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Abstract. Modified Augmented Lagrangian Genetic Algorithm (ALGA) and Quadratic Penalty Function Genetic 
Algorithm (QPGA) optimization methods are proposed to obtain truss structures with minimum structural weight using 
both continuous and discrete design variables. To achieve robust solutions, Compressed Sparse Row (CSR) with 
reordering of Cholesky factorization and Moore Penrose Pseudoinverse are used in case of non-singular and singular 
stiffness matrix, respectively. The efficiency of the proposed nonlinear optimization methods is demonstrated on several 
practical examples. The results obtained from the Pratt truss bridge show that the optimum design solution using discrete 
parameters is 21% lighter than the traditional design with uniform cross sections. Similarly, the results obtained from the 
57-bar planar tower truss indicate that the proposed design method using continuous and discrete design parameters can 
be up to 29% and 9% lighter than traditional design solutions, respectively. Through sensitivity analysis, it is shown that 
the proposed methodology is robust and leads to significant improvements in convergence rates, which should prove 
useful in large-scale applications. 

Keywords: structural optimization, finite element analysis, augmented Lagrangian, quadratic penalty function, hybrid 
genetics algorithm. 

Introduction  

 
Structural optimization techniques are effective tools that can be used to obtain lightweight, low-cost and high 
performance structures. Optimum design of truss structures has been widely studied by many researchers as they 
represent a common and complex category of engineering structures. The size and topology optimization of truss 
structures is a mixed variable optimization problem, which deals simultaneously with discrete and continuous design 
variables (�ilih et al. 2010). Such problems are usually non-convex by nature and, therefore, must be solved by 
appropriate optimization methods. Topology optimization studies are usually based on the assumption of an initial 
ground structure that contains all possible joints and members. While most of conventional mathematical optimization 
methods are suited and developed for continuous design variables (e.g. Hajirasouliha et al. 2011), in practice many 
structural design variables are chosen based on discrete values due to manufacturing constraints. Zhang et al. (2013) 
presented a comprehensive study on discrete optimization using generalized shape function-based parameterization. 
Genetic algorithms (GAs) have been recognised as one of the most powerful stochastic optimization methods for 
optimum design of truss structures, where the search space involves both discrete and continuous domains (Adeli, 
Sarma 2006). GA, in general, represents adaptive search techniques that simulate natural inheritance by adopting 
appropriate models based on genetics and natural selection. Rahami et al. (2008) applied a combination of force 
method, energy concept and GA for optimum design of different types of truss structures. They included the material 
and geometric nonlinearity, which are essentially important in the seismic deign of structures. Hasançebi (2007) used a 
different method for optimization of truss bridges by combining various variable-wise versions of adaptive evolution 
strategies under a common optimization routine. They carried out size and shape optimizations by using discrete and 
continuous evolution strategies, respectively. Ant System algorithm is another method that is used by Luh and Lin 
(2008) to find optimal truss structures for achieving minimum weight under stress, deflection, and kinematic stability 
constraints. The results of their study indicated that multiple truss topologies with almost equal overall weight can be 
found concurrently as the number of members in the ground structure increases. Dede et al. (2011) combined GA with 
value and binary encoding for continuous and discrete optimization of trusses to minimize structural weight based on 
stress and displacement constraints. They showed that the value encoding method requires less computer memory and 
computational time to achieve optimum solutions. 

This paper aims to develop an efficient hybrid GA method for size and topology optimization of truss structures 
using both continuous and discrete design variables. To achieve a good convergence, binary, integer and floating-point 
encoding is utilized. Hybrid GA is introduced to overcome inequality and equality constraints applied to the structure. 
Augmented Lagrangian Genetic Algorithm (ALGA) and Quadratic Penalty Function Genetic Algorithm (QPGA) 
methods are proposed for continuous and discrete non-linear optimization of truss structures, respectively. For size 
optimization, the cross-sectional areas of the members are selected as design variables, while topology optimization is 
associated with connectivity of the elements between the nodes. The efficiency of the proposed methods to obtain 
reliable optimum solutions is investigated through sensitivity analysis.    
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1. Optimization methodology 

1.1. Objective function 

 
There are several criteria for optimum design of truss structures including weight, cost, displacements, maximum 
stresses, bucking strength, vibration frequencies, or any combination of these parameters. In this study, the objective 
function is to minimize the weight of the structure, as shown in Eqn (1): 

݁ݖ݅݉݅݊݅ܯ                 ୮(ܣ)݂ =  ேୀଵܣܮߩ  ,              (1) 

where N is the number of truss structural members, ߩ is the density of the material, p is the optimum possibility for the 
weight function, L is the length of each truss member, and A is the cross-sectional area of the members.  

During optimization process, Ai can either be continuous, chosen to be random number within a set region or can be 
discrete values extracting from cross-section types available in the market. The Augmented Lagrangian method is 
applied for solving the constrained optimization problem. To allow non-linear constraints, Karush-Kuhn-Tucker (KKT) 
conditions are utilized. Therefore, to minimise the objective function, the following KKT equation should be satisfied:  

(כܣ)݂ߘ + σ  ேୀଵߣ ߘ. ݃(כܣ) + σ ேୀଵߛ (כܣ)݄ߘ. = 0;                        

Subject to: ߛ .݄(כܣ) = 0, ݅ = [1: ܰ] & ߣ  0, ݅ = [1: ܰ],    (2)                                                            

where ߣ is Lagrange multipliers, ݂(ܣ) is the objective function, ݃(ܣ) and ݄(ܣ) are inequality and equality constraint 
functions, respectively. Also, ܰ and ܰ denote the numbers of inequality and equality constraints, respectively.  
 

1.2. Constraint handling 

In this study, the constraints were basic nodes, structural stability, member stress, nodal displacement, and buckling 
strength. Structural stability of the truss was also examined for external and kinematic stability. Using GA concepts, 
topological instability in each chromosome was determined before structural analysis. The penalty function was 
allocated to the related chromosome in the unstable truss structure. The kinematic stability of structure should have a 
symmetric and positive definite stiffness matrix in Cholesky method. Therefore, the Cholesky approach for the stiffness 
matrix [K] was employed for the internal instability checks during the optimization process. In connection with member 
stress, the stress resulting from design load combinations should be within allowable limits, according to the materials 
used. In this study, a number of penalty functions were determined with regard to allowable tension and compressive 
stress of the truss members. If any one of the constraints is not satisfied, a penalty function is assigned to the related 
chromosome by using Eqn (3):    

ଵܲ(ܣ;ܺ = (݉ܥ,݊݁ܶ = ݔܽ݉ ൬ฬఙ() ఙೌ (௫)
െ 1ฬ , 0൰ ,          (3)                       

where the ith member can be under tension or compression,  ଵܲ(ܣ,ܺ) is the penalty function value for the stress, ߪ and ߪ are the member stress and allowable stress, respectively. In this study, FE analysis was used to calculate the member 
stress and nodal deflection of the truss structure in the optimization process. Similar to the stress constraints, if any one 
of the displacement constraints is not satisfied, a penalty function for the vertical displacement is assigned to the related 
chromosome by using Eqn (4):  

ଶܲ(ܣ) = ݔܽ݉ ൬ฬοοೌ െ 1ฬ , 0൰ ; ݅ = 1, � , ܰ௧  ,             (4) 

where ଶܲ(ܣ) is the penalty value of the active nodal displacement, ο  is the displacement in the direction of the degree 
of freedom, and ο is the allowable displacement in the direction of the degree of freedom.  

In general, the failure of a truss structure could be due to failure of a structural component, material failure or 
structural instability. In this study, tubular hollow sections were used for all truss members with outer width (d), inner 
width (c) and sectional thickness (t). The buckling strength of each member was calculated based on the ratio of inner 
width (c) to sectional thickness (t) according to Eurocode 3 (2010). Cross sections were placed into one of four 

behaviour classes in Eurocode 3 (2010) defined by 
ௗ௧×ఌమ, in which İ is ඥ235/ ௬݂. To avoid buckling in the compressive 

members, the following criterion should be satisfied:  

ݔ                       =
ேಶವே್.ೃ  1.0,                                        (5) 



where ாܰௗ is the design axial load and Nୠ,ୖୢ is the member buckling resistance determined based on the following 
equation: 

                ܰ,ோௗ = { 
ఞఊಾభ  , 

ఞఊಾభ  },                              (6) 

where the first term corresponds to Classes 1, 2 and 3 of the Eurocode 3 (2010) cross sections, while the second term is 
for Class 4 sections. Also, Ȥ is the reduction factor of the relevant buckling mode, A is the gross area, ܣ is the 
reduced effective area, and ߛெଵ is the partial safety factor for buckling resistance calculations. For members under 
compression, the value of Ȥ should be determined for the appropriate non-dimensional slenderness ratio ߣҧ from the 
relevant buckling curve, according to Eqn (7):        

                              ߯ =
ଵఝାඥఝమିఒഥమ ; ߯  1.0,                  (7) 

where ɔ = 0.5උ1 + Ƚ(ɉത െ 0.2)ɉതଶඏ and ɉത = { ට౯ౙ౨  , ට౯ౙ౨  } where the first term is applied for Class 1, 2 or 3 and the 

second term is applied for Class 4 cross sections. Nୡ୰ is the elastic critical bucking load based on the gross cross-

sectional properties, Nୡ୰ =
మ୍మ . The imperfection factor, Ƚ, depends on the cross-section type. In this study, Ƚ was 

considered to be 0.49. Based on Eurocode 3 (2010), for ɉത less than or equal to 0.2, buckling effects can be ignored. 
 

1.3. Augmented Lagrangian Genetic Algorithm (ALGA) for continuous optimization approach 

 
ALGA was used for solving nonlinear optimization of truss structures with nonlinear constraints. This method helps to 
avoid conducting extensive numerical calculations to find the appropriate value for the penalty function coefficient. In 
this way, each constraint is separately allocated to its own adjusted penalty function coefficient. The advantage of using 
ALGA in comparison with QPGA is to include a set of Lagrange Multipliers, instead of a single coefficient penalty 
function. The fitness function and nonlinear constraint functions are combined by using the Lagrangian and the penalty 
parameters for a sequence of sub-problems. Subsequently, each sub-problem is solved by using genetic algorithm. The 
algorithm starts by setting an initial value for the penalty parameter (i.e. initial penalty). The sub-problem formulation is 
defined by Eqn (8): 
 

ĳ(A, Ȝ, s, Ɍ)= f(A)୮ �σ ɉ୧s୧ log(s୧ െ g୧(A)) + σ ɉ୧g୧(A)୫୲୧ୀ୫ାଵ୫୧ୀଵ +
ஞଶσ g୧(A)ଶ୫୲୧ୀ୫ାଵ ,                            (8)     

 
where m and mt are the number of nonlinear inequality constraints and the total number of nonlinear constraints, 
respectively. The components ɉ୧ of the vector Ȝ are known as Lagrange multiplier estimates, the elements s୧ of the 
vector s are nonnegative shifts, and ȟ is the positive penalty parameter. 
 

1.4. Quadratic Penalty Function Genetic Algorithm (QPGA) for discrete optimization approach 
 
The constrained optimization problems can be converted into unconstrained problems using the QPGA method. This 
approach requires the selection of a penalty function coefficient. In this study, the penalty function is defined by Eqn 
(9): ɔഥ(A, ɀ) = L f(A)୮ + ɀଵ ቊσ max ൬ ||หห െ 1, 0൰൨ଶ୧ + ɀଶσ ݉ܽݔ ൬ |ο|หοห െ 1, 0൰൨ଶ୧ ቋ  ,                                         (9) 

 
where ߛଵ,   is the factor for normalizing the objective function, N is theܮ ,ଶ are the penalty function coefficientsߛ
number of design variables, M is the number of degrees of freedom, ߪ is the maximum stress in the ith

 member, and ߜ 
is the displacement of each node in vertical direction. Since discrete optimization indicates greater sensitivity on nodal 
displacements, Eqn (10) is introduced to obtain fast convergence: 
 
ĳ(ܣ, (ߛ = 10 × {max(|ߜ|) െ {ߜ  + 10 × max  {݂(A)୮୫ୟ୶ െ (W)୮, 0} + 10ି୫ ത߮(ܣ,  (10)            ,(ߛ
 
where n, k and m are penalty coefficients considered to be 8, 2 and 5, respectively. 
 

1.5. Procedure for obtaining the optimum solution 

 
Figure 1 shows the flowchart of the proposed optimization methods. In the adopted GA optimization approach, the 
population size, maximum number of generations, stall generation and stall time limit generation were 40, 200, 50, and 
200, respectively. Additionally, the penalty coefficient and the tolerance of the nonlinear constraint violation in the 
optimization process were considered as 100 and 1e�6, respectively. The method starts from an optimal population 



represented by the cross-sectional areas, that minimises the objective function to a required accuracy. Then, the solution 
is filtered into FE modeling to be kinematically stable, i. e., until Gruber�s criterion is satisfied and the existence of the 
basic nodes can be checked out by the model. Subsequentely, different configurations are created by GA procedure. The 
kinematic stability and buckling of the structure is then verified by the Cholesky factorization within the global stiffness 
matrix. The process reiterates by assigning an initial population based on the optimal solution founded in the first step 
of optimization. The effeciency of the successive model is then improved by updating the initial population using the 
last optimum encountered solutions. The maximum numer of iterations, Nmax, was set to be 10. Since the unconstrained 
stiffness matrix is a sparse banded, symmetric and positive definite matrix, it is possible to reduce arithmetic operations 
by using Cholesky factorization. However, density of the Cholesky factorization affects the computational time and 
cost. Furthermore, for sparse matrices, iterative methods need to be considered to improve the efficiency of the 
optimisation process. As a result, the full stiffness matrix O(N3) can be reduced to O(N), where N is the size of the 
matrix. In this way, the computational time can be reduced more than 5 times (Jhurani, Demkowicz 2012). In this paper, 
Compressed Sparse Row (CSR) format and reordering of Cholesky factorization of stiffness matrix by symmetric 
approximate minimum degree permutation is used. Furthermore, in the case of the singular finite element stiffness 
matrix, Moore Penrose Pseudoinverse though developed Singular Value Decomposition (SVD) is employed. 

 
Fig. 1. The flowchart of the proposed optimization process 

 

2. Case study examples 

2.1. Benchmark case study 

 
The performance of the proposed optimization method is tested for the benchmark 10-bar cantilever truss shown in 
Figure 2. The results are compared with several other research studies using both discrete and continuous design 
variables. 

 
 

Fig. 2. Geometry of the benchmark 10-bar truss 



Continuous and discrete variables were represented by float and permutation coding, respectively. The objective 
function is to minimize total mass or equivalently, the cross sectional area of the truss members subjected to design 
constraints. For discrete design variables, the cross-sectional areas were selected from the following 32 predefined 
sections:{10.452, 11.613, 15.355, 16.903, 18.581, 19.935, 20.193, 21.806, 23.419, 24.774, 24.968, 26.968, 28.968, 
30.968, 32.064, 33.032, 37.032, 46.580, 51.419, 74.193, 87.097, 89.677, 91.613, 100, 103.226, 121.290, 128.387, 
141.935, 147.742, 170.967, 193.548, 216.129} cm2. For continuous optimization, the lower and upper bounds of the 
cross-section areas varies between 0.645 and 64.516 cm2. 
 

2.1.1. Size optimization using continuous cross-sectional areas 

 
In this section, size optimization was conducted to determine the optimal cross-sectional area of each member with a 
continuous float value. In this study, mild steel was used in the truss elements. To take into account the nonlinear 
constraints applied to the structure, ALGA optimization method is utilized. Table 1 shows the comparison of size 
optimization results with those of other research studies. The results of this study for minimum displacement and 
minimum weight are shown in the present work (1) and present work (2) columns, respectively. It should be noted that 
some of the studies (e.g. Romero et al. 2004) did not consider displacement constraints in the optimization process and, 
therefore, obtained structures with less structural weight. 
 
Table 1. Comparison of the continuous size optimization results with other references (Max y-displacement: 17.78 cm) 

Area Auer 

(2006) 

Romero et al. 

(2004) 

Burton 

(2004) 

Haftka, 

Gurdal 

(1982) 

de Souza 

and 

Fonseca 

(2008) 

Present Work (1) Present Work (2) 

A1 0.645 0.645 0.645 0.645 0.645 0.645 0.645 
A2 0.645 0.645 0.645 0.645 0.645 1.419 1.587 
A3 0.751 0.645 0.903 0.903 0.839 1.710 2.303 
A4 35.878 35.928 23.742 23.742 24.903 36.161 38.071 
A5 25.370 25.405 52.258 25.161 25.161 31.632 27.716 
A6 0.645 0.645 0.645 0.645 0.645 0.645 0.645 
A7 51.177 51.212 50.968 50.968 50.968 53.503 55.722 
A8 35.878 35.928 35.548 35.548 35.613 36.581 37.993 
A9 37.114 37.063 37.419 37.419 37.290 31.110 28.077 

A10 52.050 52.013 25.161 52.258 52.193 48.574 48.852 
Weight (Kg) 722.765 722.647 679.251 679.251 682.783 723.118 723.125 

Max Disp. (cm) 18.2880 18.2880 22.0675 20.5740 20.2743 17.5971 17.3965 
Max Stress(MPa) 172.368 172.372 352.463 258.372 246.762 215.582 224.459 

 

2.1.2. Size optimization using discrete cross-sectional areas  

 
By considering discrete values as design variables, the cross-sectional areas are to be chosen from a set of discrete 
values of commercially available sizes presented in Section 2.1. Table 2 shows the comparison of size optimization 
results in this study with results from literature. Similar to the previous case, the optimum design for minimum 
displacement and minimum weight in this study are given in the present work (1) and present work (2) columns, 
respectively. As expected, Table 2 shows that according to the release of the displacement constraints, lighter structures 
may be achieved. However, the optimum solution in this case may not satisfy the maximum displacement limits (see 
Wu and Chow (1995) results in Table 2). 
 
Table 2. Comparison of the discrete sizing optimization results with other references (Max y-displacement: 5.08 cm) 

Area Wu and 

Chow 

(1995) 

Rajeev and 

Krishnamoorty 

(1992) 

Rahami et 

al. (2008) 

Li et al. 

(2009) 

de Souza 

and 

Fonseca 

(2008) 

Present Work (1) Present Work(2) 

A1 10.452 10.452 11.613 10.452 10.452 18.581 11.613 
A2 10.452 10.452 10.452 11.613 10.452 24.774 23.419 
A3 15.355 16.903 11.613 19.935 10.452 24.968 21.806 
A4 121.290 128.387 141.935 141.935 141.935 121.290 128.387 
A5 91.613 100.000 87.097 100.000 100.000 87.097 87.097 
A6 11.613 10.452 10.452 10.452 10.452 10.452 16.903 
A7 170.967 216.129 193.548 193.548 193.548 193.548 216.129 
A8 103.226 128.387 121.290 121.290 141.935 121.290 121.290 
A9 33.032 91.613 74.193 74.193 51.419 87.097 74.193 

A10 103.226 141.935 193.548 170.967 170.967 147.742 170.967 
Weight (Kg) 1985.009 2546.393 2531.842 2537.140 2492.632 2489.882 2568.985 

Max Disp. (cm) 6.6462 5.0820 5.0762 5.0665 5.0889 5.2730 5.0825 



2.1.3. Size and topology optimization using discrete cross-sectional areas  

 
The objective of the topology optimization in this study is to obtain a truss structure with optimum layout that satisfies 
all design constraints using minimum structural weight. The topology optimization process starts with an initial ground 
structure that contains all possible joints and members, followed by eliminating inefficient members, taking into 
account the instability effect. Variables involved in the optimization process can be 1 or 0 values, representing the 
presence or absence of the element. The truss structures with fewer structural members are encouraged by assigning 
smaller penalty function values, while higher penalty values are used for truss structures with larger number of 
connectivity. The penalty constants in this study were assigned as �103 and 103 for eliminating or adding a member, 
respectively. Table 3 compares results obtained by the proposed algorithm with other references. The optimal design for 
the minimum displacement and weight is shown in present work (1) and present work (2) columns, respectively. 
 

Table 3. Comparison of the discrete size and topology optimization results with other references (Max y-displacement: 5.207 cm) 
Area Rajan 

(1995) 

Tang et al. 

(2005) 

Rahami et 

al. (2008) 

Present Work (1) Present Work (2) 

A1 0 0 0 0 0 
A2 0 0 0 0 0 

A3 0 0 0 0 0 

A4 141.935 121.290 141.935 103.226 121.290 

A5 100.000 91.613 100.000 91.613 100.000 

A6 0 0 0 0 0 

A7 193.548 193.548 193.548 193.548 170.967 

A8 141.935 128.387 128.387 147.742 121.290 

A9 46.581 51.419 46.581 46.581 37.032 

A10 128.387 170.967 128.387 147.742 216.129 

Weight (Kg) 2250.769 2232.240 2202.280 2160.752 2233.719 

Max Disp. (cm) 5.2578 5.2070 5.2034 5.4074 5.2675 

 

2.1.4. Sensitivity analysis of 10-bar truss structure 

 
In the following, the response of the optimal area distribution to an adjustment of constraints (perturbation) for the 10-
bar truss benchmark is performed. This is achieved by simultaneously increasing the cross-sectional area of members 7 
and 10 (highest and lowest cross-sectional area). Figure 3 presents the maximum nodal displacement of the truss 
structure with respect to the cross-sectional area of the member 7 and 9, respectively. It is shown that the gradient of 
maximum displacement reaches the minimum value for cross-sectional area equal to 115.48 cm2 (17.9 in2) and 71.61 
cm2 (11.1 in2) in members 7 and 10, respectively. Maximum displacement at this point is 7 cm (2.77 in), which is 
around 33% above the optimum solutions shown in Table 2. The results also indicate that the maximum displacement is 
more sensitive to the variations in the cross-sectional area of member 9 compared to member 7. Subsequently, 
maximum displacement corresponding to member 9 reaches the constant value earlier than member 7. 

 

 

Fig. 3. Stress behaviour and displacement behaviour due to increasing the cross-sectional area of members 7 and 10 

 

 



2.2.   Optimum results for 61-bar Pratt truss bridge 

 
As another challenging test example for evaluation of the robust design optimization, the long span 61-bar Pratt truss 
bridge with 80 m floor deck illustrated in Figure 4a is considered.  
 

 

Fig. 4. (a) Geometry of 61-bar Pratt truss bridge and structural deformation of traditional design; (b) Comparison between optimum 
design solutions using five different sets of initial cross sectional areas (1st to 5th run) with the traditional design.  
 

All members in the Pratt truss bridge were assumed to be made from the mild steel with E and ɏ equal to 210 GPa 
and 7860 Kg/m3, respectively. Available cross-sectional areas corresponding with discrete optimization are selected 
from a set of 29 discrete values of Ai א S ={0.157, 0.404, 0.384, 0.364, 0.331, 0.309, 0.324, 0.291,0.278, 0.269, 0.254, 
0.232, 0.212, 0.207, 0.198, 0.122, 0.116, 0.104, 0.092, 0.087, 0.081,0.075, 0.063, 0.057, 0.054, 0.049, 0.046, 0.040, 
0.026} (m2). The allowable stress (compression and tension) and the maximum deflection at mid-span constraints are 
considered to be 150 MPa and 3.5 cm, respectively. 

The bridge is assumed to be a dual-carriageway road with 2 lanes in each direction. The permanent load, including 
steel weight, surface and parapet, was 56 kN/m. The live load, including UDL and tandem system, was 45 kN/m. The 
maximum combination of the permanent load and live load was 127 kN/m by assuming the permanent and live factors 
as 1.20 and 1.35, respectively. Figure 4a shows typical deformations of the traditional analysis using the same cross-
sectional area (0.257 m2). Results obtained by the proposed discrete nonlinear approach are given in Table 4. The 
obtained results confirm that the proposed method not only reduces the structure weight but also significantly improves 
displacement and members stresses. It should be noted that the proposed algorithm leads to lighter weight, i.e., 21% less 
than traditional design. Also, the maximum displacement and maximum member stress ratio for discrete optimization 
was 16% and 33% less than the traditional design, respectively. 

 
2.2.1. Convergence proof and sensitivity analysis 

 
This section analyses the robustness and accuracy of the proposed method for the 61-bar Pratt truss bridge presented in 
Figure 4a. Optimum values of total weight and maximum deflection using initial population size as cross sectional area 
(1st to 5th run) are presented in Figure 4b. Numerical results indicate that the proposed method has better accuracy and 
robustness compared to the traditional design methods. 

For better comparisons, Figure 5a shows the convergence curves of the Pratt truss as an average of four different 
runs and two cases. In the first case, sensitivity analysis was carried out for all members in the structure by increasing 
their cross-sectional areas by the ratio of ߲ݔ߲/(ݔ)ܣ , which was defined as 1 mm2. In the second case, top and bottom 
chords are considered to have greater areas than braces areas, i.e., A+13 mm2, A+3 mm2 and A, respectively (see Fig. 
4a). Sensitivity analysis was then carried out by increasing the cross-sectional area of the members A by the ratio of μA(x)/ μx  equal to 1 mm2. Figure 5b shows the maximum joint displacement with respect to weight, where the red and 
green lines correspond to the first and the second case, respectively. It is shown that the second case leads to better 
design solution in terms of displacement and weight compared to the first case. 

 
 
 
 
 
 
 
 
 
 



Table 4. Optimum design results for the Pratt Truss Bridge using different types of design variables (Max y-displacement: 3.5 cm) 
Design Traditional Discrete Design Traditional Discrete 

Variables (cm²) variables Variables Variables (cm²) variables Variables 
1 2570 3088 32 2570 3840 
2 2570 3088 33 2570 486 
3 2570 865 34 2570 2320 
4 2570 2540 35 2570 571 
5 2570 2320 36 2570 4040 
6 2570 2776 37 2570 924 
7 2570 2074 38 2570 2120 
8 2570 3308 39 2570 625 
9 2570 2908 40 2570 3840 
10 2570 2074 41 2570 1158 
11 2570 1158 42 2570 1217 
12 2570 4040 43 2570 805 
13 2570 3240 44 2570 3640 
14 2570 745 45 2570 2120 
15 2570 1570 46 2570 541 
16 2570 4040 47 2570 1042 
17 2570 1981 48 2570 3088 
18 2570 865 49 2570 2320 
19 2570 1981 50 2570 625 
20 2570 3840 51 2570 1981 
21 2570 924 52 2570 3240 
22 2570 1570 53 2570 2688 
23 2570 456 54 2570 2320 
24 2570 4040 55 2570 2120 
25 2570 865 56 2570 3088 
26 2570 2074 57 2570 2688 
27 2570 486 58 2570 3308 
28 2570 4040 59 2570 625 
29 2570 625 60 2570 2776 
30 2570 2320 61 2570 3840 
31 2570 401       

weight (Kg)       793135.0 626506.4 
Displacement(cm)       4.01 3.38 

Sigma(MPa)       56.476 37.798 

 

Fig. 5. Typical convergence curves of the optimization model (a) Maximum joint displacement sensitivity of Pratt truss bridge (b) 
 
 

2.3. Optimum design of 57-bar planar tower truss 

 
The efficiency of the proposed method is studied for a large scale structures, the 57-bar space transmission tower shown 
in Figure 6a. All members were assumed to be made from the mild steel with E equal to 210 GPa, ߩ equal to 7860 
Kg/m3, ߪ(compression and tension) equal to 147.15 MPa and ߜ max equal to 2.05 mm. Available cross-sectional areas 
corresponding with discrete optimization under the applied loads were taken from CE Marked Structural Sections 
(2013) using a set of 57 discrete values of Ai א S = {0.048 , 0.057, 0.059, 0.063, 0.066, 0.069, 0.082, 0.082, 0.087, 
0.094, 0.101, 0.11, 0.115, 0.119, 0.123, 0.132, 0.141, 0.143, 0.151, 0.155, 0.167, 0.179, 0.187, 0.192, 0.206, 0.212, 
0.218, 0.227, 0.251, 0.254, 0.262, 0.264}×10�2 m2. 

                                 (a)                                                                      (b)  
     



 

Fig. 6. (a) The geometry of the 57-bar planner truss; (b) Structural deformation with considering buckling analysis; (c) Maximum 
nodal displacement sensitivity analysis 

 
For continues variable optimization, cross-sectional area of each member was selected in the range of 0.00001 to 0.1 

m2. Buckling analysis was performed for this example under external loads shown in Figure 6a to calculate the critical 
loads which can cause instability and collapse in the whole structure. The buckling load (i.e. critical load at which the 
structure would buckle) was calculated based on eigenvalue analysis, and determined as 2.04 kN. Figure 6b shows the 
structural deformation under design loads by taking into account the buckling effects. Table 5 compares the results of 
optimization using continues and discrete variables with the traditional design solution using uniform cross-sectional 
areas. It is shown that optimization of truss topology using continuous and discrete variables leads to 29% and 9%, 
respectively, savings in the total structural weight when compared to the conventional design. Furthermore, Table 5 
shows that the optimal design based on discrete optimization approach resulted in 27% and 42% less displacement and 
member stress compared with the traditional design, which highlights the efficiency of the proposed method in practical 
applications. Figure 6c presents the maximum nodal displacement of the 57-bar planar tower truss as a function of 
structural weigh. Through fitting curve approach, it can be observed that ܹ × ο௫= 14.46 and correspondingly, ܹ × ௫ߪ = 8 × 10଼. As a result, 

ఙೌೣοೌೣ  has a constant value of 5.532 × 10. This means that there is a linear 

relationship between the maximum nodal displacement and maximum member�s stress, which can be used for practical 
design purposes. 
 

Summary and conclusions  

 
In this study, modified Augmented Lagrangian Genetic Algorithm (ALGA) and Quadratic Penalty Function Genetic 
Algorithm (QPGA) optimization methods were developed for size and topology optimization of truss structures to 
obtain acceptable design solutions with minimum structural weight. The proposed method was validated by optimizing 
a 10-bar truss structure, a Pratt truss bridge and a 57-bar planar tower truss using both discrete and continuous variables. 
The numerical examples verified the feasibility of the developed algorithm, and indicated that the adopted method can 
significantly reduce the structural weight and maximum deflection of the conventional design. It was shown that the 
optimal design solution for the Pratt truss bridge using discrete optimization is 21% lighter than the traditional design, 
while it will also exhibit 16% and 33% less maximum joint displacement and maximum member stress under the design 
loads, respectively. The size and topology optimization of the 57-bar planar tower truss through continuous and discrete 
optimization also resulted in 29% and 9% lighter structures than traditional design, respectively. Several sensitivity 
analyses were conducted to show the robustness and reliability of the proposed optimization methods, which should 
prove useful in optimum design of large-scale truss structures.  
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