO particles was obtained within the Ni/CaAlOx catalysts. With 

the increase of Ca/Al molar ratio from 1:3 to 3:1, the particle size of NiO remained 

constant at around 10 nm, while the reducibility of the Ni/CaAlOx catalysts increased 

according to TPR analysis. 

2) The catalytic performance in terms of total gas yield and hydrogen production was not 

closely related to the content of Ca in the catalyst. The total gas yield might depend on 

the surface area of the catalyst. The Ni/CaAlOx (1:3) catalyst showed the lowest gas 

production; this might be due to the severe catalyst deactivation which resulted from coke 

deposition which was supported from TPO analysis. 

3) It was clearly demonstrated that the increase of Ca content resulted in the increase of 

CO selectivity and the decrease of CO2 selectivity. 

4) A total concentration of 90 Vol.% syngas (H2 + CO) could be obtained using the 

Ni/CaAlOx (3:1) catalyst. In addition, the H2/CO ratio could be controlled between 1.01 

and 1.63 by varying Ca content while H2 concentration in the syngas remained almost 

constant. This is particularly important in relation to the manipulation of syngas 

composition for downstream applications 
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Table 1 Composition, particle size and surface areas of the Ni/CaAlOx catalysts  

Catalyst Molar 

Ratio 

(Ca/Al) 

Metal molar 

composition 

(wt.%)a 

Particle size (nm)b BET surface 

area 

(m2g-1) 

NiO CaO Al 2O3 Ca(OH)2 CaO NiAl 2O4 NiO 

 

 

Ni/CaAlOx 

1:3 

1:2 

1:1 

26.4 

26.3 

25.9 

19.7 

26.1 

38.8 

53.9 

47.6 

35.3 

14.0 

15.0 

15.3 

15.6 

17.1 

16.2 

19.5 

11.9 

13.2 

9.7 

11.3 

9.0 

64.6 

83.0 

46.8 

 2:1 25.6 51.1 23.2 16.6 13.3 - 10.8 61.0 

 3:1 25.5 57.1 17.3 18.1 19.4 - 9.3 46.3 

a-Molar ratio was obtained from calculation of catalyst preparation; b- Particle size was 

calculated from XRD analysis using the Scherrer equation. 
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Table 2 Mass balance for pyrolysis catalytic steam reforming of biomass using 

Ni/CaAlOx catalyst 

Catalyst Bed Sand Catalyst with different Ca/Al ratios 

1:3 1:2 1:1 2:1 3:1 

       

Gas/biomass (wt.%) 32.99 55.42 65.2 55.87 63.45 57.57 

Residue char/biomass 

(wt.%) 

38.75 36.25 37.5 37.5 37.5 37.5 

Mass balance (wt.%) 103.25 104.29 97.03 95.69 98.67 95.95 

H2 Yield (mmol H2 g
-1 

biomass) 

2.36 12.97 15.57 15.3 15.37 14.32 

H2/CO molar ratio 0.38 1.51 1.08 1.63 1.25 1.01 
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Figure Captions 

Figure 1 XRD patterns of Ni/CaAlOx catalysts: (a) Ni/CaAlOx (1:3); (b) Ni/CaAlOx (1:2); (c) 

Ni/CaAlOx (1:1); (d) Ni/CaAlOx (2:1); (e) Ni/CaAlOx (3:1). 

 

Figure 2 SEM imagines of the fresh Ni/CaAlOx catalysts. (a) Ni/CaAlOx (1:3); (b) Ni/CaAlOx 

(1:2); (c) Ni/CaAlOx (1:1); (d) Ni/CaAlOx (2:1); (e) Ni/CaAlOx (3:1). 

 

Figure 3 TEM images of the fressh Ni/CaAlOx catalysts. (a) Ni/CaAlOx (3:1); (b) Ni/CaAlOx 

(1:1) 

 

Figure 4 TPR results of the Ni/CaAlOx catalysts: (a) Ni/CaAlOx (1:3); (b) Ni/CaAlOx (1:2); (c) 

Ni/CaAlOx (1:1); (d) Ni/CaAlOx (2:1); (e) Ni/CaAlOx (3:1). 

 

Figure 5 Gas compositions and fractions from biomass gasification on the sand and Ni/CaAlOx 

catalysts. (a) sand; (b) Ni/CaAlOx (1:3); (c) Ni/CaAlOx (1:2); (d) Ni/CaAlOx (1:1); (e) 

Ni/CaAlOx (2:1); (f) Ni/CaAlOx (3:1). 

 

Figure 6 TPO analyses of reacted Ni/CaAlOx catalysts:  (a) Ni/CaAlOx (1:3); (b) Ni/CaAlOx 

(1:2); (c) Ni/CaAlOx (1:1); (d) Ni/CaAlOx (2:1); (e) Ni/CaAlOx (3:1). 
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(a)                                                                                 (b) 

          
(c)                                                                               (d) 

 
(e) 

 

Figure 2 SEM imagines of the fresh Ni/CaAlOx catalysts. (a) Ni/CaAlOx (1:3); (b) Ni/CaAlOx 

(1:2); (c) Ni/CaAlOx (1:1); (d) Ni/CaAlOx (2:1); (e) Ni/CaAlOx (3:1). 
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(a)                                                                               (b) 

     

Figure 3 TEM images of the fresh Ni/CaAlOx catalysts. (a) Ni/CaAlOx (3:1); (b) Ni/CaAlOx 

(1:1) 

 

 

 

  



25 

 

 

Figure 4 TPR results of the Ni/CaAlOx catalysts: (a) Ni/CaAlOx (1:3); (b) Ni/CaAlOx (1:2); (c) 

Ni/CaAlOx (1:1); (d) Ni/CaAlOx (2:1); (e) Ni/CaAlOx (3:1). 
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Figure 5 Gas compositions and fractions from biomass gasification on the sand and Ni/CaAlOx 

catalysts. (a) sand; (b) Ni/CaAlOx (1:3); (c) Ni/CaAlOx (1:2); (d) Ni/CaAlOx (1:1); (e) 

Ni/CaAlOx (2:1); (f) Ni/CaAlOx (3:1). 
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Figure 6 TPO analyses of reacted Ni/CaAlOx catalysts:  (a) Ni/CaAlOx (1:3); (b) Ni/CaAlOx 

(1:2); (c) Ni/CaAlOx (1:1); (d) Ni/CaAlOx (2:1); (e) Ni/CaAlOx (3:1). 

 

 

 

 

 

 

 

 

 

 


