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Abstract

We consider the problem of stability analysis for droop–controlled inverter–based microgrids with meshed topologies.
The inverter models include variable frequencies as well as voltage amplitudes. Conditions on the tuning gains and
setpoints for frequency and voltage stability, together with desired active power sharing, are derived in the paper. First,
we prove that for all practical choices of these parameters global boundedness of trajectories is ensured. Subsequently,
assuming the microgrid is lossless, a port–Hamiltonian description is derived, from which sufficient conditions for stability
are given. Finally, we propose for generic lossy microgrids a design criterion for the controller gains and setpoints such
that a desired steady–state active power distribution is achieved. The analysis is validated via simulation on a microgrid
based on the CIGRE (Conseil International des Grands Réseaux Electriques) benchmark medium voltage distribution
network.

Keywords: microgrid control, microgrid stability, smart grid applications, inverters, droop control, port–Hamiltonian
systems, power sharing

1. Introduction

Motivated by environmental, economic and technolog-
ical aspects, the penetration of renewable energy sources
into the electrical networks is increasing worldwide. Most
of these sources are small–scale distributed generation (DG)
units connected at the low voltage (LV) and medium volt-
age (MV) levels via alternating current (AC) inverters. As
a consequence, the power generation structure is moving
from purely large, centralized plants to a mixed generation
pool consisting of conventional large plants and smaller
distributed generation units. Since, in addition, the physi-
cal characteristics of inverters largely differ from the char-
acteristics of conventional electrical generators (i.e. syn-
chronous generators (SGs)), new concepts and strategies
to operate the electric power system that ensure a reliable
and stable operation are needed.

The microgrid concept represents one promising solu-
tion to address these issues by facilitating local integration
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of renewable energy sources [25, 18]. In general, a micro-
grid gathers a combination of generation units, loads and
energy storage elements at distribution level into a locally
controllable system, which can be operated in a decen-
tralized and completely isolated manner from the main
transmission system. An autonomous or islanded micro-
grid is operated in such mode. The microgrid concept
has been identified as a key component in future electri-
cal networks [11]. Furthermore, it is envisioned to greatly
contribute to the implementation of numerous smart grid
functions [26].

In this work we consider three important problems in
such networks: frequency stability, voltage stability and
power sharing. Power sharing is understood as the abil-
ity of the local controllers of the individual generation
sources to achieve a desired steady–state distribution of
their power outputs relative to each other, while satisfy-
ing the load demand in the network. The relevance of this
control objective lies within the fact that it allows to pre-
specify the utilization of the generation units in operation.

A control technique widely used to address the prob-
lem of active power sharing in large power systems is droop
control, also referred to as power–speed characteristic [23].
In droop control the current value of the rotational speed
of each SG in the network is monitored locally to derive
how much mechanical power each SG needs to provide.
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From a control perspective, droop control is a decentral-
ized proportional controller where the control gain (known
as droop gain) specifies the steady–state power distribu-
tion in the network. Since performance under droop con-
trol is satisfactory for large SG–based systems, this tech-
nique has been adapted to inverter–based grids [3, 4, 40, 1].

In large SG–based transmission systems droop control
is usually only applied to obtain a desired active power
distribution, while the voltage amplitude at a generator
bus is regulated to a nominal voltage setpoint via an au-
tomatic voltage regulator (AVR) acting on the excitation
system of the SG. In microgrids the power lines are typ-
ically relatively short. Then, the AVR employed at the
transmission level is, in general, not appropriate because
slight differences in voltage amplitudes can cause high re-
active power flows. As a consequence, the reactive power
sharing among generation units cannot be ensured. There-
fore, droop control is typically applied in microgrids to
achieve also a desired reactive power distribution. The
most common approach is to control the voltage ampli-
tude with a proportional control, the feedback signal of
which is the reactive power generation relative to a refer-
ence setpoint [3, 4]. See the recent survey [15] for further
details.

The paper is devoted to the stability analysis of droop–
controlled microgrids operated with the control laws given
in [3]. These droop control laws are heuristic control laws
derived under the assumption of a dominantly inductive
network, i.e. for power lines with small R/X ratios, and
they are (by far) the most commonly used ones in this
scenario. If the network lines possess large resistive com-
ponents, the standard droop control exhibits limitations
[15]. In this case, several modified droop controls [6, 43,
16] have been proposed. Even in the presence of non–
negligible line resistances the application of the droop con-
trols of [3, 4] can be justified, on one hand, via the virtual
impedance approach [17] while, on the other hand, invok-
ing their analogy to conventional droop control [10] of SG–
based grids.

As in any conventional power system, stability is un-
derstood in the sense of achieving asymptotic synchro-
nization of the frequencies of all DG units, with the an-
gle differences not exceeding |π2 | and constant generated
voltages [24]. Since the synchronization frequency is the
same for all DG units and their dynamics depend on the
angle differences, it is possible to translate—via a time–
dependent coordinate shift—the synchronization objective
into a (standard) equilibrium stabilization problem, which
is the approach adopted in the paper.

Stability analysis of droop–controlled microgrids has
traditionally been carried out by means of detailed numer-
ical small–signal analysis as well as extensive simulations
and experimental studies aiming to characterize a range for
the droop gains guaranteeing system stability [4, 40, 32, 1].
As pointed out in [15], most work on microgrid stability
has so far focussed on radial microgrids, while stability
of microgrids with meshed topologies and decentralized

controlled units is still an open research area. For radial
lossless microgrids, and under the assumption of constant
voltage amplitudes, analytic conditions for proportional
power sharing and synchronization of lossless microgrids
with first–order inverter models has been recently derived
– applying results of the theory of coupled oscillators – in
[38]. Conditions for voltage stability for a lossless parallel
microgrid with one common load have been derived in [39].

For general meshed networks, with the aim to sched-
ule the droop coefficients under the consideration of fre-
quency droop, an iterative procedure based on bifurcation
theory has been proposed in [7]. Under the assumption
of constant voltage amplitudes, analytic synchronization
conditions for a lossy meshed microgrid with distributed
rotational and electronic generation are derived in [36]
using ideas from second order consensus algorithms. A
decentralized LMI–based control design for lossy meshed
inverter–based networks guaranteeing overall network sta-
bility for a nonlinear model considering variable voltage
amplitudes and phase angles, while accounting for power
sharing, is provided in [35].

The main contribution of the present paper is to give
conditions on the droop gains to ensure stability of droop–
controlled inverter–based microgrids with general meshed
topology and inverter models with variable frequencies
as well as variable voltage amplitudes. In contrast to
[38, 39, 36], no assumptions of constant voltage ampli-
tudes or small phase angle differences are made. In this
more general scenario, the graph theoretic methods em-
ployed in the aforementioned papers are not directly ap-
plicable. Instead, we adopt a classical Lyapunov–like ap-
proach for analysis of stability of equilibria and bound-
edness of trajectories. Following the interconnection and
damping assignment passivity–based control approach [30,
37], we represent the lossless microgrid system in port–
Hamiltonian form [34] to identify the energy–Lyapunov
function and give conditions for stability of the frequency
synchronization equilibrium state.

The present work extends our results in [37] in several
regards: first, conditions for global boundedness are given
for lossy microgrids; second, we relate the spectral proper-
ties of the local network couplings between the phase an-
gles and the active power flows of the microgrid in port–
Hamiltonian form (which has a reduced state vector in
relative coordinates) to those of the microgrid in absolute
coordinates; third, making use of the global boundedness
result, a relaxed stability condition for a lossless microgrid
under a specific parameter selection of the controller gains
and setpoints of the frequency droop control is derived;
finally, the theoretical analysis is illustrated via detailed
simulation scenarios.

The remainder of the paper is organized as follows.
The network model is presented in Section 2. In Section
3 we give the model of the inverter and the droop control.
Section 4 presents conditions for global boundedness of
trajectories. Sufficient conditions for stability for lossless
microgrids are established in Section 5. In Section 6 we
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propose a selection of the droop gains and setpoints, simi-
lar to the one given in [38], that ensures the DG units share
(in steady–state) the active power according to a specified
pattern. Compared to [38], we extend the proof to lossy
networks, i.e. networks with nonzero conductances. Our
analysis is validated in Section 7 with simulation examples
based on the CIGRE (Conseil International des Grands
Réseaux Electriques) benchmark MV distribution network
[33]. The paper is wrapped–up with some conclusions and
discussion of future work in Section 8.
Notation We define the sets n̄ := {1, . . . , n}, R≥0 := {x ∈
R|x ≥ 0}, R>0 := {x ∈ R|x > 0} and S := [0, 2π). Given
a set U := {ν1, . . . , νn}, the notation i ∼ U denotes “for
all i ∈ U”. Let x := col(xi) ∈ R

n denote a vector with
entries xi for i ∼ n̄, 0n ∈ R

n the zero vector, 1n ∈ R
n

the vector with all entries equal to one, In the n×n iden-
tity matrix, 0n×n the n × n matrix with all entries equal
to zero and diag(ai), i = 1, . . . n an n × n diagonal ma-
trix with diagonal entries ai. Given a matrix A ∈ R

n×n

let σ(A) denote its spectrum. Let j denote the imaginary
unit. Finally, ∇f denotes the transpose of the gradient of
a function f : Rn → R.

2. Network model

We consider a generic meshed microgrid and, following
the classical approach in conventional power system stud-
ies, assume that loads are modeled by constant impedances
[41]. This leads to a set of nonlinear differential–algebraic
equations. Then a network reduction (called Kron reduc-
tion [23]) is carried out to eliminate all algebraic equations
corresponding to loads and obtain a set of differential equa-
tions. We assume this process has been carried out and
work with the Kron–reduced network.

The Kron–reduced microgrid is formed by n ≥ 1 nodes,
each of which represents a DG unit interfaced via an AC
inverter. We denote the set of network nodes by n̄ and
associate a time–dependent phase angle δi : R≥0 → S, as
well as a voltage amplitude Vi : R≥0 → R>0 to each node
i ∈ n̄ in the microgrid. Two nodes i and k of the mi-
crogrid are connected via a complex nonzero admittance
Yik := Gik + jBik ∈ C with conductance Gik ∈ R and sus-
ceptance Bik ∈ R. For convenience, we define Yik := 0
whenever i and k are not directly connected. The set of
neighbors of a node i ∈ n̄ is denoted by Ni := {k

∣

∣ k ∈
n̄, k 6= i , Yik 6= 0}. For ease of notation, we write angle
differences as δik := δi − δk.

We assume that the microgrid is connected, i.e. that
for all pairs {i, k} ∈ n̄ × n̄, i 6= k, there exists an ordered
sequence of nodes from i to k such that any pair of consec-
utive nodes in the sequence are connected by a power line
represented by an admittance. This assumption is reason-
able for a microgrid, unless severe line outages separating
the system into several disconnected parts occur.

The active and reactive power flows Pik : S2×R
2
>0 → R

and Qik : S2 × R
2
>0 → R from node i ∈ n̄ to node k ∈ n̄

are then given by [23]

Pik(t) =GikV
2
i (t)

− Vi(t)Vk(t)(Gik cos(δik(t)) +Bik sin(δik(t))),

Qik(t) =−BikV
2
i (t)

− Vi(t)Vk(t)(Gik sin(δik(t))−Bik cos(δik(t))).

The overall active and reactive power flows Pi : S
n×R

n
>0 →

R and Qi : S
n×R

n
>0 → R at a node i ∈ n̄ are obtained as1

Pi= GiiV
2
i −

∑

k∼Ni

ViVk(Gik cos(δik) +Bik sin(δik)),

Qi=−BiiV
2
i −

∑

k∼Ni

ViVk(Gik sin(δik)−Bik cos(δik)),
(1)

with

Gii := Ĝii +
∑

k∼Ni

Gik, Bii := B̂ii +
∑

k∼Ni

Bik, (2)

where Ĝii ∈ R and B̂ii ∈ R denote the shunt conductance,
respectively shunt susceptance, at node i. The apparent
power flow is given by Si = Pi + jQi.

Since we are mainly concerned with dynamics of gen-
eration units, we express all power flows in ”Generator
Reference Arrow System” [12].

3. Modeling of inverters and droop control

We model the inverters as AC voltage sources the am-
plitude and frequency of which can be defined by the de-
signer [28]2. We assume that the frequency regulation is
instantaneous, but the voltage control happens with a de-
lay that, following standard practice, is represented by a
first order filter. Consequently, the inverter at the i–th
node is represented by

δ̇i = uδ
i ,

τVi
V̇i = −Vi + uV

i ,
(3)

where uδ
i : R≥0 → R and uV

i : R≥0 → R are controls and
τVi

∈ R>0 is the time constant of a low–pass filter.
Differently from SG units, inverters do not have an in-

herent physical relation between frequency and generated
active power. Frequency droop control aims at artificially
creating such a relation, since it is desired in many ap-
plications [10]. The rationale behind the droop controller
is as follows [3, 15]. For small angular deviations δik we
have that sin(δik) ≈ δik while cos(δik) ≈ 1. Hence, for
dominantly inductive networks, i.e. Gik ≈ 0, from the

1To simplify notation the time argument of all signals is omitted.
2An underlying assumption to this model is that whenever the

inverter connects an intermittent renewable generation source, e.g.,
a photovoltaic plant or a wind plant, to the network, this is equipped
with some sort of storage (e.g., flywheel, battery). Thus, it can
increase and decrease its power output within a certain range.
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power equations (1) it is clear that the reactive power is
mostly influenced by changes in the voltage, while the ac-
tive power depends “more directly” on angular deviations.
Consequently, the frequencies ωi and voltage amplitudes
Vi of the inverters are modified depending on the devia-
tions (with respect to a desired value) of the active and
reactive powers, respectively.

Simple proportional controllers are then implemented
as

uδ
i = ωd − kPi

(Pm
i − P d

i ),

uV
i = V d

i − kQi
(Qm

i −Qd
i ),

(4)

where ωd ∈ R>0 is the desired (nominal) frequency, V d
i ∈

R>0 the desired (nominal) voltage amplitude, kPi
∈ R>0,

respectively kQi
∈ R>0, the frequency, respectively volt-

age, droop gain, Pm
i : R≥0 → R and Qm

i : R≥0 → R are
the measured powers and P d

i ∈ R and Qd
i ∈ R their desired

setpoints. It is assumed that the powers are measured and
processed through filters [4, 32], i.e.

τPi
Ṗm
i = −Pm

i + Pi,

τPi
Q̇m

i = −Qm
i +Qi,

(5)

where Pi and Qi are given in (1) and τPi
∈ R>0 is the time

constant of the low pass filters.
Note that the statements on small angular deviations

δik and small transfer conductances, i.e. Gik ≈ 0, are not
an underlying assumption of the physical model given by
(1), (3) and (5), but only serve to explain the physical and
heuristic motivation behind the control laws (4).

Replacing (4) and (5) in (3) yields the closed–loop sys-
tem

δ̇i = ωd − kPi
(Pm

i − P d
i ),

τPi
Ṗm
i = −Pm

i + Pi,

τVi
V̇i = −Vi + V d

i − kQi
(Qm

i −Qd
i ),

τPi
Q̇m

i = −Qm
i +Qi.

(6)

In general τVi
≪ τPi

, hence we assume in the sequel τVi
= 0.

Setting τVi
= 0 in (6) yields the algebraic equation Vi =

V d
i − kQi

(Qm
i −Qd

i ). Recall that δ̇i = ωi = ωd − kPi
(Pm

i −
P d
i ). Differentiating ωi, respectively Vi, with respect to

time gives ω̇i = −kPi
Ṗm
i , respectively V̇i = −kQi

Q̇m
i . Us-

ing at first (6) to substitute Ṗm
i , respectively Q̇m

i , and
subsequently the indicated equations for ωi, respectively
Vi, to substitute Pm

i , respectively Qm
i , finally yields

δ̇i = ωi,

τPi
ω̇i = −ωi + ωd − kPi

(Pi − P d
i ),

τPi
V̇i = −Vi + V d

i − kQi
(Qi −Qd

i ),

(7)

where ωi denotes the inverter frequency, see also [36]. To

simplify notation we define

P d :=col(P d
i ) ∈ R

n, P := col(Pi) ∈ R
n,

Qd :=col(Qd
i ) ∈ R

n, Q := col(Qi) ∈ R
n,

V d :=col(V d
i ) ∈ R

n, T := diag(τPi
) ∈ R

n×n,

KP :=diag(kPi
) ∈ R

n×n, KQ := diag(kQi
) ∈ R

n×n,

(8)

and write the system compactly as

δ̇ = ω,

T ω̇ = −ω + 1nω
d −KP (P − P d),

T V̇ = −V + V d −KQ(Q−Qd),

(9)

with power flows P and Q given in (1). We furthermore as-
sociate to each inverter its power rating SN

i ∈ R>0, i ∼ n̄.

Remark 3.1. The desired power setpoints for active and
reactive power P d

i and Qd
i , i ∼ n̄, are assumed to be trans-

mitted to each inverter by a high–level control, i.e. typi-
cally a secondary control or energy management system.

Remark 3.2. Since an inverter may connect a pure stor-
age device, e.g., a battery, to the network, P d

i can also
take negative values. In that case, the storage device is
charged depending on the excess power available in the
network and thus functions as a frequency and voltage de-
pendent load. In the sequel, we refer to such an operation
mode as charging mode.

Remark 3.3. In [36] it is proven that the dynamics of an
inverter with frequency droop control and the swing equa-
tion dynamics of an SG are equivalent. Consequently, an
inverter operated in voltage source mode and with fre-
quency droop achieves a behavior similar to that of an
SG with respect to frequency, which is desired in many
microgrid applications [10, 25].

Remark 3.4. There are several other alternative droop
control schemes proposed in the literature, e.g., [43, 16,
15]. The one given in (4) is the most common one for
dominantly inductive networks, as well as the one most
compatible with the operation of conventional power sys-
tems [10]. We therefore restrict our analysis to these con-
trol laws, commonly referred to as “conventional droop
control”.

4. Boundedness of trajectories

The proposition below gives conditions for global bound-
edness of the trajectories of the system (9), (1), which we
recall lives in the set

M := S
n × R

n × R
n
>0. (10)

To establish our result, we need the following assump-
tion on the network susceptances that particularly holds
for dominantly inductive networks. The droop controls (4)
are predominantly employed in such networks.
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Assumption 4.1.

B̂ii ≤ 0 and Bik ≤ 0, i ∼ n̄, k ∼ n̄. (11)

Proposition 4.2. Consider the system (9), (1) with As-
sumption 4.1. The set M defined in (10) is invariant and
all trajectories of (9), (1) are bounded if V d

i , kQi
and Qd

i

are chosen such that

V d
i + kQi

Qd
i > 0, i ∼ n̄. (12)

Proof. From (7), (1), write τPi
V̇i = f3i(δ, V ), for some

function f3i : S
n × R

n
>0 → R. Note that

f3i(V, δ)|Vi=0 = V d
i + kQi

Qd
i ,

which, under condition (12), is positive. Hence, the fol-
lowing implication is true

Vi(0) > 0 ⇒ Vi(t) > 0,

for all t ≥ 0. This proves that the set M is invariant.
To establish boundedness of solutions define the matrix

Γ := diag(τPi
/kQi

), i ∼ n̄ and the function W : Rn → R>0

W (V ) = ‖ΓV ‖1 =

n
∑

i=1

τPi

kQi

Vi,

with ‖ · ‖1 the 1–norm. Then,

Ẇ =

n
∑

i=1

(

1

kQi

(−Vi + V d
i )− (Qi(δ, V )−Qd

i )

)

≤ −κ1W + κ2 − V ⊤T (δ)V,

where

κ1 := min
i∈n̄

{

1

τPi

}

, κ2 :=
n
∑

i=1

(

1

kQi

V d
i +Qd

i

)

and T : Sn → R
n×n with

(T (δ))ii := −Bii,

(T (δ))ik := Bik cos(δik), i 6= k.
(13)

Here, we have used the fact that, as Gik = Gki, (1) implies
that

n
∑

i=1

Qi =
n
∑

i=1

(

−BiiV
2
i +

∑

k∼Ni

BikViVk cos(δik)

)

,

which are the reactive power losses in the network.
Since Bik = Bki, T (δ) is symmetric and (2) together

with (11) implies that

T (δ) ≥ nκ3Γ
2,

for some κ3 ≥ 0. Hence

Ẇ ≤ −κ1W + κ2 − κ3W
2,

where the third right hand term follows from

nV ⊤Γ2V ≥ ‖ΓV ‖21 = W 2(V ).

Assume κ3 > 0. The differential equation

ż = −κ1z + κ2 − κ3z
2, z(0) = z0,

is a scalar differential Riccati equation with constant co-
efficients, which has the solution

z(t) =
2κ2 (−1 + eκ4t) + z0 (κ1 (1− eκ4t) + κ4 (1 + eκ4t))

κ1 (−1 + eκ4t) + κ4 (1 + eκ4t) + 2κ3z0 (−1 + eκ4t)
,

(14)
with κ4 :=

√

4κ2κ3 + κ2
1. Furthermore,

lim
t→∞

z(t) =
2κ2 + z0 (−κ1 + κ4)

κ1 + κ4 + 2κ3z0
. (15)

From the Comparison Lemma [22] we then have for
W (V (0)) ≤ z0

n
∑

i=1

τPi

kQi

Vi(t) ≤ z(t),

hence, together with (15), V ∈ L∞. This, together with
(1), implies that P ∈ L∞. Finally, ω ∈ L∞ follows from
(7), which shows that ωi is the output of a linear time in-
variant (LTI) asymptotically stable system with bounded
input.

If κ3 = 0 we have Ẇ ≤ −κ1W + κ2, and the proof
follows immediately. ���

Remark 4.3. Condition (12) in Proposition 4.2 has a
clear physical interpretation. From the dynamics of Vi

in (7) we see that the equilibrium voltage is given by

V s
i = V d

i − kQi
(Qs

i −Qd
i ),

where Qs
i is the reactive power injected in steady–state to

the i–th bus. Hence, (12) requires that the gains kQi
and

the setpoints V d
i and Qd

i of the voltage droop control (4)
are chosen such that V s

i > 0 , even if there is zero reactive
power injection to the i–th bus. Notice that condition (12)
is satisfied for all kQi

if Qd
i ≥ 0.

5. Stability for lossless microgrids

In this section we derive conditions for stability for loss-
less microgrids, i.e. Gik = 0, i ∼ n̄, k ∼ n̄. The assumption
of lossless line admittances may be justified as follows: in
MV and LV networks the line impedance is usually not
purely inductive, but has a non–negligible resistive part.
On the other hand, the inverter output impedance is typ-
ically inductive (due to the output inductance and/or the
possible presence of an output transformer). Under these
circumstances, the inductive parts dominate the resistive
parts.

We only consider such microgrids and absorb the in-
verter output admittance (together with the possible trans-
former admittance), Ỹik, into the line admittances, Yik,
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while neglecting all resistive effects. This assumption is
further justified for the present analysis, since the droop
control laws introduced in (4) are mostly used in networks
with dominantly inductive admittances [16, 15].

Therefore, we make the following assumption on the
network admittances.

Assumption 5.1. Gik=0 and Bik≤0, i ∼ n̄, k ∼ n̄.

By making use of Assumption 5.1, the power flow equa-
tions (1) for a lossless microgrid reduce to

Pi =
∑

k∼Ni

|Bik|ViVk sin(δik),

Qi = |Bii|V
2
i −

∑

k∼Ni

|Bik|ViVk cos(δik).

Remark 5.2. The need to introduce the, sometimes un-
realistic, assumption of lossless admittances has a long his-
tory in power systems studies. It appears in transient sta-
bility studies, where the presence of transfer conductances
hampers the derivation of energy–Lyapunov functions [41].
Although there has been progress in addressing this issue
[2, 9], to the best of our knowledge no analytic solution for
power systems with variable frequencies as well as vari-
able voltage amplitudes is available. See also [29] for an
illustration of the deleterious effect of line losses on field
excitation controller design.

Remark 5.3. In the case of the Kron–reduced network,
we are aware that, in general, the reduced network ad-
mittance matrix does not permit to neglect the conduc-
tances and our stability results might therefore be inac-
curate [41]. Alternatively, one could consider the ideal-
ized scenario in which part of the inverter–interfaced stor-
age devices are being charged, hence acting as loads and
all constant impedance loads are neglected. Another ap-
proach is to use other, possibly dynamic, load models in-
stead of constant impedances in the so–called structure
preserving power system models. However, in the pres-
ence of variable voltages the load models are usually, some-
how artificially, adapted to fit the theoretical framework
used for the construction of energy–Lyapunov functions,
see e.g., [5, 14].

5.1. Synchronized motion

To state the main result of this section we need the
following natural power–balance feasibility assumption.

Assumption 5.4. There exist constants δs ∈ Θ, ωs ∈ R

and V s ∈ R
n
>0, where

Θ :=
{

δ ∈ S
n
∣

∣ |δik| <
π

2
, i ∼ n̄, k ∼ Ni

}

,

such that

1nω
s − 1nω

d +KP [P (δs, V s)− P d] = 0n,

V s − V d +KQ[Q(δs, V s)−Qd] = 0n.
(16)

Under Assumption 5.4, the motion of the system (9),
(1) starting in (δs,1nω

s, V s) is given by

δ∗(t) = mod2π{δ
s + 1nω

st},

ω∗(t) = 1nω
s,

V ∗(t) = V s,

(17)

where the operator3 mod2π{·} is added to respect the
topology of the system. This desired motion is called syn-
chronized motion and ωs is the synchronization frequency.

Remark 5.5. As done in [38], where a similar analysis
is made for lossless networks with first–order inverter dy-
namics, it is possible to uniquely determine ωs. Towards
this end, recall the well–known fact that in a lossless power
system

∑

i∼n̄

P s
i = 0.

Thus, replacing the synchronized motion (17) in (7) and
adding up all the nodes yields

∑

i∼n̄

ω̇i

kPi

= 0 ⇒ ωs = ωd +

∑

i∼n̄

P d
i

∑

i∼n̄

1
kPi

.

It follows that i ∼ n̄

1

kPi

(ωs − ωd)− P d
i =

∑

k∼n̄,k 6=i

(

1

kPk

(ωd − ωs) + P d
k

)

⇔ ωs − ωd − kPi
P d
i =

∑

k∼n̄,k 6=i

kPi

kPk

(

ωd − ωs + kPk
P d
k

)

.

(18)

Remark 5.6. Clearly, the synchronized motion lives in
the set Θ× 1nω

s × R
n
>0.

Remark 5.7. There is not a unique desired synchronized
motion of the system (9), (1) associated to the flow given
in (16), but any motion with ω∗(t) and V ∗(t) as given in
(17) and δ∗(t) = mod2π{δ

s + 1nω
st + α1n}, α ∈ R is a

desired synchronized motion.

5.2. Error dynamics

The main result of this section is to give conditions on
the setpoints and gains of the droop controller (4) such
that the synchronized motion (17) is asymptotically sta-
ble, i.e. such that all trajectories of the system (9), (1)
converge to the synchronized motion (17) (up to a uni-
form shift of all angles). To establish this result we make
the important observation that the dependence with re-
spect to δ of the dynamics (9), (1) is via angle differences

3The operator mod2π{·} : R → [0, 2π), is defined as follows:
y = mod2π{x} yields y = x − k2π for some integer k with
sign(y) = sign(x) and y ∈ [0, 2π).
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δik. This immediately leads to the following two implica-
tions: (i) the flow given in (16) is invariant to a shift in
the δ coordinate of the form δ + 1nω

st. Consequently, we
can study the stability of the synchronized motion (17) in
the coordinates col(δ̃(t), ω̃(t), V (t)) ∈ R

n×R
n×R

n
>0 with

ω̃(t) := ω(t)− 1nω
s,

δ̃(t) := δ(0) +

∫ t

0

ω̃(τ)dτ,

where – for convenience – we have also shifted the coor-
dinate ω; (ii) convergence of the dynamics (9), (1) to the
desired synchronized motion (17) (up to a uniform shift of
all angles) is not determined by the value of the angles,
but only by their differences. Hence, to study convergence
to the synchronized motion (17) we can arbitrarily choose
one node, say node n, as a reference node and express δ̃i
for all i ∈ n̄\{n} relative to δ̃n via the state transformation

θ := Rδ̃, R :=
[

I(n−1) −1(n−1)

]

. (19)

This leads to a reduced system of order 3n − 1 with θ =
col(θ1, . . . , θn−1) replacing δ̃. For convenience, we define
the constant4

θn := 0,

as well as
θik := θi − θk,

which clearly verifies θik ≡ δik for k 6= n and θin ≡ θi.
Furthermore, we introduce the constants

c1i := ωd − ωs + kPi
P d
i , c2i := V d

i + kQi
Qd

i , i ∼ n̄. (20)

Written in the new coordinates col(θ, ω̃, V ) ∈ R
n−1×R

n×
R

n
>0 the dynamics (9), (1) take the form

θ̇i = ω̃i − ω̃n,

τPi

˙̃ωi = −ω̃i − kPi

∑

k∼Ni

ViVk|Bik| sin(θik) + c1i , (21)

τPi
V̇i =−Vi− kQi

(

|Bii|V
2
i −

∑

k∼Ni

ViVk|Bik| cos(θik)
)

+ c2i ,

for all i ∈ n̄ \ {n}. The dynamics of the n–th node, which
serves as a reference, are given by

τPn

˙̃ωn = −ω̃n + kPn

∑

k∼Nn

VnVk|Bnk| sin(θk) + c1n ,

τPn
V̇n =−Vn− kQn

(

|Bnn|V
2
n −

∑

k∼Nn

VnVk|Bnk| cos(θk)
)

+c2n.

(22)

The reduced system (21)–(22) lives in the set M̃ = R
n−1×

R
n × R

n
>0. Note that this system has an equilibrium at

xs := col(θs, 0n, V
s), (23)

the asymptotic stability of which implies asymptotic con-
vergence of all trajectories of the system (9), (1) to the
synchronized motion (17) up to a uniform shift of all an-
gles.

4The constant θn is not part of the state vector θ.

5.3. Main result

To streamline the presentation of the stability result we
introduce the matrices L ∈ R

(n−1)×(n−1) andW ∈ R
(n−1)×n

with entries

lii :=

n
∑

m=1

|Bim|V s
i V

s
m cos(θsim), lik :=−|Bik|V

s
i V

s
k cos(θsik),

wii :=
n
∑

m=1

|Bim|V s
m sin(θsim), wim := |Bim|V s

i sin(θsim), (24)

where i ∼ n̄ \ {n}, k ∼ n̄ \ {n} and m ∼ n̄, as well as

D :=diag

(

c2m
kQm

(V s
m)2

)

=diag

(

V d
m + kQm

Qd
m

kQm
(V s

m)2

)

∈ R
n×n.

(25)
We also recall the matrix T defined in (13) and, with slight
abuse of notation, denote by T (θs) its evaluation at θs ∈
R

n−1 with entries

tii = |Bii|, tik = −|Bik| cos(θ
s
ik), i 6= k, i ∼ n̄, k ∼ n̄.

From (2), and under Assumption 5.1, it follows that T (θs)
is positive semidefinite.

Lemma 5.8. Consider the system (9), (1) with Assump-
tions 5.1 and 5.4. Then L > 0.

Proof. Consider the vector P defined in (8) under Assump-
tion 5.1 and let L̃ be given by

L̃ :=
∂P

∂δ

∣

∣

(δs,V s)
∈ R

n×n, (26)

with entries

l̃ii :=
∑

k∼Ni

|Bik|V
s
i V

s
k cos(δsik), l̃ik := −|Bik|V

s
i V

s
k cos(δsik).

Clearly, from (24), l̃ii = lii and l̃ik = lik for k 6= n. Further-
more, recall that the microgrid is connected by assump-
tion. It is easily verified that under the given assumptions
L̃ is a symmetric Laplacian matrix of a connected graph
with the properties [13], see also e.g., [38, 36],

L̃γ1n = 0, v⊤L̃v > 0, ∀v ∈ R
n \ {v = γ1n}, γ ∈ R. (27)

Recall the matrix R defined in (19), let r :=
[

0⊤(n−1) 1
]

and note that

L̃

[

R
r

]−1

= L̃

[

I(n−1) 1(n−1)

0⊤(n−1) 1

]

=

[

L 0n−1

b⊤ 0

]

, (28)

where b = col(l̃in) ∈ R
(n−1), i ∼ n̄ \ {n}. It follows from

(27) and (28) that for any ṽ := col(ϑ, 0) ∈ R
n, ϑ ∈ R

(n−1)

ṽ⊤L̃

[

R
r

]−1

ṽ = ṽ⊤L̃ṽ = ϑ⊤Lϑ > 0. (29)

Moreover, L is symmetric. Hence, L > 0. ���
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It follows from (29) and the properties of spectra of
symmetric matrices, see e.g. [20], that, under the standing
assumptions of Lemma 5.8,

σ(L) ⊆ σ(L̃) \ {0} ⊂ R>0, (30)

with L̃ given in (26). Notice that the matrices L, respec-
tively L̃, correspond to the linearization of the active power
flows at nodes i ∼ n̄\{n} in the reduced system (21)–(22),
respectively to the linearization of the active power flows
at all nodes i ∼ n̄ in the original system (9), (1). Hence,
L, respectively L̃, represent locally the network coupling
strengths between the phase angles and the active power
flows. Consequently, (30) states that the local coupling
strengths between the phase angles and the active power
flows in the reduced system (21)–(22) are contained within
the local coupling strengths between the phase angles and
the active power flows in the original system (9), (1).

We are now ready to state our main result.

Proposition 5.9. Consider the system (9), (1) with As-
sumptions 5.1 and 5.4. Fix τPi

, kPi
and P d

i , i ∼ n̄. Select
V d
i , kQi

and Qd
i such that

D + T (θs)−W⊤L−1W > 0. (31)

Then the equilibrium xs = col(θs, 0n, V
s) of the system

(21)–(22) is locally asymptotically stable.

Proof. To establish the claim we follow the interconnec-
tion and damping assignment passivity–based control ap-
proach [30], and represent the system (21)–(22) in port–
Hamiltonian form to identify the energy–Lyapunov func-
tion. Defining x := col(θ, ω̃, V ), we can write the system
(21)–(22) as

ẋ = (J −R(x))∇H, (32)

where the Hamiltonian H : R(n−1) × R
n × R

n
>0 → R is

given by

H(x) =

n
∑

i=1

( τPi

2kPi

ω̃2
i +

1

kQi

(Vi − c2i ln(Vi)) +
1

2
|Bii|V

2
i

−
1

2

∑

k∼Ni

ViVk|Bik| cos(θik)
)

−
n−1
∑

i=1

c1i
kPi

θi (33)

and the interconnection and damping matrices are

J =

[

0(n−1)×(n−1) J
−J⊤ 02n×2n

]

, R = diag(0(n−1), Rω, RV )

(34)

with J =
[

JK −kPn

τPn

1(n−1) 0(n−1)×n

]

,

JK = diag

(

kPk

τPk

)

∈ R
(n−1)×(n−1), k ∼ n̄ \ {n},

Rω = col

(

kPi

τ2Pi

)

∈ R
n, RV = col

(

kQi
Vi

τPi

)

∈ R
n,

i ∼ n̄. Note that J = −J⊤ and R ≥ 0. Consequently,

Ḣ = −(∇H)⊤R∇H ≤ 0. (35)

Therefore, xs is a stable equilibrium of system (21)–(22)
if H(x) has a strict local minimum at the equilibrium xs.
To ensure the latter we show that ∇H(xs) = 0(3n−1) and
∂2H(x)
∂x2

∣

∣

xs
> 0. Now,

(

∂H

∂θ

∣

∣

∣

xs

)⊤

= col
(

ai −
c1i
kPi

)

∈R
(n−1),

(

∂H

∂ω̃

∣

∣

∣

xs

)⊤

= 0n,

(

∂H

∂V

∣

∣

∣

xs

)⊤

= col

(

−bl + |Bll|V
s
l +

1

kQl

(

1−
c2l
V s
l

))

∈R
n,

where i ∼ n̄ \ {n}, l ∼ n̄ and

ai :=
∑

k∼Ni

V s
i V

s
k |Bik| sin(θ

s
ik), bl :=

∑

k∼Nl

V s
k |Blk| cos(θ

s
lk).

Hence, ∇H(xs) = 0(3n−1).
The Hessian of H(x) evaluated at xs is given by

∂2H(x)

∂x2

∣

∣

xs
=





L 0(n−1)×n W
0n×(n−1) A 0n×n

W⊤ 0n×n D + T (θs)



 ,

with L, W, D and T (θs) as defined in (24), (25), respec-
tively (13), and A := diag(τPi

/kPi
) ∈ R

n×n. Since A is
positive definite, the Hessian is positive definite if and only
if the submatrix

[

L W
W⊤ D + T (θs)

]

(36)

is positive definite. Recall that Lemma 5.8 implies that,
under the standing assumptions, L is positive definite.
Hence, the matrix (36) is positive definite if and only if

D + T (θs)−W⊤L−1W > 0,

which is condition (31).
Recalling (35) and the fact that R(x) ≥ 0, we see that

to prove asymptotic stability it suffices to show that –
along the trajectories of the system (32) – the implication

R(x(t))∇H(x(t)) ≡ 0(3n−1) ⇒ lim
t→∞

x(t) = xs (37)

holds. From (37) it follows that

∂H

∂ω̃
= 0n,

∂H

∂V
= 0n,

where the first condition implies ω̃ = 0n. Hence, θ is con-
stant. The second condition implies V constant. There-
fore, the invariant set where Ḣ(x(t)) ≡ 0 is an equilibrium.
To prove that this is the desired equilibrium xs we recall
that xs is an isolated minimum of H(x). Consequently,
there is a neighborhood of xs where no other equilibrium
exists, completing the proof. ���
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Condition (31) has the following physical interpreta-
tion: the droop control laws (4) establish a feedback inter-
connection linking the phase angles δ, respectively θ, with
the active power flows P, as well as the voltages V with
the reactive power flows Q.

The matrices L and T (θs) represent then the network
coupling strengths between the phase angles and the ac-
tive power flows, respectively, the voltages and the reactive
power flows. In the same way, W can be interpreted as
a local cross–coupling strength originating from the fact
that P 6= P (δ) and Q 6= Q(V ), but P = P (δ, V ) and
Q = Q(δ, V ).

Condition (31) states that to ensure local stability of
the equilibrium xs defined in (23) the couplings repre-
sented by L and T (θs) have to dominate over the cross–
couplings of the power flows contained in W. If that is
not the case the voltage variations have to be reduced by
reducing the magnitudes of the gains kQi

, i ∈ n̄.
Another possibility is to adapt Qd

i and V d
i . This does,

however, not seem as appropriate in practice since these
two parameters are typically setpoints provided by a high–
level control, which depend on the nominal voltage of the
network and the expected loading conditions, see Remark 3.1.

Remark 5.10. To see that (32) is indeed an equivalent
representation of (21)–(22), note that the part of the dy-
namics of ω̃n in (22) resulting from J∇H is

kPn

τPn

1
⊤
(n−1)

(

∂H

∂θ

)⊤

=

=
kPn

τPn

n−1
∑

i=1

(

∑

k∼Ni

ViVk|Bik| sin(θik)−
c1i
kPi

)

=
kPn

τPn

(

∑

k∼Nn

VnVk|Bnk| sin(θk)−
n−1
∑

i=1

c1i
kPi

)

,

since
∑n−1

i=1

∑

k∼Ni,k 6=n ViVk|Bik| sin(θik) = 0. Furthermore,
it follows from (18) that

c1n = ωd − ωs + kPn
P d
n = −

n−1
∑

i=1

kPn

kPi

c1i .

Finally, the remaining term in ω̃n is contributed by the
dissipation part R∇H.

Remark 5.11. The analysis reveals that the stability
properties of the lossless microgrid (9), (1) are indepen-
dent of the frequency droop gains kPi

, the active power
setpoints P d

i and the low pass filter time constants τPi
,

and only condition (31) is imposed on V d
i , kQi

and Qd
i . In

that regard, the result is identical to those derived for loss-
less first–order inverter models in [38] and lossless second–
order inverter models in [36], both assuming constant volt-
age amplitudes.

5.4. A relaxed stability condition

Condition (31) is imposed to ensure H(x) given in (33)
is a positive definite function and, therefore, qualifies as a

Lyapunov function candidate. This condition can be re-
moved if, instead of Lyapunov theory, LaSalle’s invariance
principle (which does not require positive definiteness) is
invoked [22]. Indeed, from the proof of Proposition 5.9
we have that the function H(x) is still non–increasing and
via LaSalle we can conclude that all bounded trajectories
converge to an equilibrium.

The qualifier “bounded” is, of course, critical, and its
establishment is stymied by the presence of the linear term
in θ contained in H(x) given in (33). The inclusion of this
term destroys the natural topology of the system, e.g.,
with θ ∈ S

n−1, and we have to look at the system with
θ evolving in R

n−1 – which is not a bounded set. See
Remark 7 of [8] for further discussion on this point that,
unfortunately, is often overlooked in the literature.

Fortunately, due to the structure of the system, there
is a particular choice of the controller gains that allows
us to remove this disturbing term, still preserving a port–
Hamiltonian structure. As indicated in Remark 6.5, it
turns out that this choice of gains is of interest because it
guarantees the desired steady–state active power sharing.

The discussion above is formalized in the following corol-
lary of Proposition 5.9.

Corollary 5.12. Consider the system (9), (1) with As-
sumption 5.1. Fix τPi

, kQi
and Qd

i , i ∼ n̄. Select

kPi
P d
i = ξ, (38)

i ∼ n̄ and some real constant ξ. Then all trajectories of
the system (21)–(22) converge to an equilibrium.

Proof. Under condition (38), it follows from Remark 5.5
that

ωs = ωd +

∑

i∼n̄ P
d
i

∑

i∼n̄
1

kPi

= ωd +
ξ
∑

i∼n̄
1

kPi
∑

i∼n̄
1

kPi

= ωd + ξ

and hence from (20) that c1i = 0 for all i ∈ n̄. Conse-
quently, it is possible to define the state z := col(θ, ω̃, V )
in the set Γ : Sn−1 × R

n × R
n
>0 and represent the system

(21)–(22) in port–Hamiltonian form as

ż = (J −R(z))∇H,

with Hamiltonian H : S(n−1) × R
n × R

n
>0 → R given by

H(z) =

n
∑

i=1

( τPi

2kPi

ω̃2
i +

1

kQi

(Vi − c2i ln(Vi)) +
1

2
|Bii|V

2
i

−
1

2

∑

k∼Ni

ViVk|Bik| cos(θik)
)

(39)

and matrices J and R as defined in (34). Similarly to (35)
we have that

Ḣ = −(∇H)⊤R∇H ≤ 0

and in analogy to (37) it holds that the invariant set where
Ḣ(z(t)) ≡ 0 is an equilibrium set. Moreover, it follows
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from Proposition 4.2 that the state z = col(θ, ω̃, V ) ∈ Γ is
globally bounded. Hence, by LaSalle’s invariance principle
[22] all trajectories of the system (21)–(22) converge to an
equilibrium. ���

Note, however, that the claim critically relies on the
fragile assumption that c1i = 0 for all i ∈ n̄. In the pres-
ence of small perturbations or model uncertainties, such
as, for example, the presence of small conductances, the
synchronization frequency is given by ωs = ωd + ξ + ǫ,
where ǫ is some small real nonzero constant. In that
case c1i 6= 0 under condition (38) and the proof of Corol-
lary 5.12 is not applicable. Moreover, as usual in LaSalle’s–
based analysis, the absence of a bona fide Lyapunov func-
tion hampers the possibility of invoking a continuity argu-
ment to accommodate small disturbances.

6. Active power sharing

In [38] a criterion on the frequency droop gains and
setpoints has been derived such that the generation units
share the active power according to their power ratings.
This is a desired control goal in many applications. How-
ever, it has been argued in [7] that system operators may
not always seek to achieve a power sharing in proportion
to the power ratings of the units. Instead they may also
wish to take into account other technical, economic or en-
vironmental criteria, such as fuel consumption, generation
costs or emission costs, see also [19].

In this regard, the ideas derived in [38] are easily ap-
plied to proportional active power sharing with respect
to a user–defined criterion – also under the presence of
conductances in the network. It turns out that the same
criterion ensures that storage devices in charging mode,
i.e. P d

i < 0 for some i ∈ n̄, are charged proportionally. To
formulate the selection criterion for the controller gains
and setpoints, we employ the following definition.

Definition 6.1. Let χi ∈ R>0 denote weighting factors
and P s

i the steady–state active power flow, i ∼ n̄. Then
two inverters at nodes i and k are said to share their active
powers proportionally if

P s
i

χi

=
P s
k

χk

. (40)

A possible choice for χi would be, for example, χi = SN
i ,

i ∼ n̄. However, the weighting factors χi, i ∼ n̄, do not
have to be equal for all inverters, i.e. active power could
be shared according to economic or environmental criteria
by some inverters, while it could be shared according to
the power ratings by other inverters.

Lemma 6.2. Consider the system (9), (1). Assume that
it possesses a synchronized motion with synchronization
frequency ωs ∈ R. Then all inverters the power outputs
of which satisfy sign(P s

i ) = sign(P s
k ), achieve proportional

active power sharing if the gains kPi
and kPk

and the active
power setpoints P d

i and P d
k are chosen such that

kPi
χi = kPk

χk and kPi
P d
i = kPk

P d
k , (41)

i ∼ n̄ and k ∼ n̄.

Proof. The claim follows in a straightforward manner from
[38], where it has been shown for first–order inverter mod-
els and χi = SN

i , P d
i > 0, P s

i > 0, i ∼ n̄. Under conditions
(41) we have, along the synchronized motion,

P s
i

χi

=
−ωs + ωd + kPi

P d
i

kPi
χi

=
−ωs + ωd + kPk

P d
k

kPk
χk

=
P s
k

χk

,

where i ∈ n̄ and k ∈ n̄ with sign(P s
i ) = sign(P s

k ). ���

Remark 6.3. The conditions in Lemma 6.2 also imply
that storage devices in charging mode are charged propor-
tionally.

Remark 6.4. Note that proportional active power sharing
is achieved by Lemma 6.2 independently of the admittance
values of the network. However, in a highly ohmic network,
the droop control laws (4) may induce high fluctuating
currents due to the stronger coupling of phase angles and
reactive power, see (1). Then, additional methods such
as the virtual output impedance [17] or alternative droop
control laws [43] could be employed instead of (4).

Remark 6.5. Condition (38) in Corollary 5.12 is satisfied
if all gains kPi

and all setpoints P d
i , i ∼ n̄, are selected

according to Lemma 6.2.

Remark 6.6. As described in Section 3, the voltage droop
control law (4) follows a similar heuristic approach as the
frequency control droop law, aiming at obtaining a desired
reactive power distribution in a synchronized state. How-
ever, the conditions for proportional active power sharing
in Lemma 6.2 are derived using the fact that the frequency
of a synchronized motion is equal all over the network, i.e.
ωs
i = ωs

k = . . . = ωs, and serves thus as a common com-
munication signal. This is not the case for the voltage,
since, in general, V s

i 6= V s
k for i ∈ n̄, k ∈ n̄. In the spe-

cial case of equal voltage amplitudes, i.e. V s
i = V s

k , i ∈ n̄,
k ∈ n̄, proportional reactive power sharing can be achieved
by selecting V d

i = V d
k as well as voltage droop gains kQi

and kQk
and setpoints Qd

i and Qd
k following Lemma 6.2.

The fact that the voltage droop control (4) does, in gen-
eral, not achieve proportional reactive power sharing has
been widely recognized in the literature and several alter-
native or modified decentralized droop control structures
have been proposed, e.g., in [27, 42], with the purpose of
improving the reactive power sharing. Nevertheless, pro-
portional reactive power sharing is still a challenging open
question.
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7. Simulation example

The theoretical analysis is illustrated via simulation ex-
amples based on the three–phase islanded Subnetwork 1 of
the CIGRE benchmark medium voltage distribution net-
work [33]. The network is a meshed network and consists
of 11 main buses, see Fig. 1.

The following two modifications are made compared
to the original system given in [33]: first, at bus 9b the
combined heat and power (CHP) diesel generator is re-
placed by an inverter–interfaced CHP fuel cell (FC). Sec-
ond, since the original network given in [33] stems from a
distribution network connected to a transmission system,
the power ratings of the generation units are scaled by a
factor 4 compared to [33], such that the controllable units
(CHPs, batteries, FC) can satisfy the load demand in au-
tonomous operation mode at least during some period of
time.

The network in Fig. 1 possesses a total of six control-
lable generation sources of which two are batteries at buses
5b (i = 1) and 10b (i = 5), two are FCs in households at
buses 5c (i = 2) and 10c (i = 6) and two are FC CHPs
at buses 9b (i = 3) and 9c (i = 4). We assume that all
controllable generation units are equipped with frequency
and voltage droop control as given in (4). We associate
to each inverter its power rating SN

i , i ∈ n̄. Since the
apparent power ratings of the generation sources are not
specified in [33], we set SN

i to the maximum active power
given for each source in Table 2 of [33]. The transformer
impedances of the inverter–interfaced units are modeled
based on the IEEE standard 399–1997 [21]. For simplicity,
we assume that the transformer power rating is equiva-
lent to the power rating of the corresponding inverter SN

i ,
i ∈ n̄.

Non–controllable PV units are connected at buses 3, 4,
6, 8 and 11. The loads at nodes 3–11 represent industrial
and household loads as specified in Table 1 of [33], besides
the load at node 1, which is neglected. The line parameters
and lengths are as given in Table 3 of [33]. The total length
of the lines is approximately 15 km.

All simulations are carried out in Plecs [31]. Compared
to the model given by (1) and (9) used for the analysis,
the inductances are represented by first–order ODEs in
the model used for the simulations rather than constants
as in (1). Hence, the simulations also serve to evaluate
the validity of the model (9), (1), as well as the robust-
ness of the stability condition (31) with respect to model
uncertainties.

We consider the following two scenarios.
1) Lossless scenario. All loads and uncontrollable

generation sources (PV, wind turbine) of the test system
given in Fig. 1 are neglected. As outlined in Section 5, we
merge the transformer and filter impedances of the invert-
ers with the line impedances. The largest R/X ratio of an
admittance in the network is then 0.30. For HV transmis-
sion lines it is typically 0.31 [10]. Hence, the assumption
of dominantly inductive admittances is satisfied. Conse-

quently, the droop control laws given in (4) are adequate
and our stability analysis of Section 5 applies.

The batteries at nodes 5b and 10b are operated in
charging mode, hence functioning as loads. We design the
frequency droop gains and setpoints of the inverters ac-
cording to Lemma 6.2 with χi = SN

i , P d
i = αiS

N
i pu and

kPi
= 0.2/SN

i Hz/pu for all i ∈ n̄, where pu denotes per
unit values with respect to the common system base power
Sbase given in Table 1. Hence, the inverters should supply
the requested power, respectively be charged, in propor-
tion to their power ratings. We assume the power set-
points have been provided by some sort of high–level con-
trol or energy management system, see Remark 3.1, with
αi = 0.3 for inverters in generation mode (i = 2, 3, 4, 6)
and αi = −0.4 for inverters in charging mode, i.e. i = 1, 5.

The reactive power setpoints are set to Qd
i = βiS

N
i pu

with βi = 0.025 for all i ∈ n̄ to account for the inductive
behavior of the lines. The voltage droop gains are cho-
sen in the same relation as the frequency droop gains, i.e.
kQi

= 0.1/SN
i pu/pu and V d

i = 1 pu for all i ∈ n̄. The low
pass filter time constants are set to τPi

= 0.5 s, i ∼ n̄. The
main system data and control gains are given in Table 1.

The simulation results are shown in Fig. 2. After a
transient the frequencies synchronize and the voltage am-
plitudes become constant. The latter satisfy the usual re-
quirement of 0.9 < V s

i < 1.1 for V s
i in pu and i ∼ n̄. The

initial conditions have been chosen arbitrarily. Condition
(31) is satisfied and hence the synchronized motion is lo-
cally asymptotically stable.

Furthermore, the batteries are charged in proportion
to their power ratings with the active power also being
supplied proportionally, as stated in Lemma 6.2. Hence,
the simulation confirms that the frequency droop control,
as given in (4), is suited to achieve the desired objective of
active power sharing. But, as discussed in Section 6, the
reactive power is not shared proportionally, limiting the
overall performance of the voltage droop control law (4).

Our experience in numerous simulations with large va-
riety of control gains, setpoints, low pass filter time con-
stants and initial conditions is that whenever the solutions
of the system converge to a synchronized motion as defined
in Assumption 5.4, the latter is locally asymptotically sta-
ble by condition (31). However, there exist gain settings
such that the solutions of the system exhibit limit–cycle
behavior. As one would expect, this is the case for very
large control gains and low pass filter time constants.

2) Scenario with constant impedance loads. In
this simulation scenario the robustness of the stability con-
dition (31) with respect to loads represented by constant
impedances is evaluated.

It is therefore assumed that all PV units work at 50%
of their nominal power with cos(φ) := P/S = 0.98 and are
treated as negative loads, while the wind turbine is not
generating any power.

The corresponding admittance representing a load at
a node is computed at nominal frequency and voltage and
by adding the load demand and the non–controllable gen-
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Figure 1: 20 kV MV benchmark model adapted from [33] with 11 main buses and inverter–interfaced units of type: PV–Photovoltaic, FC–fuel
cell, Bat–battery, FC CHP–combined heat and power fuel cell. PCC denotes the point of common coupling to the main grid. The sign ↓
denotes loads. The numbering of the main buses is according to [33].

eration at each node. Then, in the corresponding Kron–
reduced network all nodes represent controllable DGs.

At first, the admittance matrix of the equivalent Kron–
reduced network is computed. As in the lossless scenario,
the largest R/X ratio is 0.30. Thus, the assumption of
dominantly inductive admittances is also satisfied in the
presence of impedances representing loads. The control
gains are chosen as specified in the lossless scenario with
αi = 0.6 and βi = 0.25, i = 1, . . . , 6. Hence, all inverters
operate in generation mode. The voltage setpoints and
low pass filter time constants are as in the lossless case.
We again assume the power setpoints have been provided
by some sort of high–level control or energy management
system. The main data are given in Table 2.

The simulation results are displayed in Fig. 3. All tra-
jectories converge to a synchronized motion satisfying con-
dition (31), indicating that the condition is robust – to
a certain extent – to the presence of transfer and load
conductances. The inverters share the active power de-
mand of the loads as stated in Lemma 6.2. Compared to
the lossless scenario, all inverters provide positive reactive
power. However, as in the lossless scenario, the reactive
power sharing is not proportional among all units since in
steady–state the voltage amplitudes are not equal at all
buses.

Furthermore, numerous simulations with different pa-
rameters indicate that the stability condition (31) is satis-
fied in all cases in which the solutions of the system con-
verge to a synchronized motion. As in the lossless case,
there are gain settings such that the solutions of the sys-
tem do not converge to a desired synchronized motion as
defined in Assumption 5.4, but show a limit cycle behav-
ior. This is typically the case for very large control gains
and/or large low pass filter time constants.

Table 1: Test system parameters for the lossless scenario, i =
1, . . . , 6.

Base values Sbase = 4.75 MVA, Vbase = 20 kV

SN
i [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] pu

P d
i [−0.202, 0.008, 0.078, 0.054,−0.067, 0.004] pu

kPi
[0.396, 7.143, 0.766, 1.117, 1.191, 16.667] Hz

pu

Qd
i [0.013, 0.001, 0.007, 0.005, 0.004, 0.000] pu

kQi
[0.198, 3.571, 0.383, 0.559, 0.595, 8.333] pu

pu

Table 2: Test system parameters for the lossy scenario with loads
represented by constant impedances, i = 1, . . . , 6.

Base values Sbase = 4.75 MVA, Vbase = 20 kV

Max. sys. load 0.91+j0.30 pu

Total PVgen. 0.15 pu

SN
i [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] pu

P d
i [0.303, 0.017, 0.157, 0.107, 0.101, 0.007] pu

kPi
[0.396, 7.143, 0.766, 1.117, 1.191, 16.667] Hz

pu

Qd
i [0.126, 0.007, 0.065, 0.045, 0.042, 0.003] pu

kQi
[0.198, 3.571, 0.383, 0.559, 0.595, 8.333] pu

pu

8. Conclusions and future work

We have considered the problems of frequency stabil-
ity, voltage stability and power sharing in droop–controlled
inverter–based microgrids. First, we have shown that the
trajectories of the system are globally bounded for all prac-
tical choices of controller gains and setpoints. We then
have derived a sufficient condition for local stability for
a lossless microgrid using a port–Hamiltonian representa-
tion of the latter. The condition states that local stability
is independent of the choice of the controller gains and
setpoints of the frequency droop controller as well as of
the low pass filter time constants, but does depend on the
choice of the controller gains and setpoints of the voltage
droop controller.

The asymptotic stability property is established con-
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Figure 2: Lossless scenario. Trajectories of the power outputs Pi

and Qi in pu, the power outputs relative to source rating Pi/S
N
i and

Qi/S
N
i , the internal relative frequencies ∆fi = (ωi − ωd)/(2π) in Hz

and the voltage amplitudes Vi in pu of the controllable sources in the
microgrid given in Fig. 1, i = 1, . . . , 6. The active power is shared
by the generating sources in proportion to their ratings in steady–
state, i.e P s

i /S
N
i = P s

k
/SN

k
for i, k = 2, 3, 4, 6, while the batteries

are charged in proportion to their ratings, i.e. P s
1 /S

N
1 = P s

5 /S
N
5 .

The lines correspond to the following sources: battery 5b, i = 1 ’–’,
FC 5c, i = 2 ’- -’, FC CHP 9b, i = 3 ’+-’, FC CHP 9c, i = 4 ’* -’,
battery 10b, i = 5 ’△ -’ and FC 10c, i = 6 ’o-’. The initial conditions
have been chosen arbitrarily. All trajectories converge to a locally
aymptotically stable synchronized motion satisfying condition (31).
The voltage amplitudes remain within 1± 0.1 pu in steady–state.

structing a bona fide Lyapunov function – alas, a non–
strict one. However, converse Lyapunov theorems ensure
the existence of a strict Lyapunov function, from which
some robustness properties can be inferred. A case of par-
ticular interest, which is currently under investigation, is
robustness in the presence of conductances. Two addi-
tional contributions of the paper are a selection of con-
troller gains that relaxes some condition of the local sta-
bility result and, at the same time, ensures that the desired
active power distribution is achieved in steady–state.

The theoretical analysis has been illustrated via simu-
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Figure 3: Scenario with constant impedance loads. Trajectories of
the power outputs Pi and Qi in pu, the power outputs relative to
source rating Pi/S

N
i and Qi/S

N
i , the internal relative frequencies

∆fi = (ωi − ωd)/(2π) in Hz and the voltage amplitudes Vi in pu of
the controllable sources in the microgrid given in Fig. 1, i = 1, . . . , 6.
The active power is shared by the sources in proportion to their
ratings in steady–state, i.e P s

i /S
N
i = P s

k
/SN

k
for all i, k = 1, . . . , 6.

The lines correspond to the following sources: battery 5b, i = 1 ’–’,
FC 5c, i = 2 ’- -’, FC CHP 9b, i = 3 ’+-’, FC CHP 9c, i = 4
’* -’, battery 10b, i = 5 ’△ -’ and FC 10c, i = 6 ’o-’. The initial
conditions have been chosen arbitrarily. All trajectories converge to
a synchronized motion satisfying condition (31) indicating that the
condition is robust – to a certain extent – to the presence of transfer
and load conductances.

lation examples based on the the CIGRE benchmark MV
distribution network. The derived stability condition is
satisfied and a desired steady–state active power distribu-
tion is achieved in simulation for a wide selection of differ-
ent control gains, setpoints, low pass filter time constants
and initial conditions.

The simulations also show that, despite the observation
that meshed microgrids with droop control possess a lo-
cally stable synchronized motion for a wide range of control
gains, the conventional voltage droop control does, in gen-
eral, not guarantee proportional reactive power sharing.

13



Therefore, future work concerns – possibly distributed –
control solutions for accurate reactive power sharing, while
guaranteeing network stability. Another interesting, and
challenging, open problem is power sharing and stability
in dominantly resistive microgrids.
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