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Asymptotic Analysis of SU-MIMO Channels With

Transmitter Noise and Mismatched Joint Decoding
Mikko Vehkaperä, Taneli Riihonen, Maksym Girnyk, Emil Björnson,

Mérouane Debbah, Lars K. Rasmussen, and Risto Wichman

Abstract—Hardware impairments in radio-frequency compo-
nents of a wireless system cause unavoidable distortions to
transmission that are not captured by the conventional linear
channel model. In this paper, a ‘binoisy’ single-user multiple-
input multiple-output (SU-MIMO) relation is considered where
the additional distortions are modeled via an additive noise
term at the transmit side. Through this extended SU-MIMO
channel model, the effects of transceiver hardware impairments
on the achievable rate of multi-antenna point-to-point systems
are studied. Channel input distributions encompassing practical
discrete modulation schemes, such as, QAM and PSK, as well
as Gaussian signaling are covered. In addition, the impact
of mismatched detection and decoding when the receiver has
insufficient information about the non-idealities is investigated.
The numerical results show that for realistic system parameters,
the effects of transmit-side noise and mismatched decoding
become significant only at high modulation orders.

I. INTRODUCTION

M IMO, i.e., multiple-input multiple-output, wireless links

are a mature research subject and their theory is already

well understood [1]. However, the extensive body of literature

on link-level analysis conventionally concerns signal models

of the form y = Hx+n reckoning with an additive thermal-

noise term, namely n, only at the receiver after the fading

channel H . In this paper, we investigate single-user MIMO

channels and adopt a generalized (‘binoisy’) input–output

relation from [2]–[11]:

y = H(x+ v) +w, (1)

where w is an additive receive-side distortion-plus-noise com-

ponent. The system model (1) allows including an additive

noise term, namely v, also at the transmitter, thus making

the total effective noise term Hv +w colored and correlated

with the fading channel. This small but significant complement

yields a MIMO link model whose performance analysis is still

an open research niche in many respects.

Although we primarily aim at extending the capacity theory

of binoisy SU-MIMO channels under fading without commit-

ting to any particular application, the signal model (1) origi-

nally stems from the practical need for modeling the combined

effect of various transceiver hardware impairments which are

detailed in [12], [13], and the references therein. However,

it is worth acknowledging that the additive noise assumed

herein is only a simplified representation of complex nonlinear

phenomena occurring due to hardware impairments, especially
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Research Council and the ERC Starting Grant 305123 MORE.
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Fig. 1. System model for non-ideal MIMO communications with transmit
and receive distortion. The receiver might be misinformed or ignorant of some
of the variables in the transmission chain leading to mismatched decoding.

when considering their joint coupled effects or trying to

model residual distortion after compensation. Thus, the binoisy

signal model should be regarded as a compromise between

facilitating theoretical analysis and resorting to measurements

or simulations under more accurate modeling. Yet the central

limit theorem further justifies the model by averaging the

combined effects of different impairments to additive Gaussian

noise when the signal model (1) is understood to represent a

single narrowband subcarrier within a wideband system.

Additive receiver hardware impairments can be incorporated

into the conventional signal model by increasing the level of

the thermal-noise term n by a constant noise figure, e.g., about

3–5 dB, or by scaling it in proportion to the input signal level

such that it matches with w. On the other hand, regarding the

joint effect of transmitter hardware impairments as an additive

transmit-side noise term v is analogous to the principles of

practical radio conformance testing. In particular, the common

transmitter quality indicator is error-vector magnitude (EVM)

which reduces the distortion effects to an additive component

and measures its level relatively to signal amplitude [14].

Typical target EVM values guarantee that the signal x is

at least 20–30 dB above the transmit-side noise v. On the

other hand, for basic discrete channel inputs such as quadrature

phase-shift keying (QPSK), Hx is usually at most 10–15 dB

above the receive-side noise w, after which the communication

is not anymore limited by noise but the lack of entropy in the

modulation alphabet. This implies that transmitter hardware

impairments can be justifiably omitted in the analysis of

simple low-rate wireless systems: Either Hv is well below

the receive-side noise w (say 5–20 dB) or the signal-to-noise

ratio (SNR) is set to an uninterestingly high level. However,

there has been a trend to improve data rates by using, e.g.,

quadrature amplitude modulation (QAM) up to 64-QAM at

relatively high SNR, in which case the transmit-side noise

begins to play a notable role in the link-level performance.
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The considered system setup corresponding to (1) is shown

in Fig. 1. As for MIMO processing, we focus on regular spatial

multiplexing where a conventional transmitter separately en-

codes and sends an independent stream at each of its antennas

without having channel state information or being aware of the

transmit-side noise it produces; the receiver jointly decodes the

output signals of the MIMO channel knowing its instantaneous

realization H and some noise statistics. However, conventional

receivers are designed and implemented based on the conven-

tional signal model (where v = 0) due to which they are prone

to lapse into suboptimal mismatched decoding by inaccurately

postulating the statistics of the actual noise term Hv + w.

Even if off-the-shelf receivers can adapt to colored receiver

noise, they may not be able to track the variable statistics of

the component Hv propagated from the transmitter since it is

correlated with the fading channel. Only an advanced receiver

would be able to perform matched decoding knowing perfectly

the noise statistics as if it was designed and implemented

explicitly based on the generalized binoisy signal model (1).

A. Related Works

The key reference results for the present study are re-

ported in [2]–[11]. These seminal works originally formulated

the research niche around (1) and established the baseline

understanding of MIMO communication in the presence of

transmit-side noise with numerical simulations and theoretical

analysis. The majority of the related works, e.g., [2], [3],

[6], [8], concern regular spatial multiplexing using separate

encoding like the present paper but also different variations of

joint encoding have been creditably investigated, e.g., in [4],

[7]. On the other hand, all the studies that we are aware of

assume (implicitly) advanced receivers that know the presence

of transmit noise, no matter what form of decoding is used.

Especially, the reference results are polarized such that the

scope of analytical studies [6], [8] typically differs from that of

studies reporting simulations [6], [7], [9] or measurements [4]–

[6]. Except for [2], practical discrete modulation schemes,

e.g., QAM, have not been previously analytically evaluated in

the presence of transmit noise, and simulation-based studies

usually concern bit/symbol/packet error rates, not transmission

rates which could be more interesting when studying modern

adaptive encoding. In contrast, all the analytical capacity stud-

ies assume Gaussian signaling and the throughput simulations

of [3] with adaptive modulation and coding are their closest

counterpart when it comes to experimental work.

If the receiver does not properly account for the additional

transmit-side noise in the received signal, conventional mutual

information (MI) is not anymore the correct upper bound

for coded transmissions. Rather, due to mismatched decod-

ing, one has to employ other metrics, such as generalized

mutual information (GMI) [15], [16] adopted herein. Another

common use for GMI is the analysis of bit-interleaved coded

modulation [17], while also transceiver hardware impairments

[18] and effects of imperfect channel state information at

multi-antenna receiver [19], [20] are analyzed in terms of

GMI. In particular, MI and GMI are evaluated herein using

the replica method [21], [22], originating from the field of

statistical physics and introduced to the analysis of wireless

systems by [23], [24]. Since then, the replica method has been

applied to various problems in communication theory, e.g.,

MIMO systems [25]–[27]. For some special cases like Gaus-

sian signaling, the replica trick renders exact asymptotic results

when the number of antennas grows without bound, while they

can be otherwise considered accurate approximations as shown

by comparisons to Monte Carlo simulations.

B. Summary of Contributions

In this paper, we investigate two aspects of binoisy MIMO

channels that are unexplored in related works despite their

fundamental role in understanding the effects of hardware

impairments in wireless systems. Firstly, analytical capacity

results are limited to Gaussian signaling while practical digital

modulation is evaluated only based on simple simulations or

measurements. Secondly, the earlier literature focuses on the

optimistic case of matched decoding by employing receivers

that are actually not available off the shelf but implicitly

updated to take account of transmit-side noise.

In particular, this paper contributes to the capacity theory

of MIMO communication links by examining the effects of

transmit-side noise as follows.

• Analytical GMI expressions are calculated for studying

the rate loss of mismatched decoding when using a

conventional receiver which is unaware of the transmit-

side noise. Especially, it is shown that the performance

remains the same irrespective of how well the noise

covariance matrix is known if it is a constant.

• The above analysis is further translated into correspond-

ing asymptotic high-SNR limits for Gaussian signaling

as a complement for the results of [10], which covers

matched decoding and conventional MI.

• The analytical expressions provided for both conventional

MI and GMI cover many practical discrete modulation

schemes such as variations of PSK and QAM. This

resolves the serious problem that evaluating (G)MI with

direct Monte Carlo simulations for the present system

is computationally infeasible except for cases with small

number of antennas and low order modulation sets.

Extending beyond the scope of the paper, the replica analysis

of GMI is also a new aspect at large.

C. Outline of the Paper and Its Nomenclature

After the considered system model is specified in the

following section, the main analytical content of this paper is

divided into two parts: Section III concerns the performance

of conventional suboptimal receivers under mismatched decod-

ing, which is analyzed based on GMI; and Section IV studies

conventional MI with advanced receivers, which are aware

of transmitter noise and, thus, capable of optimal matched

decoding. In Section V, the presented theory is illustrated with

numerical results, including simulations for double-checking

its accuracy, which is finally followed by concluding remarks

in the last section. Some general results from literature that

are used throughout the paper for derivations are collected
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in Appendix A for the convenience of the reader. Appen-

dices B contains general description of the replica method

and Appendix C sketches the derivation of the main results in

Section III.

Notation: Complex Gaussian random variables (RVs) are

always assumed to be proper and the density of such x ∈ C
N

with mean µ and covariance R is denoted g(x | µ; R). For

the zero-mean proper Gaussians, we say they are circularly

symmetric complex Gaussian (CSCG). For convenience, both

discrete and continuous RVs are said to have a probability

density function (PDF) that is denoted by p, and we do not

separate RVs and their realizations. For postulated PDFs we

write q and add tilde on top of the related RVs (most of the

time). Given a RV x that has a PDF p(x), we write x ∼ p(x)
(and x̃ ∼ q(x̃) for the postulated case). Statistical expectation

is denoted E{ · } and, unless stated otherwise, calculated over

all randomness in the argument using true or postulated PDFs,

depending on which type of RVs are present. Integrals w.r.t.

real-valued variables are always over R (for vectors over the

appropriate product space) and we tend to omit the integration

limits for notational simplicity. For a complex variable z =
x + jy, we denote

∫
( )dz =

∫
( )dxdy, and similarly for

complex vectors. Logarithms are natural logs and denoted ln
unless stated otherwise.

II. SYSTEM MODEL

Consider the system model depicted in Fig. 1 and the signal

model of y ∈ C
N written in (1) where H ∈ C

N×M is the

channel matrix and x ∈ C
M the signal of interest. The receive-

side distortion plus noise component is divided into two parts,

namely w = n + ω ∈ C
N where n is caused by thermal

noise and ω represents hardware impairments arising from the

non-ideal behavior of the radio-frequency (RF) transceivers.

Similarly, v = m + ν ∈ C
M where m and ν are related

to thermal noise and hardware impairments or distortions,

respectively, at the transmit-side. In practice, the effect of

m is often negligible compared to ν. In conventional MIMO

literature it is common to consider only the thermal noise at

the receiver, which translates to assuming ω = ν = m = 0

in our more generic system model.

Let us denote the PDF of the transmit vector x by p(x) and

assume it factorizes as

p(x) =

M∏

m=1

p(xm), (2)

so that independent streams are transmitted at each transmit

antenna. Furthermore, let p(xm) be a zero-mean distribution

with variance γ̄m. For later convenience, we let Γ be a diago-

nal matrix whose non-zero elements are given by γ̄1, . . . , γ̄M ,

that is, Γ = E{xxH}. The channel H is assumed to have

independent identically distributed (IID) CSCG elements with

variance1 1/M . The thermal noise samples at the transceivers

1Typically the total power emitted from the transmit antennas in MIMO
systems is constant; that is, tr(Γ) = γ̄, where γ̄ is some fixed power budget
that does not depend on M . Hence the elements of Γ need to be functions
of M in order to satisfy the transmit power normalization. For the following
analysis, however, it is more convenient to treat the elements of Γ to be
independent of M and let the transmit power normalization be a part of the
channel. Clearly, both approaches are mathematically fully equivalent.

are modeled as CSCG random vectors m and n that have

independent elements. For simplicity, we assume that any

given noise or hardware impairment component is independent

of any other RVs in the system. The transmit- and receive-

side impairments ν and ω are taken to be CSCG random

vectors with covariance matrices Rν and Rω , respectively.

The distortion plus noise vectors v and w are thus CSCG

random vectors whose covariance matrices we denote Rv

and Rw, respectively. Notice that these matrices can be

functions of the statistics of some other RVs albeit we suppress

the explicit statement of such dependence at this point for

notational convenience. The SNR without transmit-side noise

is defined as tr(Γ)/ tr(Rw).
The PDF of the received signal, conditioned on x, v and

H , is given by

p(y | x,v,H) = g(y | H(x+ v); Rw), (3)

and the receiver is assumed to know H and the true dis-

tribution p(x) of the channel input. However, the additional

transmit-side term v is in general unknown at the receive-side

and, thus, the PDF (3) cannot be directly used for detection

and decoding. Herein, we consider two different scenarios for

the joint decoding operation at the receiver:

1) The receiver knows H , the PDFs of the noise plus

distortion terms v and w as well as the distribution of

the data vector x. Matched joint decoding is then based

on the conditional PDF

p(y | x,H) = Ev{g(y | H(x+ v); Rw)} (4)

= g(y | Hx; Rw +HRvH
H), (5)

where the second equality follows by first using (62)

to calculate the expectation w.r.t. v and simplifying the

end result using (63) and (64). Note that the effective

noise covariance matrix in (5) depends now on the

instantaneous channel realization H .

2) The receiver has perfect knowledge of H and the PDF

of the data vector x. Instead of (4), however, the device

uses a postulated channel law

q(y | x,H) = g(y | Hx; R̃), (6)

for mismatched joint decoding [15], [16]. In contrast

to Rw in (5), that is a random matrix, the postulated

covariance matrix R̃ in (6) is fixed.

If matched joint decoding is employed, the conventional

metric for evaluating the (ergodic) achievable rate of the

system for given input distribution p(x) is the MI between

the channel inputs and outputs, namely,

I(y; x) = E{ln p(y | x,H)} − E{ln p(y | H)}, (7)

where p(y | H) = Ex{p(y | x,H)} and the expectation

is w.r.t. all RVs in the system model, including the channel

matrix H . From the system design perspective, however,

it might be impractical to use (5) due to complexity of

implementation, resulting in mismatched decoding. To lower

bound the true maximum rate that can be achieved reliably

over channel (1) when decoding rule (6) is used at the receiver,

we use GMI that is discussed in the next section.
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III. MISMATCHED JOINT DECODING:

GENERALIZED MUTUAL INFORMATION

A. Definition and the Special Case of Gaussian Signaling

Let us assume that the received signal is given by (1) but the

receiver uses (6) for decoding. Given p(x), the (ergodic) GMI

between the channel inputs and outputs is defined as [15], [16]

IGMI(y; x) = sup
s>0

I
(s)
GMI

(y; x), (8)

where, denoting q(s)(y | H) = Ex{q(y | x,H)s}, the s-

dependent part reads

I
(s)
GMI

(y; x) = E{ln q(y | x,H)s} − E{ln q(s)(y | H)}. (9)

Since we consider ergodic rates, the expectations in (9) are

w.r.t. all RVs in the system model, including the channel

matrix H . If I is the maximum ergodic rate that can be

transmitted over the channel (1) using input distribution p(x)
and decoding rule (6), then I ≥ IGMI [15], [16]. Herein, the

decoding based on the true channel law (4) cannot be obtained

as a special case of the mismatched case since R̃ is fixed (see

footnote 6 and (87) in Appendix C) and, thus, the case of

matched decoding is considered separately in Section IV.

We are first interested in evaluating the s-dependent part of

the normalized GMI per transmit stream M−1I
(s)
GMI

(y; x) for

given s > 0. The optimization over the free parameter s is

carried out after the suitable expressions are found. The first

term in (9) can be written as

1

M
E{ln q(y | x,H)s}

= −

=c(s)

︷ ︸︸ ︷
s

M

[
N lnπ + ln det R̃

]

− s

M
E
{
(Hv +w)HR̃−1(Hv +w)

}

= −c(s) − s

M

[

tr(R̃−1Rw) +
1

M
tr(R̃−1) tr(Rv)

]

. (10)

The first equality follows from (6) by the fact that y −
Hx = Hv + w when x is given. The second equality is

a consequence of the assumption that the channels and noise

vectors are all mutually independent and H has zero-mean IID

entries with variance 1/M . Notice that (10) is independent of

p(x) and hence valid for all channel inputs. Evaluating the

second term in (9) is more complicated but for the special

case of Gaussian inputs we have the result shown below.

Example 1. For the special case of Gaussian inputs; that is,

p(x) = g(x | 0; Γ),
1

M
I
(s)
GMI

(y; x) =
1

M
EH

{

ln det
(
R̃+ sHΓHH

)

+s tr
[(
Rw +H(Rv + Γ)HH

)(
R̃+ sHΓHH

)−1]

−s tr(R̃−1Rw)− s

M
tr(R̃−1) tr(Rv)− ln det R̃

}

. (11)

The result is obtained by first using (62) and then simplifying

with (63) and (64). Inserting the RHS of (1) into the obtained

expression and taking the expectations w.r.t. the noise terms

v and w completes the derivation. ♦

Example 1 shows that for Gaussian signals we only need

to average over the channel to obtain the s-dependent part of

GMI. This is doable with Monte Carlo simulation. However,

finding the optimal s is time consuming even in this case and

a simple analytical expression that does not explicitly depend

on the form of the marginals in (2) would be highly desirable.

With this in mind, we adopt the following restriction to our

system model from the physical characteristics of typical real

transmitters for simplifying the analysis.

Assumption 1. The covariance matrix for the transmit-side

distortion plus noise term v is diagonal so that we may write

Rv = Rm + Rν = diag(r
(1)
v , . . . , r

(M)
v ). Hence, v has

independent (but not necessarily identically distributed) entries

drawn according to p(vm) = g(vm | 0; r(m)
v ). ♦

The physical meaning of this assumption is that hardware

impairments at different transmitter branches arise in separate

electrical components and there are no mechanisms which

generate significant correlation between the elements of the

distortion noise vector. Furthermore, it is actually not neces-

sary for the replica analysis but it helps simplify the end result

to a form whose numerical evaluation is computationally easy.

B. Analytical Results via the Replica Method

If the goal is to calculate the expectations related to the latter

term in (9) analytically and for general input distributions, we

need to employ somewhat more advanced analytical tools than

the basic probability calculus used in Example 1. As we shall

see shortly, employing the replica method provides a formula

that is applicable to a variety of input constellations, such as

Gaussian or QAM. To begin, let us first denote

− 1

M
E ln q(s)(y | H) = c(s) + f(s), (12)

where c(s) is defined in (10) and the latter term, equivalent of

the so-called free energy in statistical mechanics, reads

f(s) (13)

= − 1

M
E

{

lnEx̃

{
e−[H(x+v−x̃)+w]HsR̃−1[H(x+v−x̃)+w]

}}

.

Now the inner expectation over the postulated channel input

x̃ is w.r.t. a generic PDF (2) and cannot be solved using (62)

as before. The outer expectation is w.r.t. the rest of the RVs

in the system, namely {x,v,w,H}. Due to (9) and (10) the

expression to be optimized in the GMI formula thus becomes

1

M
I
(s)
GMI

(y; x)

= f(s)− s

M

[

tr(R̃−1Rw) +
1

M
tr(R̃−1) tr(Rv)

]

. (14)

Remark 1. By (13) and (14), it is clear that if the receiver

assumes that the additive noise in the system is spatially white

R̃ = r̃IN with some finite sample variance r̃, the GMI

remains the same for all r̃ > 0 since the optimization over

s > 0 in (8) can be replaced by an optimization over a new

variable s̃ = s/r̃ > 0. Thus, if the receiver uses R̃ = r̃IN for

decoding, the GMI is the same for all r̃ > 0 when the transmit

and receive covariance matrices Rv and Rw are fixed. ♦
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The main obstacle in evaluating (14) is clearly f(s). This

term happens to be, however, of a form that can be tackled by

the replica method (see Appendix B). The following result is

derived in Appendix C under the assumption of the so-called

replica symmetric (RS) ansatz when the system approaches

the large system limit (LSL), that is, M,N → ∞ with

finite and fixed ratio α = M/N > 0. The limit notation is

omitted below and the results should therefore be interpreted

as approximations for systems that have finite dimensions.

Proposition 1. Let m = 1, . . . ,M and denote

χm = xm + vm, (15)

χ̃m = x̃m, (16)

where xm, x̃m ∼ p(xm) and vm ∼ g(vm | 0; r
(m)
v ) are

independent for all m by assumption. Let

p(zm | χm) = g(zm | χm; η−1), (17)

q(zm | χ̃m) = g(zm | χ̃m; ξ−1), (18)

be the PDF of an output zm of an additive white Gaussian

noise (AWGN) channel whose input is either (15) or (16),

respectively, and corrupted by additive noise with variance

η−1 or ξ−1, respectively. The parameters η, ξ satisfy

η =
1

α

[
1
N tr

(
Ω̃

−1
)]2

1
N tr

(
Ω̃−1ΩΩ̃−1

) , (19)

ξ =
1

αN
tr
(
Ω̃

−1
)
, (20)

for the given matrices

Ω = Rw + εIN , (21)

Ω̃ = s−1R̃+ ε̃IN , (22)

and variables

ε =
1

M

M∑

m=1

E
{
|vm + xm − 〈x̃m〉q|2

}
, (23)

ε̃ =
1

M

M∑

m=1

E
{
|x̃m − 〈x̃m〉q|2

}
. (24)

The notation 〈x̃m〉q above refers to a decoupled posterior

mean estimator

〈x̃m〉q =
Ex̃m

{x̃mq(zm | x̃m)}
q(zm)

, (25)

where q(zm) = Eχ̃m
{q(zm | χ̃m)}. If we also write p(zm) =

Eχm
{p(zm | χm)}, the free energy f(s) defined in (14) is

given under the assumption of the RS ansatz by

fRS(s) =
1

αN

[
ln det Ω̃+ tr

(
Ω̃

−1
Ω
)
− ln det(s−1R̃)

]

−
(

ln
π

ξ
+

ξ

η
+

1

M

M∑

m=1

∫

p(zm) ln q(zm)dzm

)

−ξε+
ξ(ξ − η)

η
ε̃. (26)

If multiple solutions to the coupled fixed point equations (19) –

(24) are found, the one minimizing (26) should be chosen.

Proof: An outline of the derivation is given in Ap-

pendix C.

The above result extends some previous works such as

[23], [24] in the direction of correlated noise at the receiver

and additive transmit-side impairments. It is thus clear that

the original GMI term (9) of the MIMO system that suffers

from transceiver hardware impairments has an interpretation

in terms of an equivalent decoupled2 scalar system. This de-

coupled channel has only additive distortions but unlike in the

conventional case of replica analysis [23], [24], the transmit-

side has its own noise term. It should be remarked, however,

that the implicit assumption here is that fRS(s) = f(s); that

is, the system is not replica symmetry breaking (RSB). We

leave the RSB case as a possible future work and check the

validity of the solution with selected numerical simulations.

For simplicity of presentation, we consider next a few prac-

tical special cases of Proposition 1 where the transmit power

is the same for all antennas and the noise and distortions at

the transmit-side are spatially uncorrelated, namely, Γ = γ̄IM
and Rv = rvIM . The receiver postulates spatially white noise

R̃ = r̃IN with some variance r̃ > 0. This allows us to write

1

M
IGMI(y; x) = sup

s̃>0

{

f(s̃)− α−1s̃[N−1 tr(Rw) + rv]
}

, (27)

where f(s̃) is given by (13) with sR̃−1 replaced by s̃IN . Fur-

thermore, in this case all variables are identically distributed

for all m = 1, 2, . . . ,M so we may omit the subscripts related

to m in the following. We still need to fix the input distribution

(2) to obtain the parameters (23) and (24). For this, we give

two concrete examples: 1) Gaussian signaling; and 2) discrete

channel inputs, such as, QAM.

Example 2. Let the channel inputs (2) be IID Gaussian,

namely, p(x) = g(x | 0; γ̄IM ) so that p(χ̃m) = p(xm) =
g(x | 0; γ̄) and p(χm) = g(χm | 0; γ̄ + rv) in Proposition 1.

The parameter ξ can then be obtained explicitly as

ξ =
γ̄s̃(1− α)− α+

√

4αγ̄s̃+ [γ̄s̃(1− α)− α]2

2αγ̄
, (28)

while η and ε are obtained by solving the coupled fixed point

equations

η =
1

α[N−1 tr(Rw) + ε]
, (29)

ε =
ηrv + γ̄(η + ξ2γ̄)

η(1 + ξγ̄)2
=

γ̄ + rv
(1 + ξγ̄)2

+
1

η(1 + 1/ξγ̄)2
. (30)

Additional algebra shows that for IID Gaussian inputs, the free

energy (26) reduces to

fRS(s̃)=
1

α

(
ξ

η
+ ln s̃+ ln

1

αξ

)

− ξε+ ln(1 + ξγ̄)+
ξrv

1 + ξγ̄
.

(31)

Note that the expression for parameter ε̃ in (24) is not

explicitly given here but it is implicitly a part of (28) due

to relations (20) and (22). ♦
2This decoupling property is ubiquitous in replica analysis (see for example

[23], [24]) as well as in random matrix theory (see [28], [29] and references
therein), and is one of the key reasons why the asymptotic methods provide
computationally feasible solutions for complex problems.
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TABLE I
HOW TO OBTAIN GMI FOR GAUSSIAN SIGNALING FROM EXAMPLE 2

1) Choose the parameters that define the MIMO system of interest,
namely, antenna ratio α = M/N , transmit- and receive-side
distortion plus noise covariance matrices Rv = rvIM and Rw ,
respectively, and the average transmit power per antenna γ̄. Let also
the optimization parameter s̃ > 0 be given.

2) Plug the values of {α, γ̄, s̃} to (28) and obtain ξ.

3) Insert ξ along with the rest of the necessary parameters in
(29) and (30), and solve η numerically, e.g., using an iterative
substitution method.

4) Use the solutions of ξ and η in (31) to obtain the free energy.

5) Optimize (27) over s̃ > 0.

The computational formula for obtaining the GMI with the

above example is detailed in Table I. Notice that there are

two non-trivial steps in the algorithm: 1) the optimization

over s > 0; and 2) the problem of solving a system of two

nonlinear equations with two unknowns. The first difficulty is

not specific to the current study and is present in any work that

considers GMI as means to analyze mismatched decoding. The

computational complexity of the second problem is negligible

compared to the original task of taking an expectation over

the channel matrices in (11). Indeed, a typical solution for η
and ε is obtained after some tens of iterations of an iterative

substitution method.

For the high-SNR case where γ̄ → ∞ for a fixed covariance

matrix Rw, the result in Example 2 can be further simplified

as shown in Example 3 below.

Example 3. Let us consider the case of Gaussian signaling

as given in Example 2 in the limit γ̄ → ∞. We assume for

simplicity (see, e.g., [10]) that Rw = rwIN and rv = γ̄κ2

where κ > 0 and rw > 0 are fixed and finite parameters. At

high-SNR, there are two possibilities for the parameter s̃ =
s/r̃ in the GMI: 1) the optimal value of s̃ is a strictly positive

constant; and 2) the value of s̃ goes to zero when γ̄ → ∞. For

the first case, M−1I
(s)
GMI

(y; x) → −∞ so in order to obtain a

consistent solution for the fixed point equations, the parameter

s̃ has to be inversely proportional to γ̄, i.e., s̃ = sγ̄/γ̄ where

sγ̄ is a strictly positive finite constant. Then ξ → 0 as γ̄ → ∞,

and the normalized GMI reduces to

1

M
I∞GMI(y; x) = sup

sγ̄>0

{
1

α
ln

(
sγ̄
αξγ̄

)

+ ln(1 + ξγ̄)

+
κ2ξγ̄
1 + ξγ̄

− sγ̄κ
2

α

}

, (32)

in the limit γ̄ → ∞. The auxiliary parameter ξγ̄ , ξγ̄ > 0 is

given by

ξγ̄ =
sγ̄(1− α)− α+

√

4αsγ̄ + [sγ̄(1− α)− α]2

2α
. (33)

Compared to the finite-SNR case in Example 2, the GMI is

now directly given by (32). ♦
The next example provides explicit formulas for the com-

putation of GMI given finite discrete constellations, such as,

PSK or QAM.

Example 4. Let A be a discrete modulation alphabet with

fixed and finite cardinality |A| and consider the GMI (27). Let

the channel inputs xm be drawn independently and uniformly

from A. The parameters of the decoupled channel model in

Proposition 1 can be obtained by first solving ξ and ε̃ from

ξ =
s̃

α(1 + s̃ε̃)
, (34)

ε̃ = γ̄ −
∫

q(z)|〈x̃〉q|2dz, (35)

using the following definitions for the decoupled estimator and

the postulated channel probability

〈x̃〉q =
1

q(z)|A|
∑

x̃∈A
x̃g(z | x̃; ξ−1), (36)

q(z) =
1

|A|
∑

x∈A
g(z | x; ξ−1), (37)

respectively. Note that this implies solving two parameters

from two nonlinear equations and can be done, for example,

by using an iterative substitution method. After obtaining the

solutions for ξ (and ε̃), the rest of the parameters can be

obtained by solving the two coupled equations

η =
1

α[N−1 tr(Rw) + ε]
, (38)

ε = E
{
|v + x− 〈x̃〉q|2

}
, (39)

for η and ε, where the expectation is w.r.t. the true joint

probability of {x, v, z}. Finally, the free energy reads

fRS(s̃) =
1

α

(
ξ

η
+ ln s̃+ ln

1

αξ

)

− ξε+
ξ(ξ − η)

η
ε̃

−
(
ξ

η
+ ln

π

ξ
+

∫

p(z) ln q(z)dz

)

, (40)

where we denoted

p(z) =
1

|A|
∑

x∈A
g(z | x; η−1 + rv), (41)

for the decoupled PDF of the received signal. ♦
Notice that the form of η in Example 4 is the same as in

Example 2, but the parameter ε has now a different structure.

Compared to the Gaussian case, the equivalent result for IID

discrete channel inputs looks in general more cumbersome.

First of all, we need to solve now two sets of equations

instead of just one. They both contain terms that involve

|A| summations and there are also two expectations left to

evaluate, one in (35) and another in (39). However, both

expectations involve only scalar variables. This is in stark

contrast to the original problem that involved computing |A|M
summations for every channel and noise / distortion realization

and taking expectation over the channel and noise that are

multidimensional integrals. This makes direct Monte Carlo

computation of the GMI for discrete signaling in practice

infeasible for large constellations and numbers of antennas.

IV. MATCHED JOINT DECODING

A. Definition and the Special Case of Gaussian Signaling

Let us now consider the case of matched decoding where

the correct channel transition probability (5) is utilized at the
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I(y; x) = M ln |A| −N − 1

|A|
∑

x∈AM

Ev,w,H

{

ln

(
∑

x̃∈AM

e−[H(x−x̃+v)+w]H(Rw+HRvH)−1[H(x−x̃+v)+w]

)}

(44)

receiver. The first entropy term in (7) reads

E{ln p(y | x,H)} = −EH{ln det(Rw +HRvH
H)} − c,

(42)

where c = N ln(eπ). It should be remarked that there is still an

expectation left w.r.t. the channel realizations H in (42). This

could be evaluated, for example, using Monte Carlo methods

or random matrix theory [28], [29]. For the special case of

Gaussian inputs, the identities in Appendix A allow us to

partially calculate also the latter entropy term in (7), providing

the following result that is useful for Monte Carlo simulations.

Example 5. Let p(x) = g(x | 0; Γ). Then,

1

M
I(y; x) =

1

M
EH{ln det(Rw +H(Γ+Rv)H

H)}

− 1

M
EH{ln det(Rw +HRvH

H)}, (43)

is the normalized ergodic MI for matched decoding. ♦
The above expression is relatively easy to compute also

by brute-force Monte Carlo methods since there is only an

expectation over the fading. Unfortunately, to the best of our

knowledge, the latter entropy term in (7) is mathematically

intractable for rigorous methods like random matrix theory

when p(x) is an arbitrary distribution that satisfies (2). For

example, given discrete inputs as in Example 4, calculating

E{ln p(y | H)} and combining it with (42) reduces the

MI to (44) given at the top of this page. This form is

computationally very complex and can be evaluated using

Monte Carlo methods only for small number of antennas

and simple constellations. To obtain a result for general input

distribution p(x) that has lower computational complexity, we

resort to the replica method (see Appendix B). As before, the

results that follow have been written in a simplified form where

the assumption of LSL is suppressed for notational simplicity.

B. Analytical Results via the Replica Method

Proposition 2. Let us write for notational convenience

χm = xm + vm, m = 1, . . . ,M, (45)

where xm ∼ p(xm) and vm ∼ g(vm | 0; r
(m)
v ) are

independent for all m. Let

p(zm | χm) = g(zm | χm; η−1), (46)

be a conditional PDF of an AWGN channel whose input is (45)

and noise variance is η−1. The conditional mean estimator of

χm received over this channel reads

〈χm〉 = Eχm
{χmp(zm | χm)}

Eχm
{p(zm | χm)} , (47)

where the parameter η is given, along with another parameter

ε, as the solution to the coupled fixed point equations

η =
1

αN
tr
[
(Rw + εIN )−1

]
, (48)

ε =
1

M

M∑

m=1

[
γ̄m + r(m)

v − E|〈χm〉|2
]
. (49)

If we also define a second set of parameters η′ and ε′ that are

solutions to the coupled fixed point equations

η′ =
1

αN
tr
[
(Rw + ε′IN )−1

]
, (50)

ε′ =
1

M

M∑

m=1

r
(m)
v

1 + η′r(m)
v

, (51)

the per-stream MI is finally given by

1

M
I(y; x) =

ln det(Rw + εIN )−ln det(Rw + ε′IN )

αN

−(ηε− η′ε′) +
1

M

M∑

m=1

[
I(zm; χm)− ln(1 + η′r(m)

v )
]
, (52)

where

I(zm; χm) = −1− ln
π

η
−
∫

p(zm) ln p(zm)dzm, (53)

is the MI of the Gaussian channel defined by (45) and (46).

Proof: The result can be obtained using Appendix B

for two separate MIMO channels. For the first one, we

replace everywhere xa → xa + va, a = 0, 1, . . . , u and and

an application of the RM provides the equations (45)–(49).

The formulas (50)–(53), on the other hand, are obtained by

substituting xa → va, a = 0, 1, . . . , u in Appendix B.

Just like Proposition 1 in Section III, Proposition 2 is valid

for any input distribution that satisfies (2). The solutions to the

coupled equations (48) and (49) as well as (50) and (51) can

be obtained numerically, e.g., using an iterative substitution

method.

For concreteness, we again give examples for Gaussian and

discrete signaling when the noise plus distortion is spatially

white Rv = rvIM and transmit power is uniformly allocated

Γ = γ̄IM . This makes the channels m = 1, 2, . . . ,M
identically distributed so we omit the subscript m in the

following.

Example 6. Let Rv = rvIM and consider the special case

of Gaussian inputs p(x) = g(x | 0; γ̄IM ). Then

I(z; χ) = ln
[
1 + η(γ̄ + rv)

]
, (54)

ε =
γ̄ + rv

1 + η(γ̄ + rv)
, (55)

and the rest of the parameters are given in Proposition 2. ♦
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We next consider the high-SNR case γ̄ → ∞ as in

Example 3 and compare it to the result obtained in [10] using

completely different mathematical methods.

Example 7. For the case Rw = rwI , Rv = κ2γ̄I (see, e.g.,

[10]) we find that if α ≤ 1 then γ̄ → ∞ yields η = η′ and

ε = ε′. The high SNR limit is therefore

1

M
I∞(y; x) = log

(
1 + κ2

κ2

)

, α ≤ 1. (56)

For the case α > 1, both η and η′ tend to zero at high SNR

while ε and ε′ grow without bound. This is not yet sufficient to

solve (52). However, combining this with the relations η′ε′ =
ηε and ε′ = ε κ2

1+κ2 , that hold in the limit γ̄ → ∞ for α > 1,

provides the second part of the high SNR result

1

M
I∞(y; x) =

1

α
log

(
1 + κ2

κ2

)

, α > 1. (57)

The asymptotic mutual information expressions in (56) and

(57) coincide exactly with the results obtained previously in

[10], as expected. ♦
Example 8. If the channel inputs are from a discrete alphabet

A as in Example 4, the parameter ε in (49) is obtained using

〈χ〉 = 1

p(z)

∑

x∈A

[
1

|A|g(z | x; η−1 + rv)

(
x+ ηrvz

1 + ηrv

)]

, (58)

E|〈χ〉|2 =

∫

p(z)E
{
|〈χ〉|2

}
dz, (59)

in Proposition 2. Here p(z) is given by (41) and 〈χ〉 denotes

the conditional mean estimator of (45) from the observations

(46). The related MI term reads by definition

I(z; χ) = ln

(
η

eπ

)

−
∫

p(z) ln p(z)dz. (60)

Both (49) and (60) need, in general, to be solved numerically.♦

V. NUMERICAL EXAMPLES

In the following, assume for simplicity that Γ = γ̄I ,

Rw = I and Rv = κ2γ̄I , where κ = 10EVM/20 and

EVM denotes the EVM of the transmitter in decibels. The

SNR without transmit-side noise is therefore simply γ̄, or in

decibels, γ̄dB = 10 log10(γ̄). Furthermore, all cases assume a

symmetric antenna setup α = M/N = 1 for simplicity.

The first numerical experiment plotted in Fig. 2 examines

the accuracy of the asymptotic analytical results when applied

to finite-sized systems. The EVM is fixed to a rather pes-

simistic value EVM = −10 dB to highlight the differences

between the ideal and imperfect hardware configurations. The

normalized rate is shown using the asymptotic replica analysis

(lines) and Monte Carlo simulations (markers) for a finite-

size symmetric antenna setup with M = N = 4. In the

case of Gaussian signaling, plotted in Fig. 2(a), the analytical

approximations for the normalized rate M−1I(y; x) given by

Examples 2 and 6 are quite good when compared to the finite

size simulations based on Examples 1 and 5. For discrete

signaling depicted in Fig. 2(b) we have plotted only the case

of matched decoding due to the computational complexity

of Monte Carlo simulations in the mismatched case. The

gap between asymptotic result presented in Example 8 and

Monte Carlo averaging of (44) is similar to the Gaussian

case for both constellations. Figure 2 shows that the analytical

approximation given by the replica method is reasonably good

already at M = N = 4, even though formally the limit

M,N → ∞ is required by the analysis. Note that Monte Carlo

simulation of (44) has exponential computational complexity

and the system size cannot be increased much higher than

M = 4. Therefore, the rest of the examples are generated

using only the analytical results given in the previous sections.

Figure 3 illustrates the performance of an M = N MIMO

system for a more realistic EVM value EVM = −20 dB. For

the case of matched decoding we used Examples 6 and 8,

while Examples 2 and 4 were used to obtain the curves

representing mismatched decoding. In Fig. 3(a), the normal-

ized rate M−1I(y; x) is depicted as a function of SNR

γ̄ in decibels. For clarity of presentation, we have plotted

only the ideal case and the case of non-ideal hardware with

matched decoding. The Gaussian curves (black lines) here

are the same as the simulation curves in [10, Fig. 2] given

the parameter value κ = 0.1. Apart from 64-QAM and

Gaussian signaling, the figure seems to imply that lower order

constellations exhaust the source entropy before the transmit-

side noise has any significant effect for this choice of EVM.

To see more clearly the effect of transmit noise, Fig. 3(b)

shows the rate loss (in percentage) for the case with transmit

noise EVM = −20 dB when compared to the ideal case

EVM = −∞ dB. The solid lines represent again matched

decoding while dash-dotted lines are for mismatched decoding.

As expected, mismatched decoding reduces the achievable

rate when compared to matched decoding, but the effect is

relatively minor when compared to the total rate loss caused

by the presence of transmit noise itself. The markers depict

the points where maximum relative rate loss is experienced

for matched decoding. The same markers are also plotted in

Fig. 3(a) for comparison.

In Fig. 4 we have plotted the asymptotic high-SNR results

given in Examples 3 and 7. Note that given a finite value

of EVM, the normalized rates for matched and mismatched

decoding have a gap in this case. For more realistic, but still

quite high SNR values of 20 dB and 30 dB, the two decoding

strategies converge to the same value roughly when γ̄dB <
−EVM. The apparent discrepancy is explained by recalling

that the asymptotic cases assume γ̄ → ∞ for a fixed and

nonzero EVM and, thus, as a finite SNR approximation implies

γ̄ ≫ 1/κ2. As may be observed from the lower right corner

of the figure, the SNR values 20 dB and 30 dB have also a

similar behavior near γ̄ ≫ 1/κ2. Thus, the high-SNR result

is consistent with the finite-SNR cases.

It is important to guarantee certain performance when

designing a system. The maximum EVM that leads to at most

5% rate loss (as compared to having ideal hardware) for a fixed

input distribution and different given SNRs is plotted in Fig. 5.

For Gaussian signaling we have plotted both the matched and

mismatched cases while discrete cases assume matched joint

decoding for simplicity. As expected, the EVM requirement

for Gaussian signaling is a monotonically decreasing, but not
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Fig. 2. Normalized rate M−1I(y; x) in bits per channel use (cu) vs. SNR for MIMO transmission. Lines for replica results and markers for Monte Carlo
simulations for M = N = 4 antenna configuration. Selected cases of ideal hardware EVM = −∞ dB and hardware impairments (EVM = −10 dB) with
matched and mismatched decoding are plotted.
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(a) Normalized rate M−1I(y; x) given ideal hardware (dashed lines) or
non-ideal hardware and matched decoding (solid lines).
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(b) Rate loss percentage compared to ideal hardware for matched (solid lines)
and mismatched (dash-dotted lines) decoding.

Fig. 3. Performance of a MIMO system with M = N antennas and given ideal (EVM = −∞ dB) or non-ideal hardware (EVM = −20 dB) for different
signaling methods. Markers depict the points where discrete constellations and matched decoding with hardware impairments experience the maximum rate
losses compared to the ideal cases.

linear, function of SNR. A simple linear approximation that

provides a lower bound for the case of Gaussian signaling with

matched decoding is given by

EVM = −0.7 · γ̄dB − 13, (61)

in decibels for the depicted region. This can be used as a

simple rule-of-thumb for worst-case maximum allowed EVM

in the system, although we recommend that EVM target values

obtained in this way are always rounded down to 1–5 dB preci-

sion to include extra safety margin. For discrete constellations,

the EVM requirement first follows the Gaussian case but then

starts to get looser at higher SNRs. This is expected, as can be

observed from Fig. 3(a), since the maximum achievable rate

for a discrete constellation saturates at a certain SNR when

the input distribution runs out of entropy. After this point, the

rate loss can be held fixed for increasing SNR by increasing

the transmit-side noise variance, or EVM, accordingly.

VI. CONCLUSIONS AND FUTURE WORK

Considering a ‘binoisy’ channel model, we have derived

asymptotic expressions for the achievable rate of SU-MIMO

systems suffering from transceiver hardware impairments. For

matched decoding, where the receiver is designed and im-

plemented explicitly based on the generalized system model,

expressions for the ergodic mutual information between the

channel inputs and outputs have been given. In addition, a

simplified receiver that neglected the hardware imperfections

and performed mismatched detection and decoding has been
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Fig. 5. Maximum allowed EVM in decibels for matched decoding so
that the system experiences at most 5% loss in rate compared to the case
with ideal hardware (EVM = −∞ dB). Markers depict the worst case
EVM requirement for the discrete constellations and parenthesis in the legend
provide the respective values as (γ̄dB,EVM). All discrete cases correspond
to matched joint decoding at the receiver.

studied via generalized mutual information. The mathematical

expressions provided in the paper cover practical discrete mod-

ulation schemes, such as, quadrature amplitude modulation, as

well as Gaussian signaling. The numerical results showed that

for realistic system parameters, the effects of transmit-side

noise and mismatched decoding become significant only at

high modulation orders. Furthermore, the effect of mismatched

decoding was found to be relatively minor compared to the

total rate loss caused by the presence of transmit noise itself.

The results were also used to identify the maximum EVM

values that allows for certain system operation.

A. Future Work

For the ease of exposition, the present paper considered

the analysis of a relatively simple SU-MIMO system where

the channel had IID Gaussian elements. An extension of the

replica analysis to Rayleigh fading channels with Kronecker

correlation can be done by following, e.g., the derivations in

[26]. Establishing the effects of transmit-side noise for the case

of correlated channel is an important avenue for future work.

As a further extension, it is important to investigate whether

similar phenomena as observed in the present paper are present

also for more complicated signal models with discrete channel

inputs. Such systems already analyzed in the ideal setting with

the replica method include, for example, multiuser MIMO and

base station collaboration [30], channels with interference and

precoding [31] and K-hop relay channels [32]. Combining the

ideas from the present paper and [30]–[32] would provide a

possible approach to solving such cases.

APPENDIX A

USEFUL RESULTS

Here we collect useful results that are used often in the

paper. All matrix operations below are implicitly assumed to

be well-defined. The Gaussian integration formula for vector

x ∈ C
N is given by (see, e.g., [33, Appendix I])

1

πN

∫

e−xHMx+2ℜ{bHx}dx =
1

det(M)
eb

HM−1b, (62)

and used in Sections II – IV and Appendix C. Similarly, the

matrix inversion lemma [34]

(W−1 +UT−1V H)−1

= W −WU(T + V HWU)−1V HW , (63)

and the related determinant identity

det(W−1 +UT−1V H)

= det(T + V HWU) det(W−1) det(T−1), (64)

are employed several times in the paper.

APPENDIX B

REPLICA METHOD

Consider a function Z that maps RVs to real numbers3

and define two sets of RVs, V ∈ V and X ∈ X , with joint

probability PV,X . Assume for convenience that PV,X can be

described in terms of a joint PDF p(V,X) and denote the

marginal PDFs of X and V pX(X) and pV (V ), respectively.

Then, both in statistical mechanics and communication theory,

we often encounter a formula

f = − 1

M
EV

{
lnEX{Z(V,X)}

}

= − 1

M

∫

V
pV (V ) lnZ(V ) dV, (65)

where Z(V ) =
∫

X pX(X)Z(V,X)dX . In physics jargon, the

variables V are said to be quenched and the quantity (65) is

the average free energy density of a system whose partition

function is Z(V ). Two concrete examples of (65) are:

3In the following we refrain differentiating random variables and their
realizations for notational convenience. Also, Z and, as a result, f can depend
on some parameters (non-random variables) that are not explicitly stated.
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1) Let Z(V,X) = g(y | Hx; Rw) be the conditional

PDF of the observation in an ideal MIMO channel with

V = {y,H} and X = {x}, where x has IID elements

from a discrete modulation set A, such as PSK or QAM.

Then (65) represents a normalized version of the second

term in (7), namely, the (normalized) total entropy of the

received signal y given a realization of H and averaged

over all possible realizations of H .

2) Let Z(V,X) = eβσ
HJσ , where β > 0 denotes the

inverse temperature, V = J ∈ R
M×M a coupling matrix

and X = σ ∈ {±1}M a spin configuration. If pV (V )
is a uniform probability over σ and J has, e.g., IID

Gaussian elements, then (65) is the average free energy

density of a mean-field Ising spin glass in the absence

of external field (up to trivial constants).

In both cases, f captures important properties of the system

at hand and obtaining a computable formula for (65) would

be of great interest. This seems infeasible though since the

number of terms in the expectation is exponential in M .

A. Outline of the Replica Method

One method for solving (65) is the replica method (RM)

from equilibrium statistical mechanics. While the RM is

extremely versatile, it unfortunately lacks mathematical rigor

in some parts (see, e.g., [21]–[23]). However, due to its success

both in physics and engineering, it is generally agreed to be

at least a valuable starting point for analysis of problems that

seem otherwise too difficult to handle. A cursory overview of

literature about the RM inside a specific field or topic may

paint the picture that the RM is a fixed set of mathematical

methods which can be applied to any suitable problem at

hand. This is not entirely accurate and conceptually the RM

can be seen more like a systematic way of turning a very

difficult problem into a more manageable one than a set of

specific tools that actually solve the problem. Indeed, the

mathematical methods that are used at different stages of the

RM can often be chosen from a variety of choices, although it

is very common to have some form of large deviations theory

as part of the analysis (see Step 2 below). Thus, instead of

trying to be entirely general, we describe next (one form of)

the steps taken in the RM in the context of the first example

above.

Step 1 (Replica trick). Consider (65) and write it as

f = − 1

M
lim

u→0+

∂

∂u
lnEV {[Z(V )]u}

= − 1

M
lim

u→0+

∂

∂u
lnEV

{(
∑

x∈AM

pX(x)Z(V,x)

)u}

= − 1

M
lim

u→0+

∂

∂u
ln Ξ(u), (66)

where u ∈ R and we denoted Ξ(u) = EV {[Z(V )]u}. Then,

assume that we can treat u as an integer when we take the

expectation, namely,

Ξ(u) = EV

{ u∏

a=1

∑

xa∈AN

pX(xa)Z(V,xa)

}

(67)

=
1

πuN (detRw)u

×EV

{
∑

{xa}

u∏

a=1

[

e−(y−Hxa)
HR−1

w
(y−Hxa)pX(xa)

]}

,

where the summation in the last expression is over the set

{xa}ua=1. After taking the expectations, if we manage to write

(67) in a form that does not explicitly force u to be an integer,

invoke analytical continuity to extend u to real numbers. ♦
The step above is at the very heart of the RM. It is important

to realize that the equalities in (66) are provably true if

differentiation under the integral sign is permitted and u ∈ R.

The part lacking rigorous mathematical justification is (67),

especially when combined with the next two steps. Somewhat

surprisingly, however, the end results of RM can sometimes

be proved to be exact. Examples of such cases are: MIMO

channel with Gaussian inputs, random energy model (REM)

and Sherrington-Kirkpatrick model of spin glasses (see, e.g.,

[21]–[24] and references therein).

Step 2 (Large system limit). Let the system approach the

LSL, that is, the dimensions of the channel matrix H grow

without bound at a finite and fixed ratio α = M/N > 0.

Furthermore, assume that the limits w.r.t. u and M commute,

so that we can first calculate the expectations in (67) in the

LSL and then let u → 0, as in (66). ♦
The LSL assumption is natural in equilibrium statistical

mechanics (e.g. the second example above), where the systems

contain usually very large numbers of interacting particles

M . In communication theory, the equivalent would be, e.g.,

a MIMO systems with large antenna arrays or a CDMA with

large number of simultaneous users. It is in fact quite common

to write the LSL assumption directly as a part of the replica

trick in (66). The steps are separated here since the replica

trick could also be used for finite sized systems. Due to

mathematical difficulty of such cases, however, both steps are

usually found together. The assumption of commuting limits

is typically postulated a priori and rigorous justification of this

step is beyond the scope of this paper.

Let us denote the true transmitted vector x0, so that

y = Hx0 + w is the generating model for the observation

y and we can equivalently write V = {w,x0,H}. Returning

then to Step 1, we note that although the replicated vectors

{xa}ua=1 act as IID RVs drawn according to pX in (67) when

conditioned on V , they can be correlated if not conditioned

on V . We examine this through the empirical correlations

between the vectors in the set Xu+1 = {xa}ua=0 using overlap

matrix Q ∈ C
(u+1)×(u+1), whose (a, b)th element4 is given

by Qa,b = M−1xH

b xa. Then, the structure that is imposed on

4The row/column indexes of Q are 0, 1, . . . , u so that the correlations are
measured also w.r.t. the true transmitted vector x0. Furthermore, due to (2),
the empirical correlations can be expected to converge to the true ones in the
LSL postulated in Step 2.
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Q divides the replica analysis into two rough categories as

described below.

Step 3 (Replica symmetry). The RS ansatz or RS assump-

tion means that the indexes a = 1, . . . , u are permutation

symmetric and Q can be written in terms of four parameters,

for example, Q0,0 = p, Q0,a = m, a ≥ 1, Qa,a = Q, a ≥ 1,
and Qa,b = q, a 6= b ≥ 1. Note that Q = QH by construction.

If Q is not of the RS form, it is said to have replica

symmetry breaking (RSB) structure whose analysis is much

more involved [21], [22].

The importance of the RS assumption will become clear

when we present a rough sketch of the analysis of an ideal

MIMO channel. We also note that the overlap matrix given in

Step 3 allows the “zeroth” index to be treated separately to

take into account the possibility that either x0 has different dis-

tribution than xa when a ≥ 1, or the decoder uses mismatched

statistics, i.e., Z(V,xa) does not match the probability law of

the observation y = Hx0 + w as in Appendix C. For the

simplified case considered below, however, we have p = Q
and m = q since the indexes a = 0, 1, . . . , u can be treated

on equal footing and two parameters is sufficient to define the

RS form of Q.

Next we give a brief and informal example of replica

analysis for ideal MIMO channel. The reader may be surprised

to find out that most of the discussion below deals with details

about how to obtain the necessary formulas when we follow

the three stages above and not about those stages per se.

B. Average Over the Channel and Noise

The starting point of our replica calculations is (67), where

we use the generating model of y to write in the exponential

y−Hxa = w−H(x0−xa). The first task is then to compute

the expectation w.r.t. w and H for a fixed Xu+1 = {xa}ua=0

that satisfies the correlations of the RS overlap matrix Q. Note

that we cannot assume anymore that the vectors in Xu+1 are

independent since we changed the order of expectations in

(67) and the average over Xu+1 is carried out (later) without

conditioning on w and H . With this in mind, it follows

that given Xu+1, the set {Hxa} consists of CSCG RVs

with correlations EH{(Hxa)(Hxb)
H} = M−1xH

b xaIN =
Qa,bIN that are deterministic in the LSL. Thus, we can replace

{H(x0 − xa)}ua=1 by a set of CSCG RVs {∆a}ua=1 and

use Gaussian integration (62) to average over both w and

{∆a}ua=1 to obtain (for details, see Appendix C-B.)

Ξ(u) =

∫

eNG(u)(Q)µ(Q)dQ, (68)

G(u)(Q) = −u ln det[Rw + (Q− q)IN ]

−u lnπ − ln(u+ 1) (69)

where Q should be understood to be in its RS parametrized

form and µ(Q) is the PDF of the overlap matrix Q.

Remark 2. Firstly, note that due to the RS assumption

(Step 3), the function (69) is of a form that does not restrict

u to be an integer, as desired. This is one of the reasons why

we need to express matrix Q in a parametrized way instead

of using it “as-is”. Secondly, there is some universality in

this derivation and the form (68) is a typical result of replica

analysis. In some cases, however, different techniques are

needed. One example is non-IID “mixing matrix” that requires

direct matrix integration [35], [36]. ♦

C. Distribution of the Overlap Matrix and Large Deviations

The second major step in the analysis is to find an explicit

formula for µ(Q), i.e., for the probability weight of the set

{xa}ua=0 that satisfies Qa,b = M−1xH

b xa. The form of (68)

suggest that we should try to represent µ(Q) as an exponential

whose argument is linear in N (or M ) so that we can employ

Laplace’s method or the method of steepest descent to evaluate

the integral w.r.t. Q. If xa ∈ R
M , due to (2), the elements

of xa are IID for all a = 0, 1, . . . , u and µ follows the large

deviation principle [22], [37]. Informally this implies5 µ(Q) ≍
e−Mc(u)(Q), where the rate function

c(u)(Q) = sup
Q̃

{

tr(QQ̃)− lim
M→∞

1

M
lnφ(u)(Q̃)

}

, (70)

describes the exponential behavior of the probability,

φ(u)(Q̃) = EXu+1

{

exp

( u∑

a,b=0

Q̃a,bx
H

b xa

)}

, (71)

is the moment generating function (MGF) associated with

µ(Q) and the supremum is over all (u+1)× (u+1) matrices

Q̃ that have the same RS form as Q, that is, Q̃0,0 = p̃,

Q̃0,a = m̃, a ≥ 1, Q̃a,a = Q̃, a ≥ 1, and Q̃a,b = q̃, a 6= b ≥ 1.

Thus, we can assess (68) in the LSL up to the leading order

by using the exponential form of µ and Laplace’s method,

namely,

Ξ(u) ≍
∫

eMα−1G(u)(Q)e−Mc(u)(Q)dQ

=

∫

exp
(
N [α−1G(u)(Q)− c(u)(Q)]

)
dQ (72)

≍ exp

(

M sup
Q,Q̃

{
T (u)(Q, Q̃)

}
)

, (73)

where we denoted for notational convenience

T (u)(Q, Q̃) =
1

α
G(u)(Q)− tr(QQ̃) + lim

M→∞

1

M
lnφ(u)(Q̃).

(74)

For complex vectors {xa}, the end result is essentially the

same and the solution to the supremum is found among the

critical points of the argument (see e.g., [26], [27], [35]). The

large deviations analysis also guarantees that Q̃ is in general

a real symmetric matrix and if (Q∗, Q̃∗) is the solution of

the optimization problem in (73) then T (u)(Q∗, Q̃∗) ∈ R, as

expected since f is in our case real.

However, in RM there is some ambiguity as to whether the

correct point in the saddle-point approximation (73) minimizes

or maximizes the exponential when we let u → 0 [21], [22].

5We use notation aM ≍ bM to denote “equality up to the leading
exponential order”, that is limM→∞ M−1 ln(aM/bM ) = 0.
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Thus, in RM, we seek in practice the critical points and (66)

is thus of the form

f = − lim
u→0+

∂

∂u
extr
Q,Q̃

{
T (u)(Q, Q̃)

}
, (75)

where extrX{h(X)} denotes finding the critical points of a

function h(X).

D. Decoupled MGF and Critical Points

The second part of replica analysis where the RS assumption

plays an important role (for the first one, see Remark 2) is

when we try to solve (71) and find the critical points of

T (u)(Q, Q̃). For the simplified setup in this section where

Q and Q̃ are represented with parameter {Q, q} and {Q̃, q̃},

respectively, the MGF can be expressed as (see, e.g., [24] for

details)

φ(u)(Q̃) =
M∏

m=1

[(
q̃

π

)−u∫
[
Exm

g(zm | xm; q̃−1)
]u+1

dzm

]

,

(76)

where zm are just dummy variables. On the other hand, finding

the critical points involves taking eight partial derivatives for

the RS case in Step 3 (for the simplified case here, four

is enough). Then, one should pick the solution that satisfies

the conditions at the critical point while providing the global

extremum of (66). In the case considered here, we can actually

get rid of two parameters since p = M−1
E‖x‖2 and p̃ = 0

always at the critical point. Note that if we did not parametrize

Q, the critical points would be described by u(u+1) equations

and Ξ(u) would depend explicitly on the fact that u is an

integer. This is one of the reasons why even the full-RSB

solution (see [21], [22]) uses a round-about way of presenting

Q instead of using it “as-is”.

Finally, we remark that it is quite common (see, e.g., [24]) to

represent the end result in terms of new variables. For example,

if we have equal transmit powers for each antennas γ̄ = γ̄m in

the simplified case considered here, then the parameters η = q̃
and ε = Q− q = γ̄ − q fully describe the RS matrices Q and

Q̃ at the critical point. The former variable is inverse noise

variance of a decoupled Gaussian channel

z = x+ w, p(w) = g(w | 0; η−1), (77)

and the latter variable ε is the MMSE of this channel when

the inputs are drawn according to pX(x). The rest of RM is

straightforward, albeit tedious algebra to arrive at (66).

APPENDIX C

REPLICA ANALYSIS FOR MISMATCHED CASE

The analysis herein follows the main steps of RM as listed

in Appendix B. Reader who is not familiar with the RM is

encouraged to use discussion there as a guide to the derivations

below.

A. Replica Trick

Let us consider the function f(s) (free-energy) defined in

(13). We then postulate that it can be expressed in the LSL

using the standard replica trick (cf. Appendix B)

f(s) = − lim
M→∞

1

M
lim
u→0

∂

∂u
ln Ξ(u,M)(s), (78)

where we defined for later convenience

Ξ(u,M)(s) = E

{ u∏

a=1

e−[w+H(χ0−χa)]
H
Σ

−1[w+H(χ0−χa)]

}

,

(79)

and denoted6
Σ = s−1R̃ along with χ0 = x0 + v0 and

χa = xa, a = 1, . . . , u. Here x0 is the original trans-

mit vector in (1) and {xa}ua=1 are replicated data vectors,

which are IID drawn according to p(x) when conditioned on

{x0,v0,w,H}. On the other hand, v0 represents the noise

plus distortion component at the transmit-side that is CSCG

with covariance matrix Rv . Starting with (79), the goal is then

to obtain a functional expression for Ξ(u,M)(s) in the LSL that

does not enforce u to be an integer and then use (78) to obtain

the desired quantity. In the following, explicit limit notations

are often omitted for notational convenience.

B. Average Over the Channel and Noise

To proceed with the evaluation of (79), we first make the

RS assumption

p = M−1‖χ0‖2, (80)

m = M−1χH

0χa, a = 1, . . . , u, (81)

Q = M−1‖χa‖2, a = 1, . . . , u, (82)

q = M−1χH

aχb, a 6= b ∈ {1, . . . , u}. (83)

and remind the reader that if we average first over H ,

the empirical correlations between {xa}ua=0 are not zero in

general as discussed in Appendix B. Thus, noticing that

EH{[H(χ0 − χa)][H(χ0 − χb)]
H}

=

{[
p− (m+m∗) +Q

]
IN , a = b,

[
p− (m+m∗) + q

]
IN , a 6= b,

(84)

we may replace {H(χ0 − χa)}ua=1 in (79) in the LSL by

CSCG vectors {∆a}ua=1 that are constructed as

∆a = da

√

Q− q + t
√

p− (m+m∗) + q (85)

= da

√
A+ t

√
B, (86)

where
{
t, {da}ua=1

}
are IID standard complex Gaussian RVs

independent of w. Plugging (86) into Ξ(u,M)(s) and recalling

6 We remind the reader that for the case of mismatched decoding, the

postulated covariance matrix R̃ is fixed by definition so that Σ = s−1R̃
is also a fixed predefined matrix. This is in contrast to the case of matched
decoding (5), where the effective covariance matrix Rw+HRvH is random
and depends directly on the channel matrix H .
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that Σ is a fixed predefined matrix gives

Ξ(u,M)(s) =
1

det(Rw)
E

∫
dw

πN
e−wH(R−1

w
+uΣ−1)w

×
∫

dt

πN
e−tH(I+uBΣ

−1)t−2ℜ{wH(u
√
BΣ

−1)t} (87)

×
[ ∫

e−dH(I+AΣ
−1)d+2ℜ{[−

√
AΣ

−1(w+
√
Bt)]Hd} dd

πN

]u

.

Next, Gaussian integration (62) is applied on the integral w.r.t.

d. Using also (63) we arrive at

Ξ(u,M)(s) = E

∫
dw

πN

e−wH(R−1
w

+u(AIN+Σ)−1)w

[det(I +AΣ−1)]u det(Rw)
(88)

×
∫

e−tH[IN+uB(AIN+Σ)−1]t+2ℜ{[−u
√
B(AIN+Σ)−1w]Ht} dt

πN
.

Application of (62) and (63) again for the integral w.r.t. t

provides

Ξ(u,M)(s)

= E

{ [
det(I +AΣ

−1)
]−u

det
[
IN + uB(AIN +Σ)−1

]
det(Rw)

×
∫

e−wH(R−1
w

+u[(A+uB)IN+Σ]−1)w dw

πN

}

= E

{ (
det
[
IN + uRw

(
(A+ uB)IN +Σ

)−1])−1

det
[
IN + uB(AIN +Σ)−1

][
det(I +AΣ−1)

]u

}

,

(89)

where the second line is also obtained through Gaussian

integration. The above holds for any Rw and Σ that are

Hermitian and invertible. The determinants in (89) can be

further simplified using (64), so that recalling Σ = s−1R̃

and defining two auxiliary matrices

Ω(p,m, q) = Rw + (p− (m+m∗) + q)IN , (90)

Ω̃(Q, q) = s−1R̃+ (Q− q)IN , (91)

that are both Hermitian, we finally have

Ξ(u,M)(s) = det(s−1R̃)uE
{
eG

(u)(p,m,q,Q)
}
, (92)

G(u)(p,m, q,Q) = (1− u) ln det Ω̃(Q, q)

− ln det
[
Ω̃(Q, q) + uΩ(p,m, q)

]
, (93)

Using the differentiation rule ∂
∂x ln detA = tr

(
A−1 ∂A

∂x

)
,

where the partial derivative should be understood as an el-

ementwise operation on A, we also obtain for later use the

equalities

∂

∂p
G(u)(Q) = −u tr

(
(Ω̃+ uΩ)−1

)
, (94)

∂

∂m
G(u)(Q) =

∂

∂m∗G
(u)(Q) = u tr

(
(Ω̃+ uΩ)−1

)
, (95)

∂

∂q
G(u)(Q) = u(u− 1) tr

(
Ω̃

−1
Ω(Ω̃+ uΩ)−1

)
, (96)

∂

∂Q
G(u)(Q) = u tr

(
Ω̃

−1
Ω(Ω̃+ uΩ)−1

)
− u tr

(
Ω̃

−1
)
, (97)

where the dependencies to {p,m, q,Q} were omitted on the

RHSs of the equations for notational simplicity.

C. Distribution of the Overlap Matrix and Large Deviations

Let us now write the general form of empirical correlations

between {∆a} as

1

M
EH{∆H

b ∆a} =

(‖χ0‖2
M

− χH

b χ0

M
− χH

0χa

M
+

χH

b χa

M

)

=
(
Q0,0 −Q0,b −Qa,0 +Qa,b

)
, (98)

where Qa,b are the elements of the overlap matrix Q ∈
C

(u+1)×(u+1) and have the obvious definitions. We then need

to find a suitable formula for the rate function (70). By the

RS assumption,

tr(QQ̃) = pp̃+ um̃(m+m∗) + uQQ̃+ u(u− 1)qq̃, (99)

since Q̃ is real symmetric and we may write (78) as in (100)

at the top of the next page, where the per-antenna rate function

reads

φ(u)
m (Q̃) = E{χa,m}

{

exp

[ u∑

a=0

u∑

b=0

Q̃a,bχ
∗
b,mχa,m

]}

,

(101)

and χa = [χa,1 · · · χa,M ]T.

D. Decoupled MGF and Critical Points

The first set of equations for the critical point arises from

the equality

∂

∂x
tr(QQ̃) =

1

M

∂

∂x
G(u)(Q), (102)

for x ∈ {p,m, q,Q}. The partial derivatives on the LHS

are trivial due to (99) and the RHSs we already obtained

in (94)–(97). If we drop the explicit dependence of Ω and

Ω̃ on {p,m, q,Q} for notational simplicity, the RS conjugate

parameters satisfy

p̃ = −u
1

M
tr
[
(Ω̃+ uΩ)−1

]
= −um̃, (103)

m̃ =
1

M
tr
[
(Ω̃+ uΩ)−1

]
, (104)

q̃ =
1

M
tr
[
Ω̃

−1
Ω(Ω̃+ uΩ)−1

]
, (105)

Q̃ =
1

M
tr
[
Ω̃

−1
Ω(Ω̃+ uΩ)−1

]
− 1

M
tr
(
Ω̃

−1
)
. (106)

Note that the above implies that in the limit u → 0, we have

p̃ → 0, and m̃ → −(Q̃− q̃), so that the relevant critical point

can be written by using two instead of four “tilde-parameters”.

The next task is to obtain an explicit expression for the per-

component moment generating function (MGF) in (101) that

does not require u to be an integer. Since this part is closely

similar to the analysis carried out, e.g., in [24] we omit the

details of the derivations. Following the notation of [24], we

let ξ = m̃ and η = m̃2/q̃ which is sufficient to describe Q̃

here. Then, if we denote χm = xm + vm and χ̃m = x̃m, the

scalar MGF (101) can be written as

φ(u)
m (Q̃) =

(
π

ξ

)u

E

{∫

dzm euξ(|zm|2−|χm|2)

×p(zm | χm)
[
Eχ̃m

q(zm | χ̃m)
]u
}

, (107)
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fRS = − lim
M→∞

1

M
ln det(Σ)− extr

Q,Q̃
lim

M→∞

{
1

M
lim
u→0

∂

∂u
G(u)(Q)

− lim
u→0

∂

∂u

[
pp̃+ u(mm̃∗ + m̃m∗) + uQQ̃+ u(u− 1)qq̃

]
+

1

M

M∑

m=1

lim
u→0

∂

∂u
lnφ(u)

m (Q̃)

}

(100)

where p(zm | χm) = g(zm | χm; η−1) and q(zm | χ̃m) =
g(zm | χ̃m; ξ−1). As a consequence of the above, u does not

need to be an integer anymore and the limit u → 0 is well

defined. From the partial derivatives of {p̃, m̃, q̃, Q̃} we obtain

the second set of conditions at the critical point

p = lim
M→∞

1

M

M∑

m=1

E|xm + vm|2, (108)

Q = lim
M→∞

1

M

M∑

m=1

E〈|x̃m|2〉q, (109)

m = lim
M→∞

1

M

M∑

m=1

E(xm + vm)〈x̃∗
m〉q, (110)

q = lim
M→∞

1

M

M∑

m=1

E〈x̃∗
m〉q〈x̃∗

m〉q, (111)

where xm, x̃m ∼ p(xm), vm ∼ g(vm | 0; rmv ),

〈f(x̃m)〉q = Ex̃m
f(x̃m)

q(zm | x̃m)

q(zm)
, (112)

and q(zm) = Ex̃m
q(zm | x̃m). The interpretation is that

(112) represents the conditional mean estimator for postulated

channel q(zm | χ̃m) when the true channel is given by

p(zm | χm). Then the true ε = p−(m+m∗)+q, and postulated

ε̃ = Q−q MMSE reduce to (23) and (24), respectively. Finally,

computing the partial derivatives w.r.t. u in (100) and taking

the limit u → 0 provides after some algebra the free energy

(26).
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