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Abstract 

This chapter presents some of the most recent and relevant computational techniques for 

modelling and simulation of damage and/or failure on composite materials. In the last few 

years, the number of computer methods dedicated to virtual composite damage simulation 

has exploded as a consequence of progress on a number of numerical methods such as the 

Partition of Unity Methods (Extended Finite Element Method, Phantom Node Method,...), 

meshfree methods (Particle Methods, Element Free Galerkin Method,..) or semi-numerical 

approaches linking novel strategies for computation of damage based on phenomenological 

theories and effective replication of cracks embedded within the Finite Element Method. 

Although, this chapter deals mainly with computer methods applied to fibre reinforced 

composites based on a polymeric matrix, many of them are applicable to a broader range of 

composite materials as well as other anisotropic materials. 
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Nomenclature 

 

ja , kb  FE additional degrees of freedom for the displacement 

approximation 

B  support functions 
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C  fourth–order damaged stiffness tensor 

h'C
, m'C  Composite homogenized and matrix tangent stiffness 

tensor, respectively  

jc  threshold for the strain damage surface j 

0C  ‘Virgin’ stiffness matrix 

iE  Young modulus of  the fiber-matrix interface 

icG  
Fracture energy of the fiber-matrix interface 

D  damage tensor 

icK
 

Fibre-matrix interface fracture toughness 

)(xH  Heaviside function 

ji NN


,  FE shape functions 


Fησ ),,( nnf

 
Stress damage surface and corresponding tensor 


G

 
Strain damage tensor  

jj cGcg  )(:),( εεεε  undamaged elastic domain in the strain space 

)(),(   pp  Probability distribution functions of the fibre orientation 

angles 

)( m
fεs  Function quantifying the fibre-matrix strain jump due to 

debonding 

x  Position vector 

)(xu  Displacement field 

iu  nodal displacements 

α  hardening internal variable tensor 

ε  strain tensor 

  thermodynamic  potential such as the free energy one 

VVmm / , VV ff /  Matrix and fibre volume content respectively 

  Damage directional vectors 

d  Damage dissipation 

p  Plastic dissipation 

pσ  plastic stress tensor 

uf ,
 

Ultimate fibre-matrix shear stress 

)(α  dissipation associated to hardening 

 

1. Introduction  

The mechanical behavior of composite materials is the result of several concurrent 

phenomena due to the complexity nature of such a class of materials. Several kind of 

composite materials are available: laminates, materials with particle reinforcement, long and 

short fibre reinforced materials, flake reinforcement and filler reinforcement. Due to their 

wide variety it is clear as the bearing mechanisms are very different from one class to another 

and so are the damaging and failure phenomena. In order to get reliable composite materials, 

their safety factor during the service life must be assessed with a proper accuracy; for such a 

purpose several phenomenological or approximation techniques [13, 56, 74] and 
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computational approaches   [14, 49, 58] have been developed and applied. For several 

decades, there has been a steady commitment to the simulation of failure in composites based 

on stress criteria or strain criteria. There is no doubt that they have been successful in many 

situations and indeed the industry has embraced them for the solution of practical problems. 

Nowadays, there is a need of coping with challenging problems that need to be conducted, 

e.g. three-dimensional gradual stiffness degradation due to distinct mixed damage modes at 

different strain rates. Furthermore, integration of criteria on numerical platforms or 

integration within finite element software packages has failed to provide the desired 

convergence on challenging applications: for instance, in the case of element erosion due to 

the satisfaction of certain criteria, or the abortion of the numerical execution due to 

instabilities generated by the not-so-robust nonlinear criteria. Later on, progressive damage 

models (PDM) emerged. PDM conduct a realistic approach in the sense that they perform the 

gradual degradation of stiffness and, eventually, characterise failure. However, progressive 

damage models are not exempt of problems. Their embedment into the Finite Element 

Method have highlighted further problematic. Firstly, there is the need of calculation of a 

tangent modulus if it is to be included into an implicit FEM which could be straightforward 

for isotropic material but not for composites. Not to mention about to characterise the distinct 

mixed damage modes associated to general composite structures. Indeed, there is no such 

problem if the progressive damage model is embedded into an explicit FEM. However, 

explicit FEM is conditionally stable and, hence, not always keen on challenging problems. 

Secondly, in the aforementioned challenging problems, PDM are making the abortion of the 

execution when computing the softening regime once the initiation criteria are satisfied. 

Finally, PDMs are local in essence and, hence, mesh-dependent which oblige to correct it by 

regularisation techniques or non-local modelling strategies. Developments including interface 

- also named cohesive or de-cohesive-elements for characterisation of delamination or cracks 

have been proposed. Techniques including the blend of interface elements and initiation 

criteria, and/or PDMs have proved successful in numerous applications; overall on those 

applications in which a good guess of the damaged zone is known a priori. The main 

disadvantage is that the only zones prone to crack/fracture are those with cohesive and, 

hence, its use cannot be generalised to industrial scale applications for predicting damage. In 

the industrial environment, steady progress is envisaged on the embracement of new 

numerical strategies. There are proposals rather advanced and robust providing the desired 

convergence in difficult problems. There have been extraordinary recent developments in 

numerical methodologies for the assessment of the structural integrity of composite 

structures. Thus, just to mention a few relatively novel techniques that could be a great asset 

to modelling damage, fracture or failure in composite structures and that are worthwhile to 

explore rather more:  

•  Extended Finite Element Method (XFEM) in which the propagation of cracks and, 

therefore, delamination and transversal cracks are characterised by means of adequate 

enrichment interpolation functions added on the displacement field. XFEM has no need of 

remeshing unless really intricate curved cracks are present or expected to develop. Even in 

such case, the re-meshing needed is minimal.  
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• Isogeometric Analysis (IGA) and its variant eXtended Isogeometric Analysis (XIGA) 

have been proposed very recently. However, they are not tested yet on composite structures at 

the expected rate. Isogeometric Analysis (IGA) permits the integration of analysis methods 

within CAD tools and vice-versa. As the time from design to analysis is significantly reduced, 

IGA leads to reduce the computational cost. This method should be indeed an asset for the 

simulation of failure on large scale complex composite structures.  

• Peridynamics is a type of particle method and, hence, meshfree with all the 

advantages that it carries, e.g. fracture is modelled in terms of the distance generated among 

particles.  

• For completeness, a few more: Phantom Node Method, Reproducing Kernel Particle 

Methods, Smooth Particle Hydrodynamics (SPH), blending between FEM and Meshless 

Methods, etc. Some excellent works have already been published by researchers on 

composite failure using some of these methods applied to composite structures. Of course, 

the set of techniques above do not pretend to be exhaustive or representative of any kind of 

application in particular. Rather the purpose is modestly to drive attention to new 

developments on strategies that may be utilised in the characterisation of failure in 

composites and that are potentially to outcompete traditional ones -for the specified reasons 

and thanks to enhanced computational power-in a near future. The present chapter will be 

mainly focused on the most recent computational techniques that have been developed to 

tackle such a complex mechanical problems. In particular the numerical approaches that have 

been proposed for fibre reinforced composites (FRC) will be considered; nevertheless, the 

presented approaches are often applicable to a wider range of composite materials as well as 

other anisotropic materials. The chapter is not providing a comprehensive review of all the 

available computational approaches as this would need a complete book. However, 

representative and relevant ones in terms of computational method used and recency will be 

considered for their application to composite damage and failure modelling.  

2. Semi-numerical Techniques  

Based on the observation of the mechanical behavior of composite materials at the mesoscale, 

FRC modeling can be developed by taking into account the main phenomena occurring in 

such a class of materials under mechanical actions. In such a context, the development of 

computational approaches based on the quantitative description of the mesomechanics 

bearing mechanisms can be classified as a so-called semi-numerical approaches. In the 

present section, some recent computational mesomechanical-based models developed by the 

authors are briefly presented and discussed, focusing on their principal aspects in the FRC 

mechanical description.  

2.1. Progressive Damage Models within FEM  

Progressive damage models (PDM) have been steadily appearing for the modeling of damage 

in composites during last two decades. Herein, PDM refers to the characterisation of 

degradation of the material by progression of some damage internal variables to be dependent 

upon distinct damage modes. Note that it can be found some collateral use of progressive 
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damage modelling in laminates, meaning that a sequential failure of plies or layers is taking 

place, e.g. the ply discount method. Every failed ply satisfies a stress failure criterion. That is 

nothing to do with a PDM based in a thermodynamics framework as described below. Some 

PDM have successfully been implemented in computational finite software, e.g. 

Matzenmiller’s [50]. A strain-based PDM for an anisotropic material that, in general, may be 

considered with metallic constituents is derived from a thermodynamics potential such as the 

free energy potential:   

(1) )(:::
2

1
:  εσεCε p  

2 where C is a fourth–order damaged stiffness tensor. The word damaged is emphasized in 

the name to account for the degradation of stiffness components due to damage internal 

variables. (p is the plastic stress tensor, η is the strain tensor and Ω(a) is the dissipation 

associated to hardening which depends upon the hardening internal variables tensor a. Note 

that the plastic and hardening terms can be discarded in case of non-metallic composites. The 

stress–strain relationship is obtained then as follows,   

(2) pσεCσ 



 :


 

Bearing in mind that dissipation due to damage must be positive, it leads to, ˙ 

(3) 0:::  εCε 
d   

and, also, the plastic dissipation must be positive,  

(4)   )(:: εσ pp   

The stiffness matrix can be computed as,  

(5) 
εε

C



 2  

The evolution of damage can be characterised by means of the irreversibility concept and an 

undamaged domain formed by the intersection of damage surfaces in the strain space. This 

undamaged domain may evolve with the damage internal variables by contracting itself to 

replicate the softening regime or brittle behaviour. Distinct damage modes can be associated 

to different strain damage surfaces as proposed by Curiel-Sosa et al.  [24]. For instance, 

damage surfaces characterising matrix cracking, fibre rupture, delamination, and fibre kinking 

but not restricted to. Thus the model will depends not only on the constitutive law of the 

material but also on the distinct damage modes that potentially may develop. So this 

undamaged elastic domain in the strain space is defined as,  

(6) jj cGcg  )(:),( εεεε  
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where jc  is the threshold for the strain damage surface j. The dissipative evolution or 

degradation is modelled by means of,  

(7) 
εε

εε
C






),( jcg
  

(8) 0),(0),(0  jj cgcg     

which are the Kühn-Tucker Conditions. An example of PDM can be visualised in Box I, see 

also Fig. 1 for an example of application of the PDM proposed in [24]. Among others the 

following PDMs can be highlighted:  

– Lee (2001) [42] presented a progressive degradation model characterising the damage 

variables by means of Weibull function. He embedded the constitutive model within 

DYNA3D and applied it to the simulation of damage on impact biaxial loading test and four-

point bending test. Fibre debonding was modelled as prioritary damage mechanism adjusting 

the Weibull parameter. The algorithm was presented showing clear detail of the computation 

of damage using Weibull function. Further correlation to either experiments or against results 

from the literature could add-on to the relevance of such approach.  

– Angioni et al. (2012) [1] proposed a combination of XFEM and multilevel mesh 

superposition (MMS). The interlaminar stresses are not accurately calculated by the Classical 

Laminate Theory (CLT) as state of plane stress is assumed in every laminae. MMS performs 

the calculation of the global displacements by superposition of local displacements in two or 

more plate models associated to each ply. MMS was first introduced by Fish (1992).  
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 BOX I:  Example of PDM for  composites 

(For further details refer to Curiel-Sosa et al.(2013)  [24] ) 

1. The stress is measured using the definition of effective stress nσ̂  by   

[18], Eq.(9). η is the internal damage vector. Subscript n denotes the time 

step in a marching numerical scheme. 

  

 
nnn σDσ  )(ˆ   (9)  

 2. The stress-strain relationship integrating the damage tensor D ,   

 
nnnnn εCεCDσ  

0
1 )(  (10)  

 3. The stress damage surfaces (one per each damage mode ξ),   

 mf nn
T
nnn ,...,2,11)(:),(  

σηFσησ  (11)  

 4. After mapping to the strain space, the damage surfaces become,   

 mg nn

T

nnn ,...,2,11)(:),(  
εηGεηε  (12)  

 Where   

 mnn
T
nn ,...,2,1)()(  

CηFCηG  (13)  

 5. Criteria  for damage mode ξ initiation   

 mgg nnnnn ,...,2,10),(0  
 ηεε  (14)  

 6. The characterisation of damage mode directions 


d  is given by,   

 mgnn

T

n

T

nn ,...,2,1/)(:  



GGεd  (15)  

 7. The potential growth of distinct damage modes is modelled as follows,   

 mg p

nnn ,...,2,1)(: /1   



ε  (16)  

 8. Finally, the computation of damage internal variables rate as super- 

position of distinct damage modes, 

  

 




m

nnn

1

 dη  
(17)  

 

Angioni et al. results showed that the technique is convenient for the estimation of 

intralaminar stresses in composite laminates.  

– Y. Shi et al.(2012)  [63] proposed a progressive model applied to cross ply laminates 

subjected to low velocity impact. It is based on stress criteria in which delamination is 

simulated by means of interface elements. Their results are compared to assess impact 
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damage by means of X-ray NDT technique. In addition, the fracture criterion was also 

integrated in the model.  

A drawback of using progressive damage models is their mesh dependency. To overcome 

this, regularisation approaches have already been proposed:  

– Raimondo et al. (2012) [59] addressed the problem of damage localisation by regularisation 

techniques. These include a characteristic length, e.g. a side length of one element, within the 

constitutive relationship characterising the damage process.  

– Patel & Gupta (2014) [55] proposed a nonlocal progressive damage model for laminates 

based on nonlocal strain and damage variables. The computation of nonlocal variables is 

derived from the local ones by means of layerwise elements with quadratic variations. 

Although the approach is novel additional results in terms of stresses in this direction could 

provide further insight on the convenience of these approaches.  

 

Figure 1. Example of simulation of progression of damage (delamination) on a cross-ply laminate 

subjected to low velocity impact by a rigid projectile. Data from [24] 

2.2. Interface/cohesive elements for the progressive degradation of laminates  

There have been numerous cohesive elements proposed for composite analysis in the last 

decade [4, 32, 69]. These special finite elements can split or divide subjected to a criterion or 

set of criteria. They are named in the literature in different ways: cohesive, decohesive or 

interface elements. They could be classified as:  

• Smeared cohesive elements: in which the cohesive zone model is included on the 

constitutive relationship. The elements are located between interfaces that can des-bond. To 

do this the element must be very thin. This causes high aspect ratio elements and weird 

deformations. The mesh generation is also an issue as the elements must be pre-allocated in 

the interfaces,  
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Below are presented some of the most interesting ones for simulating fracture on composites. 

Shi et al (2012) [64] incorporated solid-shell interface elements between laminae subjected to 

progressive degradation. The key point is that the interface element is not subjected to failure 

criteria for the splitting. Interestingly, they used a scalar parameter evolving in a time-

marching scheme that they integrated within ANSYS which is one of the few works in this 

direction.  

3. Meshless Methods  

Meshfree methods for the solution of partial differential equations in elasticity have come a 

long way since the very first papers of Libersky and co-workers on Smoothed Particle 

Hydrodynamics (SPH): in [44] a meshless method is applied for the first time in solid 

mechanics. The original versions of SPH lacked of the property of consistency (or 

reproducibility, i.e. the ability of the approximation to reproduce polynomial fields), 

especially at the boundaries. The landmark papers by Belytschko and coworkers   [9, 10, 11] 

on Element-Free Galerkin (EFG), contemporary with the papers by W.K.Liu and coworkers   

[21, 46, 47] on Reproducing Kernel Particle Method (RKPM), opened the way to the 

widespread diffusion of meshfree methods for linear and nonlinear elasticity. Conversely 

from SPH, both methods satisfy reproducibility conditions, guaranteeing the mathematical 

prerequisites for convergence when used in a Galerkin formulation [36]. Both methods are 

substantially equivalent, though originated from different points of view: EFG from computer 

graphics, where Moving Least Squares (MLS) basis functions are used for surface 

reconstructions from a cloud of scattered points; RKPM from wavelet theory. Still around 

that time, many other meshfree methods were developed, and a probably not comprehensive 

list includes: the Material Point Method (MPM)  [62], the hp-clouds  [2], Finite Point Method  

[54], the Free-Mesh method  [76], the Meshless Local Petrov-Galerkin (MLPG)  [3], Local 

Boundary Integral Equation (LBIE) [77], Natural Element Method  [68], Meshless Finite 

Element Method (MFEM)  [37], the Cracking Particles method  [57] and lastly, peridynamics  

[65]. There is a reasonable large literature of applications of (various) meshfree methods to 

composite plates or, more generally, orthotropic materials: probably the very first work on 

material discontinuity (i.e. gradients of displacements are discontinuous) is [22] where 

inhomogeneities are treated by truncating the kernels at the material interface. We will, 

however, focus on modelling damage, and more generally, failure of composites with 

meshfree schemes. Meshfree methods can be broadly categorized (with some exceptions) in 

two categories: particle methods or Galerkin methods. Some authors  [26] classify collocation 

methods (i.e. finite differences as a meshfree method as well, although these schemes are not 

well suited for Partial Differential Equations (PDE) containing discontinuities (where 

derivatives are not defined in the classic sense) in their primary unknown, such as the 

displacements. In the particle methods, the history of state variables is tracked at discrete 

points (particles), without needing any mesh: these methods can be thought as physical 

particles interacting with each other, with their interaction regulated by some constitutive 

model. Examples of this class are the MPM and Peridynamics. In the Galerkin methods, the 

PDE is converted into a weak formulation, generating usually an algebraic system of 

equations. The methods are more akin to Finite Element, and can actually be thought as their 
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element-free version, where particles are more mathematical particles rather than physical 

particles (i.e. the vertices of the elements). SPH are, in this sense, a hybrid, since the 

unknown in the original PDEs (usually balance laws) is approximated by its convolution with 

a kernel function, allowing derivatives of the approximation to be mathematically defined. 

The result is a particle-like method, where the constitutive interaction law derives directly 

from these convolution integrals.  [20] for example used SPH to simulate fracture in 

particulate composites, such as cement.  [30] and [31] employed SPH to model bird-strike on 

a composite leading edge wing.  

3.1. Peridynamics  

An example of particle method is peridynamics, which can be thought as the continuum 

version of molecular dynamics: in fact, forces are exchanged only with the surrounding 

particles at a finite distance, and localization and subsequent fracture, are a consequence of 

the increase of the relative distance due to these forces. Using peridynamics, [75] simulated 

delamination and matrix damage process in composite laminates due to low velocity impact, 

whilst [41] described the process of fibre failure and damage initiation from the matrix for 

different fibre orientation. Recently,  [35] showed dynamic brittle fracture for unidirectional 

fiber-reinforced composites, observing matrix–fiber splitting fracture, matrix cracking, and 

crack migration in the matrix, including crack branching in the matrix, using an homogenized 

model of the ensemble fibre-matrix.  

3.2. Element Free Galerkin  

Galerkin methods include EFG or RKPM, where test and trial functions are sets of Moving 

Least Squares (substantially equivalent to Reproducing Kernel Particle Methods). Two 

manners exist in the literature for introducing discontinuities: extrinsic and intrinsic. In 

extrinsic methods, similarly to XFEM, In   [5, 6, 7] extrinsic enrichments are used to simulate 

benchmark cases (Double Cantilevered Beam, End Notched Flexure and End Loaded Split) 

delamination in layered composites for Mode I and II.  [29] simulated mixed mode 

delamination growth in composite beams, using Virtual Crack Closure Technique and an 

interaction power law to predict damage growth.  [43] used Radial basis (RB) function and 

Moving Kriging (MK) interpolation in a Galerkin formulation to model the failure of two 

different unit cell models for woven composites: straight-edge and smooth fabric unit cell 

model.  [61] used the visibility condition to build discontinuous meshfree shape function to 

model explicitly cracks and holes propagating inside a laminated composite.  

4. Partition of Unity Methods  

4.1. The eXtended Finite Element Method (XFEM)  

The eXtended Finite Element Method (XFEM) is becoming very popular on the composite 

community for structural integrity analyses. This is because of the capability of XFEM to 

replicate virtual fracture without -or minimum-remeshing. This has two clear advantages:  

• A reduction of the computational cost respect to classical FEM. This is critical when 

dealing with the simulation of complex engineering components subjected to failure.  
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• Introduction of the discontinuity associated to cracks, delamination, etc. 

straightforward by means of additional degrees of freedom in the so-called enriched nodes. 

This provides a more realistic approach respect to the computation of jump in stress, strain 

and internal variables if it is to be compared with finite element methods including material 

constitutive relationships based on continuum damage mechanics alone.  

XFEM falls within Partition of Unity Methods (PUM) category. PUM permits the 

introduction of enrichment functions which may be replicated by the numerical strategy used. 

If the enrichment function are chosen discontinuous, then this allows the simulation of 

discontinuities such as cracks. The enrichment is carried out in a part of the mesh. This part 

of the mesh will be able to replicate such discontinuities depending upon the enrichment type 

chosen. In particular, XFEM is integrating a PUM within a finite element context. Therefore, 

XFEM can be implemented straightforward within a FEM code.  

4.1.1. How are cracks modelled within XFEM?  

One great feature of XFEM is that the crack is allowed to split finite elements, i.e. it is not 

restricted to propagate between the finite elements boundary. In addition, no remeshing or 

very little remeshing is necessary. The modelling involves to select certain parts of the mesh 

for enrichment which can potentially allow the crack simulation if the constitutive behaviour 

requires it. In general, two types of enrichment functions are possible:  

• Enrichment functions at crack tips to reproduce the asymptotic field 

• Enrichment at the sides of current crack 

Some remeshing is necessary in the case of extremely curved cracks  

Note that the assignation of those enrichment will vary in a dynamic crack propagation. 

XFEM enriches the displacement approximation of the corresponding mesh nodes as follows,  

(18)     



21

)()()()()()(
k

kkk

j

jjj

i

ii NNN


 bxxaxxuxxu BBHH


 

where ji NN


,  denote finite element shape functions, iu   the nodal displacements, and ja  

and kb   additional degrees of freedom for the displacement approximation. )(xH  is a 

Heaviside function taking the value +1 at one side of the crack and −1 in the opposite side of 

the crack. )(xB  are support functions to replicate the asymptotic field ahead of the crack tip. 

For an example of simulation using XFEM see Figure (2). 
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Figure 2. Illustrative detail of crack propagation using XFEM on a cruciform specimen designed for biaxial 

loading tests. The sample, made of a glass reinforced polyester composite, is subjected to double load in the 

vertical arm than in the horizontal arm. 

4.2. Phantom Node Method (PNM)  

PNM is a variation of XFEM that allows the initiation of the cracks in any part of the mesh. 

However, a minimum distance between cracks has to be fixed when there is only one layer of 

finite elements. Seminal works on PNM applied to composites are proposed by Ling et al. 

(2009) [45] and van der Meer & Sluys (2009) [71]. In van der Meer (2010) [72] a 

combination of PNM and cohesive elements is proposed for tackling matrix cracking and 

delamination respectively. In addition, [72] propose a continuum-based model for fibre 

failure. Their results in open-hole laminates justify such combination and tackle the size 

effect problem. However, doubts are risen about the PNM performance in composites failure 

prediction without such combination involving more than one technique which could be 

cumbersome for the software developer. Furthermore, the asymptotic field enrichment is not 

possible with PNM which leaves the special stress field ahead of the crack tip not properly 

simulated. PNM is a promising technique for replication of composite failure but 

improvement will be needed to solve the aforementioned issues.  

5. Multiscale and Homogenisation  

Phenomena taking place at the macroscopic level are strictly related to the physics and 

mechanics of the background microstructure; the resulting overall behaviour of micro-non 

homogeneous materials, are strongly affected by the spatial distribution, size, shape, and 

mechanical properties of the constituents and of their joining interfaces at the microscopic 

level. The proper knowledge of the effective relation between microscale phenomena and the 

macroscopic behaviour, on one hand allows the overall description of multiphase materials, 

and on the other hand provides a microstructure design tool for the development of material 

having the required mechanical characteristics.  A further potentiality of multiscale modelling 

is its capability to simply deal with the development of functional and smart materials 

obtained from complex forming processes. 

In real problems it must be also considered as the microstructure may change and evolve 

under macroscopic mechanical actions, which lead to a degradation of the resulting 

composite material mechanical properties.  
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Under the undamaged material hypothesis, the simplest way to get the homogenised moduli 

of a heterogeneous material is based on the so-called rule of mixtures, operating through a 

weighted average (by using their volume fractions) over the properties of the constituents; 

this implies that only one microstructural characteristic, the volume ratio of the 

heterogeneities, are taken into consideration in the average process. Starting from the 1970s, 

the fast development of micromechanics allowed to get a more effective and practical study 

of composite materials and structures; most of the early studies on this subject have been 

mainly devoted to theoretical modelling in the elastic behaviour regime. 

Homogenisation approach for heterogeneous materials provides a rigorous method to 

determine the macroscopic response of composite materials by accurately taking into account 

for microstructural characteristics and their evolution. The effective elastic medium 

approximation – as proposed by Eshelby [25] and others Authors   [33, 52] – is a more 

realistic model for heterogeneous materials: the properties of the macroscopically equivalent 

material, are obtained from the analytical solution of a boundary value problem (BVP) for an 

inclusion having a simple shape (such as an ellipsoid) embedded in an infinite matrix made of 

a different material. These approaches are suitable and give reasonable results when applied 

to heterogeneous materials having geometrical regularity, but they are not suitable – for 

example – for materials having clustered characteristics. The use of micro-macro strategy 

does not require the definition of constitutive equations at the macroscopic level that, in the 

case of complex microstructures, generally would be an awkward task. On the other hand the 

description of the constitutive behaviour at some macroscopic integration points (such those 

used in FE numerical quadrature formula) through homogenization techniques, operates by 

averaging the response of the deforming microstructure, enabling a straightforward 

application of the method to geometrically and physically non-linear problems. 

In order to deal with materials showing non-linear properties, an extension of the above 

mentioned self-consistent approach, has been proposed by introducing its incremental 

formulation [34].  

The asymptotic homogenisation theory, based on the asymptotic expansion of displacement 

and stress fields on a material scale parameter (typically the heterogeneities characteristic size 

and a macrostructure length ratio), has also been developed, providing both the effective 

overall material properties as well as the local stress and strain values   [12, 27, 38, 53]. The 

possibility to homogenize a composite material with a regular structure, i.e. the study of an 

equivalent homogeneous solid instead of the original inhomogeneous one, and the use of  its 

effective properties, determined through the solution of so-called local problems  formulated 

on the unit cell of the composite material, is one of the main capability of this approach. 

Suquet   [66, 67] introduced the use of the homogenization theory into plastic mechanics in 

the 1980s: according to such an approach the macroscopic behaviour of composite materials 

could be determined thanks to the concept of a representative volume element (RVE); the 

composite properties are determined by fitting the averaged microscopic stress-strain fields, 

obtained from the analysis of a microstructural representative cell under given mechanical 

actions.  
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The RVE can be defined as a statistically representative portion of the material, including a 

sampling of all possible microstructural configurations present in the composite; alternatively 

it can be considered as the smallest microstructural volume that properly represents the 

overall macroscopic properties. 

Computational homogenisation have also been developed by applying numerical analyses on 

a RVE with proper boundary conditions in order to obtain the relation between the 

macroscopic input and output quantities   [51] . Such an approach for the mechanical 

characterisation of multiphase materials has several advantages such as the possibility to 

avoid the explicit knowledge of the macroscopic local constitutive equations (these are 

obtained by the solution of the corresponding microscale BVP), the possibility to include 

large strains as well as the nonlinear mechanical behaviour and the consideration of evolving 

microstructural information   [17, 28, 39, 40, 60, 74].  

Computational homogenisation technique has been recognised to be a useful and suitable tool 

to get the non-linear micro-macro structure-property relations, especially in the cases 

involving a high complexity of the mechanical and geometrical microstructural properties by 

also allowing their eventual evolving character; other homogenisation methods cannot be 

competitive for such complex situations. 

5.1. Energy-based homogenisation approach for short fibre-reinforced materials  

Homogenisation-based approaches can be conveniently formulated through an energy, 

balance between the REV effective microstructure and its macroscopic counterpart   [17, 39, 

74]; in other words the assumption that the material at the microscale is energetically 

equivalent to that at the macroscale is the main physical assumption of the method.  

As a representative case, in the present section a fibre reinforced composite material will be 

considered for applying the above mentioned energy approach. 

A FRC composite material is microscopically heterogeneous while it can be assumed to be 

macroscopically homogeneous if the fibres are uniformly dispersed in the matrix material; 

moreover if the fibres are randomly oriented in all the possible 3-D directions, the composite 

is also macroscopically isotropic, whereas the composite is macroscopically homogeneous 

and anisotropic (more precisely transversally isotropic) if the fibres are oriented by following 

a preferential direction. 

The composite material is herein assumed to be characterized by macroscopical mechanical 

characteristics equal to those of a small reference elementary volume (RVE); moreover, for 

sake of simplicity, the fibres are assumed to be not interacting, that is to say that the so-called 

dilute composite hypothesis is made. Under such a hypotheses (often valid for fibre content 

not greater than about ~20%), the averaged properties of the composite can be easily 

determined. 

Dealing with problems involving mechanical nonlinearities, the main degradation phenomena 

occurring in fibre-reinforced composite materials must be considered. Schematically the main 

mechanically damaging phenomena can be recalled to be: matrix damage (such as plastic 
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deformation), matrix cracking, fibre debonding, fibre breaking, fibre buckling (micro-

buckling occurring in partially debonded fibres in periodic composites can be responsible for 

size effect and loss of the periodic structure characteristic)  [74], etc. Among the above listed 

damage occurrences, fibre debonding is one of the most important   [16, 17] and several 

technological researches have been performed in order to reduce such detrimental effect  

[48]. From the mechanical point of view the debonding phenomenon can be synthetically 

quantified through a scalar parameter s  aimed at measuring the fibre-matrix strain mismatch 

or fibre-matrix sliding,   mf    [17]: 
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where k  (the unit vector identifying the fibre direction) has been introduced, f  is the fibre 

strain and m
f  is the matrix strain evaluated in the fibre direction. Values of )( m

fs   tending to 

one indicate a perfect fibre-matrix bonding (i.e. no strain jump), while values of )( m
fs   

tending to zero denote a complete fibre-matrix detachment, i.e.    m
fmf   ; for sake of 

simplicity in Eq. (19) the value )( m
fs   can be considered as its averaged value evaluated 

along the fibre.  The damage parameter in Eq. (191) , defined as )1( sd , can be 

considered as a measure of the composite damage associated with the fibre-matrix 

detachment. 

By taking into account for such a degrading effect, by writing the energy equivalence over a 

suitable REV between the microscopically heterogeneous and the corresponding 

macroscopically homogeneous one, the equivalent tangent stiffness tensor of the 

macroscopically homogenous fibre-reinforced material can be written  [15]: 

(20)  




























 



dpp
dε

εds
εsE

m
f

m
fm

f
m
fffmmh ΛΛCC )()(

)(
)('''  

 

where the second order tensor Λ  is defined as kkΛ  , fE '
 is the tangent elastic 

modulus of the fibres (evaluated with respect to the matrix strain in the fibre direction, i.e. 
m
fff ddE  /'  ), VVmm / and VV ff /  are the matrix and fibre volume fractions, 

respectively, while the last integral is intended to be evaluated over the solid angle  . 

Finally it can be observed as the effective spatial orientation of the fibres inside the bulk 

material has been considered through the probability density functions p  and p    [15], 

expressed  in terms of the orientation  angles   and  . Thanks to such probability density 

functions, the non-isotropic damage effects of fibre debonding on the tangent stiffness tensor 

of the composite material can be taken into account through the second term in Eq. (201). 
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The fibre-matrix strain sliding value can be obtained from the knowledge of the strain 

distribution along a partially detached fibre; this results can be conveniently obtained by 

solving the corresponding fracture mechanics problem, related to the crack-like assumption 

of the fibre-matrix detached area [15], in order to get the current adhesion length; the fibre 

and matrix stress and strain can be finally estimated through the classical shear lag model 

[23]. 

By considering one single fibre as not influenced by the surrounding ones for sake of 

simplicity (for common FRC materials containing low fraction values of the reinforcing 

phase this usually applies), the remotely applied stress field can be decomposed along the 

axial and transversal fibre directions and the related mixed mode Stress-Intensity Factors 

(SIFs) can be obtained. The critical condition for incipient fibre debonding growth can be 

written as: 

(21)   eqiufic KfAK ,,   ,     or      
 

i

eqiuf
ic
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KfA ,
22

,
2 




G  

where A  is a constant, depending on the fibre geometric and mechanical properties, and 

 eqiKf ,  is a function of the equivalent interface SIF, while icK , icG , uf ,  are the 

characteristic values of the fibre matrix interface mechanical properties, i.e. the interface 

fracture toughness, interface critical fracture energy and fibre-matrix limit shear stress, 

respectively. The above equations provide a relationship linking the fracture and shear lag 

approach to fibre debonding. 

As an example in Fig. 3 the remote axial stress vs the dimensionless detached fibre length 

obtained through the above described fracture mechanics approach is represented and 

compared with experimental results [73]. 
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Figure 3.  Partially debonded fiber, corresponding to a 3D fracture mechanics problem, under remote 

axial (


z
) stress (a).  Remote matrix stress vs the relative fiber debonding: experimental (Data from 

[8]) and fracture mechanics results (b). 

 

It is worth mention as the use of a fracture mechanics approach to quantitatively describe 

fibre debonding, enables the straightforward treatment of damage phenomena related to 
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repeated loading such as fatigue in the high-cycle regime; proper crack growth rate laws 

allow the estimation of progressive and stable fibre detachment once the fatigue properties of 

the interface are known; on the other hand the fatigue damage occurring in the matrix can be 

also considered through classical damage accumulation evaluated through, for instance, the 

well-known empirical Wöhler or the Basquin models  [8]. 

The mechanical degrading effects on the bulk material can be accounted for by the energy-

based homogenisation approach through the actual matrix tangent stiffness tensor m'C  (Eq. 

(20)), that can be evaluated on the basis of the current damage level corresponding to the 

load history applied to the composite. Damage produced by plastic deformation (such as for 

load level exceeding the elastic limit of the material or in cases of low-cycle fatigue), for 

metal or polymeric matrix materials, as well as damage corresponding to diffused or 

concentrated cracks can be considered. As mentioned in the previous sections, the latter case 

requires proper regularisation techniques, such as non-local modelling or fracture 

consistence energy based approaches, to avoid mesh-dependence [28] and get reliable 

results. 

A representative example of the fatigue-based damage approach to fibre debonding is given 

in Fig. 4 where a notched cantilever beam under fatigue bending (constant amplitude 

loading) is reported; both cases of aligned horizontal and random fibres are plotted. 

 

 

 

 

 

 

 

 

Figure 4. Maps of the dimensionless debonded length fLl /
 (see Fig. 2) for horizontal (a) and 

random fibres distribution (b) in a notched beam under fatigue loading (
  %3   f , 

MPa 10minmax  
) after 90000 cycles. 

The above presented homogenization approach – capable to consider also the mechanical 

damaging effects 1– can be easily implemented in FE code where such energy-based 

equivalence can be written at the Gauss point level (if the mesh size is properly sized with 

respect to the effective fibre length), enabling a straightforward calculation of the damage 

dependence of the stiffness matrix.  
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