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Abstract: The cyber-physical system relies on a network of physical devices. The IEC 61499 

standard entails a systematic solution to distributed system development. The basic function block 

(BFB) is the essential construct of the IEC 61499 architecture. However, the execution semantics 

of the BFB is not well defined by the standard, which leads to a part of the semantic ambiguity. In 

this paper, we contribute to improve BFB type declaration by proposing a compact interface model 

and a strict execution control chart (ECC) model. The improved BFB exhibits less semantic 

ambiguity, is easier to be created, and is more convenient to be applied in a function block network 

than the standard BFB. 
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1. Introduction 

With the development of microprocessors and network technologies, the embedded devices are 

enabled with the capabilities of computing, control, and communication. Nowadays, a collection of 

embedded devices can be interconnected to serve a system-wide purpose. This lays a solid 

foundation for cyber-physical system (CPS) that addresses the deep integration of virtual 

computation with physical processes [1]. Although it is believed to see the extensive application of 

CPS in many domains from industry to agriculture or even city governance and everyday life [2], 

developing and managing such applications that run over a network of distributed devices is still a 

challenge. The IEC 61499 standard [3] has been approved to provide a language independent 

architecture for developing and maintaining the distributed applications, so it is a promising way to 

support CPS programming [4]. 

The standard specifies three types of function blocks (FBs), i.e. the Basic Function Block (BFB), 

the composite function block (CFB), and the service interface function block (SIFB). An 

Application, i.e. the solution to a measurement or control problem, is programmed in the form of 

the function block network (FBN) consisting of interconnected FBs. Object-oriented encapsulation 

of data and functions and the event-triggered mechanism enable the FBs to be reusable, portable, 

distributable, etc. Thus the FB architecture is considered to be an enabler of distributed and 

intelligent automation [5]. 

Semantic ambiguity exists in the FB architecture due to the incomplete definition of the standard 

[6]. Two aspects of effort were carried out to solve the problem. On one hand, some rules were 

proposed to set up a determinate execution modal. Vyatkin, et al. [7] proposed six postulates to 

construct a sequential axiomatic model for BFB execution. Those postulates mainly focused on 

event related issues. In their further work [8], a set of graph transformation rules were proposed to 



rebuild the execution control chart (ECC) of the BFB. The main purpose was to get rid of potential 

deadlock states by removing arcs without event input variables. As to the FBN, Sünder, et al. [9] 

studied the execution model of CFB and Subapplication (a type of FBN that can be distributed). 

They stated that a CFB could be viewed as an entity or a transparent container for events, and the 

Subappication could be viewed as a transparent container for events and data or software tool 

construct. Thramboulidis, et al. [10] examined alternative means about scheduling. They especially 

focused on how to map the FBN to threads of operation system. On the other hand, formal methods 

were utilized or altered to accurately describe the execution process of the BFB or the FBN. Tu, et 

al. [11] proposed formal syntax and semantics of the BFB. Čengić, et al. proposed a formal 

framework for modeling Application [12] and execution semantics of the Application [13]. Many 

other formal methods such as net condition/event systems (NCES) and signal interpreted petri net 

(SIPN) were compared in [14]. 

The BFB is the essential construct of the standard. The CFB and the Application are simply 

represented as FBNs, whereas the BFB is declared by the interface, the ECC, the algorithms and the 

internal variables. Some semantic ambiguity relates to the interface and the ECC of the BFB, but 

few researches are focused on the improvement of definitions of those two elements. In this study, 

we propose a compact interface model and a strict ECC model to improve the type declaration of 

the BFB. The improved BFB contributes to reduce semantic ambiguity as well as to simplify the 

creation of a BFB and the usage of BFBs in a FBN. 

The paper is organized as follows. The standard BFB type declaration is briefly introduced in 

Section 2. The compact interface model and the strict ECC model are presented in Section 3 and 4 

respectively. A formal model of the improved BFB type declaration is addressed in Section 5. A 

BFB case study is presented in Section 6 and the paper is concluded in the Section 7. 

 

2. Brief introduction to standard BFB type declaration 

By the IEC 61499 standard, a BFB type is a named class that can be instantiated. The BFB type 

is declared by an interface, an ECC, zero or more algorithms, and zero or more internal variables, 

as shown in Fig. 1. The interface of a BFB consists of event inputs, event outputs, data inputs, and 

data outputs. Each event input has zero or more associated data inputs; each event output has zero 

or more associated data outputs. As shown Fig. 1 (a), the interface of the BFB named ADDITION 

consists of: 

1) an event input named ADD of type EVENT; 

2) an event output named DONE of type EVENT; 

3) two data inputs named NUM1 and NUM2 of type INT; and 

4) a data output named SUM of type INT. 

An ECC consists of states and transitions. Each state has zero or more associated actions. Each 

of the actions associates the state with an algorithm or an event output, or both. Each transition has 

an associated transition condition which is an event input variable, a BOOL typed data variable, a 

guard condition, etc. As shown Fig. 1 (b), the ECC of the BFB named ADDITION consists of: 

1) an initial state named START; 

2) a normal state named STATE with an action associating the state with an algorithm ADDING 

and the event output DONE; and 

3) two transitions: one is from START to STATE with the condition ADD, the other is from STATE 

to START with the condition TRUE.  



The ECC controls the execution of a BFB. It plays an important role in combining the interface 

with the algorithms and the internal variables. The input events trigger the execution of the 

algorithms; the data input/output variables and internal variables are dealt by the algorithms; and 

the output events are issued on the completion of the algorithms.  

The algorithms implement operations of a BFB. They can be programmed in various 

programming languages. As shown in Fig. 1 (c), the algorithm ADDING of the BFB named 

ADDITION is programmed in Structured Text. It adds two numbers and then produces a result. 

Multiple instances of a BFB type can be generated. Each instance has a different name that is 

used for recognition and reference. The instances of the same BFB type have the same data 

structures and functions, but the instances are independent objects that have separate memory to 

store data and states. The instances are used in a FBN in a transparent way. Only the interface is 

visible whereas the ECC, the algorithms, and the internal variables are hidden.  

 

Fig. 1.  The example of a standard BFB type declaration. (a) Interface, (b) ECC, and (c) 

algorithm. 

 

3. Compact interface model 

When a BFB receives an input event, it is prerequisite that the associated data input variables are 

already prepared for being sampled. In other words, before an output event is issued, the associated 

data output variables must be got ready. The aforementioned facts imply that although event 

interface (including event inputs and event outputs) and data interface (including data inputs and 

data outputs) are implemented separately, they are tightly coupled. In this section, we propose a 

compact interface model to get rid of some semantic ambiguity related to such as when to sample 

data input variables, to decrease the number of connections of a FBN, and to facilitate the operation 

of BFBs in a FBN. 

 

3.1. Structured event type declaration 

It states in the standard that the event type is implicitly declared by its use and the event outputs 

can only be connected to the event inputs of compatible types. The event type adjacent to an event 



input/output indicates which type of event that the event input/output can receive or emit. In the 

FBDK [15] implementation, the event type is arbitrarily defined as an identifier. We further develop 

the event type mechanism to implement a compact BFB interface. In our FBStudio implementation, 

the event type is declared as the structured type so that event is a composite object where the event 

and its associated data variables are encapsulated. Fig. 2 (a) shows an functional equivalent 

implementation of BFB ADDITION in the FBStudio. The event type ET_INT2 is declared to 

encapsulate an event with two data of type INT; the event type ET_INT is declared to encapsulate 

an event with one datum of type INT. Thereafter, the ET_INT2 and ET_INT are used to declare the 

event input ADD and the event output DONE respectively. In this way, the data interface is 

integrated into the event interface so that the explicit data interface is delimited. 

 

Fig. 2.  Illustration of event interface and event variables due to the structured event type 

declaration. (a) Interface and (b) event variables. 

 

An event variable is implicitly declared for each event input/output. The type and name of an 

event variable are the same as that of the corresponding event input/output (Subclause 5.1 [3]), as 

shown in Fig. 2 (b) for the BFB ADDITION. When an event is received by a BFB through one of 

its event inputs, the event will be stored in the corresponding event input variable. Therefore, the 

associated data input variables are stored simultaneously into the event input variable as data 

members so that explicit sample is not needed. Before an output event is issued, it is prepared in the 

event output variable where data members are assigned by the corresponding algorithm. Therefore, 

when the output event is issued, its associated data output variables are sent out simultaneously as 

data members. To sum up, the compact interface model enables the event and its associated data 

variables to be received, issued, transferred, and buffered as a unique entity. Within the BFB the 

event variable is used instead of the event so that data members can be extracted to be used in the 

guard conditions and the algorithms. 

As illustrated in Fig. 3 (a), the BOOL typed member variable State indicates the liveness of an 

event. When an event input variable is used as a transition condition, the TRUE of State will clear 

the transition and the FALSE of State will not. The STRING typed member variables Instance and 

Event are names of the BFB instance and the event output of the BFB. Those two variables identify 

an event and are used to facilitate event dispatch. Zero or more data members locate after the State 

member. Other members for special application purposes may be appended after the data members. 

When declaring an event type, its members can be initialized to appropriate values as shown in Fig. 

3 (b) and Fig. 3 (c) in Structured Text. 



 

Fig. 3.  Event type declaration. (a) Structure of event type, (b) type declaration of ET_INT and (c) 

type declaration of ET_INT2. 

 

3.2. Graphic notion 

Most implementations support the movement of BFBs in a FBN. We additionally support the 

rotation of BFBs. With the help of the compact interface and the rotation facility, it is easy to get a 

clearer overview of the FBN, as illustrated in Fig. 4.  

To facilitate event connections between rotated BFBs, we introduce arrow notation to event 

interface. As shown in the Fig. 2 (a), for the event input the arrow points into the BFB and for the 

event output the arrow points out of the BFB. Therefore, no matter what angle a BFB stands at, the 

event inputs and the event outputs can be easily recognized and discriminated. The event 

connections are then represented as directed links. That special improvement is inspired by the 

4DIAC implementation [16] but the 4DIAC does not support rotation and arrows only exist in the 

FBN other than the BFB interface. 

 

Fig. 4.  Illustration of rotation of BFBs. 

 



3.3. Event conversion and buffer 

Type conversion BFBs are needed to connect event outputs to event inputs of incompatible event 

types, e.g. connecting an event output to an event input with different data members. Fig. 5 shows 

an Application which adds four numbers and produces a result. The main idea is to use three 

instances of ADDITION. The Ins1 adds two input numbers; the Ins2 adds the other two input 

numbers; and the Ins3 adds the results of Ins1 and Ins2. Thus the result of Ins3 is the sum of the 

four input numbers. However the two event outputs of Ins1 and Ins2 cannot be directly connected 

to the only event input of Ins3. A conversion BFB is introduced to solve the problem. The BFB 

Conversion of type INTS_INT2 has two event inputs of type ET_INT and one event output of type 

ET_INT2. The earlier issued event DONE of Ins1 or Ins2 is buffered by the Conversion. The 

Conversion keeps waiting until another event DONE of Ins2 or Ins1 is issued. It then converts the 

two ET_INT typed input events to an ET_INT2 typed output event. Thereafter, an event EO will be 

issued by the Conversion to cause the Ins3 to be executed.  

 
Fig. 5.  Applying the type conversion BFB in a FBN. 

 

3. Strict ECC model 

The standard leaves much freedom to implement an ECC as shown in Table I of FBDK 

implementation. In our FBStudio implementation some rules are added to implement a more 

practical and strict ECC and to decrease semantic ambiguity. The main idea is to simplify the 

transitions and conditions and move the guard condition from the transition to the action. 

 

Table 1 

FBStudio implementation of ECC compared with the FBDK implementation. 

Item # FBStudio implementation FBDK implementation 

State 

1 The ECC must have exactly one initial state 

and at least one normal state. 

The ECC may have no states, only one 

initial state, or one initial state along with 

one or more normal states. 

Transition 

2 From a state to the same state, at most one 

transition can exist. 

From a state to the same state, more 

transitions can exist  

3 Between any two different states, at most two 

transitions can exist and must be in the 

opposite direction. 

Between any two different states, one or 

more transitions can exist. 

4 Every normal state must act as the source state 

and the destination state respectively at least 

once in transitions. 

A state may or may not act as the source 

state or the destination state. 

Transition 5 The transition condition must be either an A transition condition may be an event 



Those rules are classified into four groups corresponding to the four elements of the ECC. The 

rules are explained in detail as follows. 

 

4.1. State 

As an ECC with no states or only one initial state cannot do any meaningful work, we apply the 

rule #1. It is noted that the standard definitely states that the initial state shall have no associated 

actions 

 

4.2. Transition 

Rule #2 and #3 are applied to eliminate redundant transitions whereas rule #4 is applied to avoid 

deadlock states where no transitions can clear. Fig. 6(a) shows an ECC conflicting with those rules, 

whereas Fig. 6(b) shows an ECC following those rules. The #number in Fig. 6(a) indicates with 

which rule the adjacent transition conflicts. 

condition event input variable (not the State member of 

an event input variable) or the Boolean 

constant TRUE. 

input variable, the Boolean constant 

TRUE, a guard variable or a guard 

condition as well as an event input variable 

logically AND the guard variable or the 

guard condition. 

6 If the source state and the destination state of a 

transition are the same, the condition for the 

transition must be an event input variable. 

If the source state and the destination state 

of a transition are the same, the condition 

for the transition must not be TRUE. 

7 If more than one transition starts with the same 

source state, conditions for those transitions 

must be event input variables and those event 

input variables must be different. 

If more than one transition starts with the 

same source state, conditions for those 

transitions are not constrained 

8 The Boolean constant TRUE can be used as 

transition condition unless no cycle is caused. 

The Boolean constant TRUE can be used 

as transition condition unless no cycle is 

caused. 

Action 

9 An action consists of three elements for the 

guard condition, the algorithm, and the event 

output respectively. The guard condition 

controls the execution of the algorithm and the 

emission of the output event that are referenced 

by the same action. 

An action consists of two elements for the 

algorithm and the event output 

respectively. 

10 A guard condition can be one of 1) the Boolean 

constant TRUE; 2) a single BOOL typed 

internal variable or a single BOOL typed data 

member of event input/output variables; 3) a 

Boolean expression utilizing one or more 

internal variables and data members of event 

input/output variables. 

A guard condition can be one of 1) the 

Boolean constant TRUE; 2) a single BOOL 

typed internal variable or input/output 

variable; 3) a Boolean expression utilizing 

one or more internal variables and 

input/output variables. 

    



 

Fig. 6.  Illustration of ECC transition rules. (a) ECC with incorrect transitions and (b) ECC with 

correct transitions. 

 

4.3. Transition condition 

Compared with the standard or the FBDK implementation, our implementation is highly 

simplified as indicated in rule #5. In general, event input variables are preferred and in some cases 

are mandatory as indicated in rule #6 and #7. The Boolean constant TRUE may be used as condition 

but cycle should be avoided as indicated in rule # 8. It is noted that the rule #7 solves the priority 

problem [7] as long as the input events are passed to the BFB sequentially. The deal lock problem 

related to the conditional arc [8] is also got rid of because guard conditions are not used as transition 

conditions. Fig. 7(a) shows an ECC conflicting with the rule #8, whereas Fig. 7(b) shows two ECCs 

following the rule #8. In Fig. 7(a), the two Boolean constants TRUE form an infinite cycle between 

the two states START and STATE. That is illegal situation in our FBStudio implementation as that 

in the FBDK implementation.  

 

Fig. 7.  Illustration of ECC transition condition rules. (a) ECC with incorrect transition conditions 

and (b) ECCs with correct transition conditions. 

 

4.4. Action 

In our FBStudio implementation, the action is extended by adding another element, i.e. the guard 

condition as indicated in rule #9. The guard condition controls whether the action is to be executed 

or not. The guard condition in our FBStudio implementation only uses internal variables and data 

members of event variables as indicated in rule #10. Fig. 8 shows an ECC with actions. The 

algorithm and the event output are optional, but an action should at least have one of them to perform 

some meaningful work. The guard condition must exist in any actions. It should be evaluated to 

BOOL typed values TRUE or FALSE. If the guard condition is TRUE, the action will be executed; 

if the guard condition is FALSE, the action will not be executed. 



 

Fig. 8.  Illustration of ECC action rules. 

5. Formal modeling 

Formal models for the standard BFB were presented in [11][12][17]. In this section, we develop 

a formal model for the improved BFB. We only focus on the formal modeling of the BFB type 

declaration other than the execution semantics. 

 

5.1. Formal description 

A BFB type is a 5-tuple defined as  
( , , , , )BFB EI EO ECC ALG VAR  

where 

{ , , ...}1 2EI ei ei   is a set of event inputs; 

{ , , ...}1 2EO eo eo   is a set of event outputs; 

{ , , ...}1 2ALG alg alg   is a set of algorithms; 

{ , , ...}1 2VAR var var   is a set of internal variables. 

The ECC in turn is a 6-tuple defined as 

( , , , , , )ECC S T A C f fA C  

where 

0 , 2m-1{ , , , ..., }1 2 mS s s s s    is a set of EC states and s0 is the initial state; 

T S S    is a set of arcs representing EC transitions; 

( )A G ALG EO ALG EO     is a set of EC actions and G is the guard condition;  

{TRUE}

{ BOOL typed data members of }

{ BOOL typed data members of }

{BOOL typed member of }

{Boolean expression on member of , , and }

G

ei EI ei

eo EO eo

VAR

VAR ei eo





  

{TRUE}C EI  is a set of transition conditions; 

:f S AA    is the function assigning sequences of EC actions to the states; 

:f T CC    is the function assigning conditions to transitions. 



 

5.2. Formal verification 

Based on the formal model, the ECC rules of Table 1 are checked as follows.  

1) Rule #1 is guaranteed by the set definition of S; rules #2 and #3 are guaranteed by the set 

definition of T.  

2) To check rule #4, the following terms are defined. 

( ) { ( , ) , 0,..., 1}Source s s S s s T i mi     is the set of transitions that start with the state s. 

( ) { ( , ) , 0,..., 1}Destination s s S s s T i mi     is the set of transitions that end with the state s. 

Then the rule #4 requires that both ( ) 0Source s   and ( ) 0Destination s  are TRUE for every 

normal states S . 

3) The rule # 5 is guaranteed by the set definition of C.  
4) ( )t Source s and at the same time  ( )t Destination s indicates ( , )t s s , i.e. the source 

state and the destination state of the transition t are the same state s. According to the rule #6, the 

condition for the transition t must be an event input variable. 

5) When ( ) 1Source s  , the rule #7 requires that conditions for transitions ( )t Source s must be 

different event input variables. 

6)  For each subsetP S , if transitions exist to sequentially link all the states of P, we define a 

path that exists in the P. The rule #8 requires that the conditions of the transitions of every closed 

path are not all TRUE. 

7) The rule #9 and the rule #10 are guaranteed by set definition of A and G respectively.  

 

6. Case study 

A BFB is designed to perform both integer division and floating-point division. When the BFB 

is implemented in the FBDK, the interface consists of two event inputs, two event outputs, four data 

inputs, and two data outputs as shown in Fig. 9(a). In addition, the ECC can be implemented in a 

number of ways and the Fig. 9(b) shows one possibility. The lower branch for integer division is 

safe no matter whether the divisor INUM2 is zero. The upper branch for floating-point division is 

safe only when the divisor FNUM2 is not zero, but when FNUM2 is zero the ECC will be frozen in 

the state of FDIV, which indicates using guard condition alone as transition condition may cause 

potential problem [7][8].  



 

Fig. 9.  FBDK implementation of the BFB DIVISION. (a) Interface and (b) ECC. 

 

The equivalent function can be implemented in the FBStudio as shown in Fig. 10. ET_REAL2 has 

two REAL typed data members Data1 and Data2, and the ET_REAL has only one REAL typed data 

member Data. Compared with the FBDK implementation, advantages of FBStudio implementation 

are: 

1) the interface only consists of two event inputs and two event outputs, i.e. the content of 

interface decreases up to 60%;  

2) the strict rules for transitions and transition conditions lead to a rather intuitive decision process 

when design an ECC;  

3) the conditional arc is illegal in the strict ECC model so deadlock states can be avoided ; and  

4) shifting guard conditions to actions enables the strict ECC as powerful as that of the FBDK 

implementation.    

 



Fig. 10.  FBStudio implementation of the BFB DIVISION. (a) Interface and (b) ECC. 

 

7. Conclusion 

We improve two elements of the IEC 61499 BFB, i.e. the interface and the ECC. We propose a 

compact interface model to integrate the data interface into the event interface so that data interface 

can be eliminated; the related semantic ambiguity can be got rid of; and the number of connections 

can be decreased. We also propose a strict ECC model to add some practical rules to the standard. 

Those rules relate to the ECC elements: state, transition, transition condition, and action. That strict 

ECC model reduces design redundancy and gets rid of some semantic ambiguity. In addition, we 

introduce arrow notation to event interface, which helps to maintain clear connections of a FBN 

even if some FBs are rotated to an arbitrary angle. In our future work, type declaration of CFB and 

SIFB will be improved to be consistent with the improved BFB. We have been developing a tool 

called FBStudio to construct FB Applications, in which the improved type declaration of the BFB 

is implemented. An embedded executable environment called FBController is also under 

development. With the FBStudio and the FBController, embedded controllers are hoped to be fully 

customized and rapidly implemented in order to respond challenging requirements of industry. 
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