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ABSTRACT

In this paper we argue that the solar activity record, as revealed by telescopic observa-
tions and proxy data from the abundances of cosmogenic isotopes, is consistent with
the action of a deterministic nonlinear chaotic dynamo. In particular we claim that
the long timescale ‘super-modulation’ apparent in the isotopic record can be ascribed
to switching of the dynamo between two different modulational patterns. The first
(which is currently in operation) involves deep grand minima and occasional changes
in symmetry triggered by these minima. The second, which exhibits only weak mod-
ulation and no grand minima, arises as a consequence of symmetry breaking. These
processes are demonstrated for highly idealized simple models of the nonlinear dynamo
equations.
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1 INTRODUCTION

Although the eruption of individual active regions at the
solar surface can only be modelled as a stochastic process,
the overall pattern of cyclic magnetic activity shows sys-
tematic reversals of the toroidal field that demand a dif-
ferent approach. As first proposed by Zeldovich, Ruzmaikin
and Sokoloff (1983), the smoothed cycles have to be treated
as nonlinear oscillations – and their aperiodic modulation
should be represented within the framework of nonlinear
dynamics, rather than as a consequence of random pertur-
bations (e.g. Weiss 1985, 2010). The earliest telescopic ob-
servations of sunspots in the seventeenth century revealed
considerable activity, which was interrupted by the Maunder
Minimum (Eddy 1976; Thomas & Weiss 2008), as recently
confirmed by the detailed study of Usoskin et al. (2015).
Proxy measurements of the abundances of the cosmogenic
isotopes 14C (in tree rings) and 10Be (in polar ice cores) con-
firm that similar grand minima have recurred aperiodically
over the past 10,000 years (e.g. Usoskin 2013). Simplified
nonlinear models of the solar cycle, governed by ordinary
differential equations, imply that this modulation is an ex-
ample of deterministic chaos with sensitive dependence on
initial conditions (e.g. Tobias, Weiss & Kirk 1995; Knobloch,
Tobias & Weiss 1998; Tobias 2002; Spiegel 2008; Weiss &
Thompson 2008), while similar patterns of behaviour also
appear for models based on nonlinear partial differential
equations (e.g. Tobias 1997; Küker, Arlt & Rüdiger 1999;
Pipin 1999; Weiss 2005, 2010; Bushby 2006; Tobias & Weiss
2007a,b).

Solutions that are governed by partial differential equa-
tions follow chaotic trajectories in the phase space of the
system and stochastic perturbations (provided that they
are not too large) merely shift a solution to the neighbour-
hood of a nearby chaotic trajectory, representing a chaotic
solution that shadows the actual behaviour of the system
(Ott 1993). Within the phase space there are several in-
variant subspaces: one is the (nonmagnetic) hydrodynamic
subspace, which becomes unstable to magnetohydrodynamic
(MHD) perturbations if dynamo action sets in. In the sim-
plest case, where the large-scale fields are rendered axially
symmetric, there are two distinct invariant MHD subspaces,
one with dipole symmetry and toroidal magnetic fields that
are antisymmetrical about the equator, and the other with
quadrupole symmetry and toroidal magnetic fields that are
symmetrical. Both of these subspaces are contained in a gen-
eral MHD subspace that includes large-scale fields for which
these symmetries are broken (Tobias & Weiss 2007b). Dipole
or quadrupole symmetry may then give way to more gen-
eral mixed-mode solutions that lack any form of symmetry
about the equator.

The Sun’s magnetic activity is typical of that in a slowly
rotating late-type star with a deep convective zone (Baliu-
nas et al. 1995; Wright 2004; Santos et al. 2010). The 11-
year Schwabe activity cycle corresponds to distributions of
sunspots that are approximately symmetrical about the so-
lar equator (e.g. Arlt et al. 2013). Strict symmetry is vio-
lated owing both to the quasi-random emergence of sunspots
and to the chaotic behaviour of the overall cycle. Similarly,
although the Sun’s poloidal magnetic field is, on average, an-
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2 N.O. Weiss and S.M. Tobias

Figure 1. Observed incidence of sunspots from 1670 to 1800,
shown as an incomplete butterfly diagram. Results up to 1719
cover the latter part of the Maunder Minimum, when there is
a hemispheric pattern, and the first weak normal cycle (Ribes &
Nesme-Ribes 1993). The observations by Staudacher (Arlt 2009a)
combined with those of Zucconi (Cristo et al. 2011) and Hamil-
ton (Arlt 2009b) show the return to cyclic behaviour up to the
Dalton Minimum at the end of the 18th century. Note, however,
the non-standard pattern of Cycle 1, around 1760: like Cycle 0,
spots are most frequent at the equator; they appear more or less
simultaneously at all latitudes and there is no evidence of the
characteristic butterfly pattern. Arlt suggests that this results
from a brief excursion from dipolar to quadrupolar symmetry of
the Sun’s magnetic field. (After Arlt & Weiss 2015.)

tisymmetrical about the equator, this antisymmetry breaks
down around the times of sunspot maximum, when the
dipole field reverses. As is only to be expected, the fields
near the two poles become decoupled and one reverses be-
fore the other, leaving a poloidal field that is temporarily
quadrupolar – while the toroidal field remains very definitely
dipolar (DeRosa, Brun & Hoeksema 2012). Nevertheless, the
long-term dipole symmetry is fairly soon restored.

The temporal behaviour of sunspots follows Maunder’s
characteristic butterfly pattern, with fields whose dipole
symmetry reverses from one cycle to the next, giving rise
to the 22-year Hale magnetic cycle. This pattern was inter-
rupted during the Maunder Minimum in the seventeenth
century: scarcely any spots were seen between 1660 and
1671, and almost all those detected by regular observations
at the Paris Observatory between 1670 and 1715 lay in the
southern hemisphere of the Sun (Ribes and Nesme-Ribes
1993), as shown in Fig. 1. Such hemispheric behaviour is
characteristic of a mixed-mode pattern (Sokoloff & Nesme-
Ribes 1994). Since then, the averaged sunspot distributions
have normally been symmetric about the solar equator, with
activity starting at intermediate latitudes and spreading
poleward as well as towards the equator. The dipole sym-
metry implies that there are scarcely any spots at the equa-
tor. Between 1750 and 1775, however, the spot patterns are
anomalous: spots appear more or less simultaneously at all
latitudes and are actually most frequent in the vicinity of
the equator, as shown by Staudacher’s observations in Fig. 1.
This suggests a brief episode with quadrupole symmetry and
sunspot fields of the same sign in both hemispheres (Arlt
2009a). Thus there is evidence of symmetry changes in the
actual sunspot record. Field reversals and associated sym-
metry changes arise also in several related systems, notably
the geodynamo (e.g. Roberts and Glatzmaier 2000; Pétrélis
et al. 2009; Pétrélis & Fauve 2010; Gallet et al. 2012) and

the VKS experiment, where dynamo action is driven by fer-
romagnetic rotors in a tank of molten sodium (Ravelet et al.
2008; Monchaux et al. 2009; Berhanu et al. 2010).

These symmetry changes can conveniently be explored
by studying simple illustrative models, based on appropriate
low-order systems of ordinary differential equations. Such
models will be discussed in Section 3, where we exhibit
examples of cyclic behaviour with dipole, quadrupole and
mixed-mode symmetry and demonstrate not only chaotic
modulation but also transitions from one symmetry to an-
other. These model systems also display two different types
of behaviour (Knobloch, Tobias & Weiss 1998). In the first,
the basic cycle is modulated in amplitude without the ap-
pearance of grand minima, while records of activity in the
second type are punctuated by grand minima, when activity
becomes extremely small. Similar effects can also be found
not only in mean-field models based on partial differential
equations but also in direct numerical simulations, albeit for
parameters far removed from those applicable to the solar
interior (Raynaud & Tobias 2015).

Our aim in this paper is to relate features of the long-
term behaviour of the Sun’s magnetic field over the past
10,000 years to such symmetry changes. With this in mind,
we first summarize, in the next section, the history of solar
activity as deduced from the concentrations of the cosmo-
genic isotopes 14C, in tree trunks, and 10Be, in polar ice cores
(Steinhilber et al. 2012). These concentrations can be mea-
sured with great precision using mass spectrometry or, in
the case of 10Be, the much more accurate technique of accel-
erator mass spectrometry. Here we emphasize the contrast
between episodes that show recurrent Maunder-like grand
minima and intervals when the modulation is much weaker
and grand minima are absent (McCracken et al. 2013a,b).
In the final section, we argue that this long-term pattern
of super-modulation is a consequence of symmetry changes,
most probably from a predominantly dipolar to a mixed-
mode cycle. Correspondingly, there are switches from the
second type of modulation to the first and back again. This
interpretation of the record is the principal result of our pa-
per, some of whose contents were announced in a preliminary
report by Arlt & Weiss (2014).

2 THE PALAEOMAGNETIC HISTORY OF

THE SOLAR CYCLE

In this section we review the long-term records of the abun-
dances of cosmogenic isotopes, specifically of 14C (in tree
trunks) and of 10Be (in polar ice cores, both from Green-
land and from the Antarctic), over the Holocene period
from 9400 BP to the present (Steinhilber et al. 2010, 2012).
These records are summarized in Fig. 1 of McCracken et al.
(2013b). They are based on measurements of the normalized
cosmogenic production rate of 10Be from the GRIP icecore
in Greenland (Yiou et al. 1997; Muscheler et al. 2004), com-
bined with measurements of the Greenland NGRIP, Milcent
and Dye-3 icecores, together with the EDML, South Pole
and Dome Fuji 10Be records from Antarctica, and the pro-
duction rate Q14C of 14C derived from the INTCAL09 14C
record (Reimer et al. 2009). These datasets are combined
using a Principal Components Analysis (Steinhilber at al.
2012; Abreu et al. 2013) to eliminate the effects of local cli-
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Figure 2. The cosmogenic isotope record since 9400 BP (where
0 BP is defined as 1950 CE) expressed relative to the interval
1944–1988. The upper panel shows the combined normalized cos-
mogenic production rate of 10Be and 14C as estimated after a
Principal Components Analysis. The lower panel shows the cor-
responding variation of the Modulation Function Φ, after correc-
tion for estimated changes in the geomagnetic field; note that the
scale is inverted so as to match the variation in radionuclide pro-
duction. Grand minima appear as clusters of upward spikes, lying
within the shaded regions, which are separated by episodes of di-
minished modulation. These clusters are confined to the intervals
that are shaded in the figure. Although the grand minima are not
strictly periodic, they do recur with a well-defined mean period
of around 200 years (the de Vries cycle). (After McCracken et al.
2013b.)

matic variations, and the results are summarized in Fig. 2.
The upper panel shows the result of the Principal Compo-
nents Analysis, which provides the best available measure
of the normalized cosmogenic production of radionuclides
(McCracken et al. 2013b). Most of the long-term variation
is probably caused by changes in the Earth’s magnetic field.
The lower panel shows (on an inverted scale) the Modulation
Function Φ, a measure of the strength of the interplanetary
field that represents the energy lost by a cosmic ray proton
that reaches Earth at 1 AU (Vonmoos, Beer & Muscheler
2006). This record is corrected for estimated changes in the
geomagnetic field (Yang et al. 2000). Both panels display 22-
yr averages and therefore show only longer-term modulation
of the underlying Schwabe and Hale cycles.

The long-term records of cosmogenic abundances that
are compared in Fig. 2 reveal recurrent Maunder-like grand
minima, with a typical spacing of around 200 years (the
de Vries cycle) but these grand minima are themselves con-
fined to clusters (Damon & Sonett 1991; Stuiver & Braziunas
1993). The most recent of these clusters includes the famil-
iar Maunder, Spörer, Wolf and Oort episodes, while clusters
typically recur after around 2300 years (the Hallstatt cycle).
Between these episodes the modulation is much weaker and
grand minima are absent (McCracken et al. 2013a,b). We
shall claim later that this long-term super-modulation re-

Figure 3. Fourier analysis of the modulation function Φ in Fig. 2.
Upper panel: Fourier amplitudes as a function of their periods for
the entire interval. Note the sharp line at the de Vries period of
208 years, and the broad, inadequately resolved peak around the
Hallstatt period of 2300 years. Lower panel: the contrast between
the shaded intervals (with strong modulation) and the weakly
modulated intervening intervals, without grand minima in Fig. 2.
The upper (black) curve shows the spectrum of Φ over the interval
from 6300 BP to 4300 BP. This interval is shaded in Fig. 3 and
it includes between four and six grand minima. The lower (red in
the online version) curve represents the spectrum for the interval
from 4700 BP to 3500 BP, which is devoid of any grand minima.
In both panels the various peaks are labelled by their periods in
years. (After McCracken et al. 2013b)

sults from symmetry changes, most likely from dipolar to
mixed-mode cycles.

Here we focus on the information contained in the
records of cosmogenic abundances in Fig. 2. First of all,
we show in Fig. 3 a periodic analysis of the entire record,
presented as Fourier amplitudes. This spectrum shows some
robust periodicities, most notably the de Vries period of 208
years (which corresponds to the spacing between grand min-
ima). This is a very striking feature of the entire record (Mc-
Cracken et al. 2013b). Given its finite duration, the broad
feature in the Fourier spectrum that is centred on a period
of 2300 years is clearly not adequately resolved. Neverthe-
less, it does match the Hallstatt period that is characteristic
of super-modulation.

2.1 Modulation of cyclic activity through most of

the Holocene

A clearer impression of changes in behaviour can be gained
by separating out the episodes that contain grand minima,
which are shaded in Fig. 2, and contrasting them with the
unshaded intervals where grand minima are lacking. Mc-
Cracken et al. (2013b) focus on the interval 6300–4700 BP,
which includes at least four very prominent grand minima,
and the subsequent interval 4700–3500 BP, during which
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4 N.O. Weiss and S.M. Tobias

there are no recognizable grand minima. The lower panel
in Fig. 3 contrasts the Fourier amplitude spectra for these
two intervals. (The peaks are naturally less well resolved
than those for the full record.) The spectrum for the first
interval shows clear peaks at periods of approximately 140–
150 yr, 208 yr and 350 yr; by contrast, the interval without
grand minima has weaker peaks at 140 yr and 290 yr –
but nothing at all at 208 yr or 350 yr. It is apparent from
Fig. 3 that the two spectra are qualitatively different. (In-
terestingly, however, the Gleissberg period of 88 yr shows
up in both of them.) Taking the whole record in Fig. 2, Mc-
Cracken et al. (2013b) find that the 208 yr de Vries period is
prominent during the intervals that contain grand minima
but absent during those where grand minima are missing. In
other words, the Sun’s cyclic activity shows not only modu-
lation with the occurrence of grand minima and associated
grand maxima but also supermodulation, with episodes dur-
ing which behaviour is qualitatively different and the grand
minima disappear. The challenge for theoreticians is to pro-
vide an explanation for this unexpected behaviour.

3 SYMMETRY PROPERTIES OF

DETERMINISTIC MODELS GOVERNED BY

DIFFERENTIAL EQUATIONS

In this section we explore the properties of some simple de-
terministic dynamo models that shed light on the long-term
modulation of the solar cycle, and emphasize the role of
symmetry changes (Tobias and Weiss 2007a). The simplest
models of stellar dynamos share a similar bifurcation struc-
ture, depending on a dynamo number, D, proportional to
the star’s rotation rate. As |D| is increased from zero succes-
sive Hopf and pitchfork bifurcations give rise to branches of
nonlinear oscillatory solutions, involving dipole, quadrupole,
multipole and mixed-mode solutions, most of which are un-
stable (Jennings & Weiss 1991). These branches form a com-
plicated web and stability is transferred from one branch
to another at symmetry-breaking bifurcations. Generalizing
from these results, it is apparent that oscillatory dynamos
must involve a multiplicity of patterns, only a few of which
are stable. Relevant behaviour has been demonstrated in an
idealized nonlinear Cartesian model, governed by partial dif-
ferential equations (Beer, Tobias & Weiss 1998; Knobloch,
Tobias & Weiss 1998; Arlt & Weiss 2014). The complicated
nonlinear oscillations arise owing to the quadratic back reac-
tion of the Lorentz force on differential rotation in the model
— a deterministic process. These results demonstrate how
cyclic behaviour may be interrupted by grand minima, dur-
ing which symmetry properties are broken. In particular, the
toroidal field may be limited to one hemisphere when the so-
lution is entering or leaving a grand minimum. From time to
time, there may also be a transition from cycles with dipole
symmetry to cycles with quadrupole symmetry — where
toroidal fields appear at the equator as in Fig. 1 – and such
transitions recur throughout the record. When the PDE so-
lutions are projected onto a three-dimensional space, whose
co-ordinates are the dipolar and the quadrupolar magnetic
energies, together with the fluctuating kinetic energy, most
of the behaviour is confined to the dipolar subspace but there
are recurrent excursions into the quadrupolar subspace. In
this representation there are rapid transverse oscillations
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Figure 4. ODE model with three independent stable solutions.
(a) Three-dimensional projection showing a dipolar trajectory (in
blue), a quadrupolar trajectory (in red) and a chaotic mixed-mode
trajectory (cyan). The projection is onto the three-dimensional
space spanned by the rms energies z1, z2 of the dipolar and
quadrupolar fields, and the value v of the symmetric fluctuat-
ing rms velocity. The basic (“Schwabe”) cycles are filtered out,
revealing deep grand minima, but the three solutions coexist and
remain distinct. The co-ordinates denote the rms energies |z1| and
|z2| in the dipole and quadrupole fields as well as the symmetric
velocity v. (b) Variation with time of the parity P , for the mixed-
mode solution only, over a representative interval. Note that the
solution reverts to dipole symmetry as it approaches the origin in
the phase space formed by |z1|, |z2| and v.

that correspond to a “Schwabe” cycle, while the large-scale
modulation represents a “de Vries” cycle.

This structure becomes more apparent when the prob-
lem is reduced to a sixth-order system of ordinary differen-
tial equations. For details of this system, see the Appendix;
from a mathematical point of view it is a simplified version
of the normal form equations that describe a double saddle-
node/Hopf bifurcation (Knobloch, Tobias & Weiss 1998);
the behaviour exhibited by solutions is therefore expected
to be robust. The dipole and quadrupole magnetic fields are
then represented by the two complex quantities z1 and z2,
while the symmetric and antisymmetric velocity components
are represented by the real quantities v and w, respectively

c© 2015 RAS, MNRAS 000, 1–8



Symmetry changes and modulation of cyclic solar activity 5

(Knobloch, Tobias & Weiss 1998). Then the “Schwabe” and
“Hale” cycles can be filtered out by forming |z1| and |z2|, so
that the “de Vries” modulation is more clearly revealed.

In Fig. 4(a) trajectories representing three separate sta-
ble solutions are projected onto the three-dimensional space
whose co-ordinates are |z1| and |z2| (representing the rms
magnetic energies in the dipole and quadrupole fields), to-
gether with the symmetric velocity perturbation v. The
dipole and quadrupole solutions are confined to the planes
—z2| = 0 and |z1| = 0, respectively, while both components
contribute to the noisier mixed-mode solution. Since the ba-
sic “Hale” and “Schwabe” periodicities (of order 0.5 dimen-
sionless time units) have been filtered out, only the long-
term modulation, associated with grand minima and with
characteristic time scales of order 5 dimensionless units, is
revealed. Such behaviour can be summarized by introducing
the parity

P = (EQ − ED)/(EQ + ED), (1)

where EQ = |z2|
2, ED = |z1|

2 are the magnetic energies
of the quadrupole and dipole fields, following Brandenburg
et al. (1989), Knobloch & Landsberg (1996) and Knobloch,
Tobias & Weiss (1998). Thus |P | 6 1 and pure quadrupole
and pure dipole fields have parities +1 and -1, respectively.
Dynamo models allow not only pure dipole or quadrupole
fields but also mixed-mode behaviour, with positive values
for both ED and EQ, as indicated in Fig. 4. If we allow our-
selves to move away from highly symmetric dynamo models
to more general systems we can easily find examples that
possess multiple solutions, with different symmetries present
for the same parameter values. Then we can distinguish be-
tween two different types of modulation. For modulation of
Type 1, the parity varies considerably while the cycles un-
dergo fluctuations that may involve episodes of moderately
reduced activity but without the appearance of deep grand
minima (Knobloch & Landsberg 1996). For modulation of
Type 2 the parity need not vary significantly (except when
the total energy EQ + ED is very small) but grand min-
ima are frequent and flipping of symmetry can occur (as
will be illustrated in Figs. 5 and 7 below). It follows from
this discussion that grand minima can be expected to ap-
pear in nonlinear dynamos; they may also be associated with
changes of parity. When the total energy ED + EQ is very
small, a slight perturbation that favours one or other sym-
metry can easily result in such a parity change.

The lower panel of Fig. 4 shows how the parity P varies
for nearly periodic oscillations of the mixed mode solution,
alternating between vigorous asymmetric behaviour and al-
most dipolar fields as the trajectory approaches the ori-
gin. Fig. 5 illustrates a very different pattern of behaviour,
with a single stable mixed-mode solution that flips between
quadrupole and (almost) dipole symmetry, as demonstrated
by the plot of the parity P in Fig. 5(b). Note that the bursts
of cyclic activity are interspersed with deep grand minima,
as trajectories approach the origin in the 3D phase space
formed by |z1|, |z2| and v. This is clearly an example of
Type 2 behaviour, associated with a global bifurcation at
the origin that leads to chaotic modulation.

Fig. 6 illustrates a very different pattern of behaviour,
with a single stable mixed-mode solution that keeps clear
of the origin but covers a significant range of kinetic en-
ergy, with relatively mild fluctuations in both dipolar and
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Figure 5. As Fig. 4 but for an ODE model with a single sta-
ble solution, in the form of a mixed mode that flips from almost
dipolar to quadrupolar symmetry. (a) A projection showing the
chaotic mixed-mode trajectory, with episodes that lie close to the
dipolar and quadrupolar planes. (b) A section of the record, show-
ing variation of the polarity P , which flips between quadrupole
(P = 1) and dipole (P = −1) symmetries with intervals of mixed-
mode behaviour. (c) The corresponding energies ED and EQ in
the dipole and quadrupole fields, shown in blue and red, respec-
tively, in the online version. Note the presence of recurrent grand
minima as trajectories approach the heteroclinic bifurcation at
the origin in the 3D phase space.
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Figure 6. An example of aperiodic Type 1 modulation for ODEs.
The trajectory corresponds to a chaotic mixed-mode solution that
never approaches close enough to the origin in the 3D phase space
for grand minima to occur. (a) The mixed-mode attractor in the
three-dimensional phase space of the system. The energies vary
significantly and the velocity varies considerably, while the parity
of the mixed mode reverses sign without deviating far from zero,
as shown in panel (b). This example serves as a model for the
Sun’s magnetic behaviour during the unshaded intervals in Fig. 2,
when grand minima are lacking.

quadrupolar magnetic energies. The trajectory is certainly
chaotic but it does not approach the origin: the solution is
therefore of Type 1.

More immediately significant are the model solutions
illustrated in Fig. 7, which display an example of flipping
between a strongly modulated dipole (in blue) and a mixed-
mode solution (in cyan). The energy plots show modula-
tion, associated with grand minima, but the dipole fields
are significantly stronger than the mixed-mode fields, al-
though the latter can swing from pure dipoles to almost
pure quadrupoles, as shown by the parity plot. It is also in-
teresting to note that the minima have a longer recurrence
period in the pure dipole phase than in the mixed phase
for this solution. This example is relevant to the long-term
behaviour of the solar dynamo, as we explain below.
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Figure 7. Type 2 modulation in an ODE model with alternat-
ing, strongly modulated, pure dipole (in blue) and mixed mode
(cyan) solutions. (a) The attractor, showing flipping between the
strongly modulated solutions. (b) The parity P showing an inter-
val of pure dipole behaviour enclosed between episodes of mixed-
mode modulation, which can even approach pure quadrupole be-
haviour. (c) The corresponding magnetic energies in the dipo-
lar and mixed mode solutions over a representative time interval.
Note the presence of recurrent grand minima, interrupted by large
scale episodic bursts, which are more prominent for dipole fields
than for mixed-mode fields.
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Symmetry changes and modulation of cyclic solar activity 7

4 SUPER-MODULATION AND SYMMETRY

CHANGES IN THE SOLAR DYNAMO

The 400-year record of telescopic observations provides di-
rect evidence of sporadic symmetry changes in the distri-
bution of sunspots – from symmetric, apparently dipolar,
patterns to asymmetric, hemispheric patterns during the
Maunder Minimum, as well as a brief excursion from dipole
to quadrupole behaviour in the eighteenth century, as shown
in Fig. 1. The much longer proxy record derived from cosmo-
genic isotope abundances demonstrates that the Maunder
Minimum is just the most recent of a series of grand min-
ima that span the past 10,000 years. Within this time span,
grand minima recur aperiodically (the de Vries cycle). Closer
inspection reveals that this pattern is itself modulated on a
longer timescale of around 2300 years (the Hallstatt cycle):
episodes with recurrent grand minima alternate with inter-
vals of weaker modulation, during which grand minima are
absent – as is apparent from Fig. 2. It is with the origin of
this super-modulation (possibly associated with hemispheric
behaviour) that our paper is concerned.

We interpret this long-term modulation as a conse-
quence of symmetry changes in the nonlinear dynamo that
drives the solar cycle. The simple dynamo models described
in the previous section reveal not only modulation of a ba-
sic cycle due to the appearance of grand minima but also
examples of super-modulation, associated with transitions
from dipole or quadrupole symmetry to mixed-mode solu-
tions with significantly weaker modulation. We associate the
grand minima with trajectories that approach a homoclinic
or heteroclinic bifurcation in the phase space of the system;
the associated tangle provides not only a route to chaotic
behaviour but also an opportunity for switching from dipo-
lar to quadrupolar symmetry or vice versa (as explained by
Knobloch, Tobias & Weiss 1998). We propose that super-
modulation, on the other hand, is associated with transi-
tions from dipole or quadrupole symmetry to mixed-mode

solutions that exhibit much weaker modulation. Such tran-
sitions have already been exhibited for simple nonlinear dy-
namo models in Section 3; our calculations indicate that
they should be regarded as a generic feature of nonlinear
dynamos, and therefore that super-modulation is to be ex-
pected not just in the Sun but also in other stars as well.

Normal solar activity over the last two centuries has,
on average, shown symmetry about the equator, with minor
transient deviations. Those occur most notably when polar
fields reverse at different times around sunspot maximum,
giving rise to short intervals with similar polarities around
each pole (DeRosa, Brun & Hoeksema 2012). More striking
was the behaviour during the last four sunspot cycles at the
end of the Maunder Minimum (cf. Fig. 1) when such spots
as did appear were all confined to the southern hemisphere.
Such hemispheric behaviour requires a combination of dipo-
lar and quadrupolar fields, which reinforce each other in one
hemisphere but cancel out in the other. This is illustrated in
the example of an α2 mean-field dynamo discussed by Gallet
and Pétrélis (2009), where the hemispherical field oscillates
from one hemisphere to the other as the field reverses.

So far we have only considered generic patterns revealed
by simple model calculations, involving low-order systems of
ordinary differential equations. We expect that similar be-
haviour occurs also for partial differential equations, includ-

ing much more elaborate systems that describe the nonlin-
ear solar dynamo. Theoretical representations of the solar
cycle have hitherto fallen into two classes. The first (the
“Babcock-Leighton” model) relied on a poleward merid-
ional flow that transported poloidal fields generated near
the photosphere down to the base of the convection zone,
where the flow reversed and strong toroidal fields could be
formed by differential rotation. Others have proposed that
the meridional flow should have a multicellular structure
(Jouve & Brun 2007). The simple Babcock-Leighton picture
has meanwhile been demolished by recent observations. De-
tailed measurements, first of the proper motions of super-
granules (Hathaway 2012) and then from helioseismology
(Zhao et al. 2013), show conclusively that the “conveyor
belt” reverses its direction at a depth of only 65 Mm, lead-
ing to an equatorward flow between radii of 0.91 and 0.82
R⊙; at the latter level there is a further reversal, giving rise
to a poleward flow – and there may be yet another reversal
giving an equatorward flow near the base of the convec-
tion zone at a radius of 0.71R⊙ (Hazra, Karak & Choudhuri
2014).

In order to model the solar dynamo successfully, the-
oreticians must therefore have recourse to direct numerical
simulation of the interactions between convection, rotation
and magnetic fields, both in the Sun’s convection zone and
in the tachocline that lies below it. The simplest and most
straightforward approach is to assume the Boussinesq ap-
proximation, with a solenoidal velocity field, in a rotating
spherical shell (Grote & Busse 2000; Busse & Simitev 2005).
In some of these models, the oscillating fields remain in one
hemisphere as they reverse, as apparently happened during
the Maunder Minimum. Of course, we have no direct evi-
dence of the spatial properties of the Sun’s magnetic field
during the intervals without grand minima in Fig. 2 – but
we may speculate that they correspond to the appearance
of mixed-mode patterns with weaker hemispheric fields.

Simulations of three-dimensional convection in spherical
shells adopt the anelastic approximation and follow two dif-
ferent approaches. In the first, simple models are constructed
to analyse the nonlinear interactions that may be important
for dynamo action and modulation. Typically these models,
although turbulent, analyse the changes in the morphology
of solutions relatively close to the onset of dynamo action.
Even in this restricted parameter regime the dynamo may
exhibit a wide range of nonlinear behaviour — with solutions
undergoing both Type 1 and Type 2 modulation, and indeed
transiting between them (Raynaud & Tobias 2015). Further-
more, bistability between complicated nonlinear states (as
demonstrated here for the simple set of ODEs) is often ob-
served. The second approach is to attempt to mimic solar
convection and dynamo action (choosing for example basic
state entropy profiles derived from solar models, adopting
the solar rotation rate and attempting to achieve a high
degree of turbulence). The most ambitious of these studies
that have so far appeared do indeed succeed in reproduc-
ing cyclic magnetic activity, together with meridional veloc-
ities that have a complicated, time-dependent structure. At
high latitudes there is an equatorward flow at the tachocline,
with poleward motion in most of the convection zone, giv-
ing way to equatorward flow above 0.9R⊙ and rapid pole-
ward velocities nearer to the surface (Passos, Charbonneau
& Miesch 2015; Hanasoge et al. 2015). The corresponding

c© 2015 RAS, MNRAS 000, 1–8
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azimuthal fields accumulate near the tachocline and display
dipole symmetry; they reverse cyclically and have been fol-
lowed for 40 activity cycles, with an average period of 40
years (Passos & Charbonneau 2014; Passos, Charbonneau
& Miesch 2015). The activity cycles vary in a manner con-
sistent with weak chaotic modulation but so far without any
indication of grand minima.

Most recently, Augustson et al. (2015) have described
an ambitious and very relevant model calculation for a solar-
mass star rotating at three times the angular velocity of the
Sun. As in similar investigations by Brown et al. (2011), the
predominantly toroidal field in the star’s interior takes the
form of magnetic ‘wreaths’. This model reproduces 24 activ-
ity cycles and does show one brief and comparatively shallow
grand minimum. We stress here that these solutions are still
a long way from the relevant parameter regime for dynamo
action — indeed they are significantly below the asymp-
totic regime of high magnetic Reynolds number necessary
to demonstrate some dynamo effects (Tobias & Cattaneo
2013). However, we anticipate that yet more ambitious com-
putations will in due course be able to represent not only the
occurrence of grand minima but also the super-modulation
that we have described above.
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Table A1. Parameter values for the various cases considered here.

Fig. µ σ a a′ b b′ c c′ τ1 τ2

4 0.500509 0.486 0.5-0.5 i 0.4-0.4 i -0.1 -0.2 0.2 0.0 1.0 0.9
5 1.39095 0.470 0.38-0.38 i 0.5 -0.5 i -2.0 -1.8 0.0 0.0 1.0 1.1
6 0.08 0.376 -0.9+3.0 i -0.9+3.0 i 0.5+0.5 i 0.5+0.5 i 0.5+0.5 i 0.5 + 0.5 i 0.101 0.201
7 0.800509 0.571 0.5-0.5 i 0.47-0.47 i -0.1 -0.2 0.2 0.0 1.0 0.9

Fig. e1 e2 ǫ ǫ′ δ δ′ β β′

4 1.31 1.81 1.1-1.1 i 1.1-1.1 i -1.0+ i -1.0 + i 0.49 -0.49 i 0.43 -0.43 i
5 1.31 2.6 1.1 -1.1 i 1.1 -1.1 i -1.0+ i -0.965 +0.965 i 0.43-0.43 i 1,39 - 1.25 i
6 0.2 0.002 0.0002 -0.001 i 0.0002 -0.001 i 0.0002 -0.001 i 0.0002 -0.001 i 0.0002 -0.001 i 0.0002 -0.001 i
7 1.31 1.81 1.1-1.1 i 1.1-1.1 i -1.0+ i -1.0 + i 0.49 -0.49 i 0.43 -0.43 i

APPENDIX A: THE LOW-ORDER MODEL SYSTEM

We supply here some further details of the model systems used to generate the results presented above in Section 3. Following
Knobloch et al (1998) we introduce the normal form equations that govern a double-Hopf/pitchfork bifurcation. Such equations
are structurally stable; their solutions have generic properties and display behaviour that is therefore likely to be robust. Near
onset, the complex amplitudes z1 and z2 of the dipole and quadrupole fields satisfy

ż1 = (µ + σ + iω1) z1 + a|z1|
2z1, (A1)

ż2 = (µ + iω2)z2 + a′|z2|
2z2. (A2)

If the two Hopf bifurcations occur sufficiently close together, so that σ is small, and the frequencies ω1 and ω2 are almost
equal, resonances become important and so further cubic terms should be added, yielding the equations

ż1 = (µ + σ + iω1) z1 + a|z1|
2z1 + b|z2|

2z1 + c|z2|
2z̄1, (A3)

ż2 = (µ + iω2)z2 + a′|z2|
2z2 + b′|z1|

2z2 + c′z2

1 z̄2, (A4)

where the overbars denote complex conjugates and b, b′, c, c′ are complex coefficients (Knobloch et al 1998).
We next introduce the velocity components v and w, which are respectively symmetric and antisymmetric about the

equator and are driven solely by the magnetic field, against viscous drags. Following Knobloch et al., we represent their
evolution by equations of the form

v̇ = −τ1v + e1(|z1|
2 + |z2|

2), ẇ = −τ2w + e2(z1z̄2 + z2z̄1), (A5)

where τ1, τ2, e1 and e2 are all real parameters. Thus v is driven by either symmetric or antisymmetric fields, while driving of
w requires that both z1 and z2 should be non-zero. These velocities in turn act on the symmetric and antisymmetric fields
and so the equations governing the fields finally take the form

ż1 = (µ + σ + iω1) z1 + a|z1|
2z1 + b|z2|

2z1 + cz2

2 z̄1

+ (ǫv + δv2 + κw2)z1 + (β + γv)wz2, (A6)

ż2 = (µ + iω2)z2 + a′|z2|
2z2 + b′|z1|

2z2 + c′z2

1 z̄2

+ (ǫ′v + δ′v2 + κ′w2)z2 + (β′ + γ′v)wz1. (A7)

Nonlinear interactions between the dipole mode z1 and the quadrupole mode z2 then suffice to generate chaotic behaviour.
The results quoted in §3 were all obtained using the parameter values ω1 = 12.2108, ω2 = 12.51081, with κ = κ′ = γ =

γ′ = 0. The remaining parameter values are displayed in the Table.
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