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ABSTRACT
The currently-accepted dogma when analysing human Alu transposable elements
is that ‘young’ Alu elements are found in low GC regions and ‘old’ Alus in high GC
regions. The correlation between high GC regions and high gene frequency regions
make this observation particularly difficult to explain. Although a number of studies
have tackled the problem, no analysis has definitively explained the reason for this
trend. These observations have been made by relying on the subfamily as a proxy for
age of an element. In this study, we suggest that this is a misleading assumption and
instead analyse the relationship between the taxonomic distribution of an individual
element and its surrounding GC environment. An analysis of 103906 Alu elements
across 6 human chromosomes was carried out, using the presence of orthologous Alu
elements in other primate species as a proxy for age. We show that the previously-
reported effect of GC content correlating with subfamily age is not reflected by the
ages of the individual elements. Instead, elements are preferentially lost from areas
of high GC content over time. The correlation between GC content and subfamily
may be due to a change in insertion bias in the young subfamilies. The link between
Alu subfamily age and GC region was made due to an over-simplification of the data
and is incorrect. We suggest that use of subfamilies as a proxy for age is inappropriate
and that the analysis of ortholog presence in other primate species provides a deeper
insight into the data.

Subjects Computational Biology, Evolutionary Studies, Genomics
Keywords Transposons, Alu, Young, Old, GC content, Insertion bias, Transposable elements,
Primate, Human

INTRODUCTION
Only a small proportion of our genome is made up of sequences that code for proteins

(Lander et al., 2001). Transposable elements are found abundantly in non-coding DNA

and the Alu family of SINE transposons accounts for approximately 10% of the total DNA

in the human genome (Cordaux & Batzer, 2009). Several Alu subfamilies are known to be

actively transposing and it is thought that a new insertion occurs approximately every 20

births in humans (Cordaux & Batzer, 2009). However, most Alu sequences in the genome

are members of abundant, formerly active, subfamilies that are now transpositionally

inert. Some Alu insertions are disease-causing (Callinan & Batzer, 2006; Gallus et al.,

2010; Boone et al., 2001), and insertions into genes and other functional sequences are
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typically eliminated by natural selection. However, many functional DNA sequences have

been derived from Alu sequences-Alus have contributed to the control of transcription by

supplying transcription factor-binding regions (Laperriere et al., 2007; Polak & Domany,

2006; Cowley & Oakey, 2013) and they are involved in alternative splicing (Li et al.,

2001; Nekrutenko & Li, 2001), and in supplying transcriptional start sites for antisense

transcripts used in gene regulation (Conley, Miller & Jordan, 2008). These properties, of

some Alu sequences, are unlikely to be neutral in their selective effects. In principle, these

could be weakly harmful and yet could have spread to fixation by drift in small ancestral

populations. However, the probability of spread to fixation of a positively selected variant

is greatly enhanced relative to a neutral or weakly deleterious variant, with this probability

being approximately twice its selective advantage, when in the heterozygous state (Kimura,

1962). Were the Alu elements that have spread to fixation in human populations spread

by a selective advantage that they conveyed? Polymorphisms for Alu insertions have been

much studied as a tool in human population genetic inference, particularly because the

absence of the element can always be identified as the ancestral state (Batzer & Deininger,

2002). Data from the 1000 genomes project have revealed the frequency distribution of

polymorphic Alu sequences, and have shown this distribution is as expected from selective

neutrality (Stewart et al., 2011). Almost all polymorphic Alu sites are in non-coding

regions, supporting a model where Alu insertions into functional sequences are selectively

harmful and rapidly eliminated, and the remaining insertions are in non-functional

regions, and their spread through populations occurs by genetic drift, not selection.

However, Alu elements that were, at the time of their insertion, neutral or very

weakly harmful, could have subsequently evolved functional roles, a process called

“domestication”. Given the abundance of Alus and other transposable element DNAs in

the genome, it would be strange indeed if adaptive functions never evolved in these DNAs,

since there is no reason to suppose that this DNA component is constitutionally inert to

advantageous changes in its base sequences. But we do not know the proportion of Alu

sequences in the genome that are now functional and selectively maintained.

The human genome project (Lander et al., 2001) argued strongly that the Alu sequences

in our genome are mostly functional. This argument was based on the mean GC-content

of DNA flanking Alu subfamilies of different ages. Alu elements from subfamilies with

peak transpositional activity more than 5 million years ago tend to be located in high

GC, gene-rich, areas of the genome. In contrast, elements belonging to “human-specific”

subfamilies, peaking in activity within the last five million years, tend to be seen in low

GC, gene-poor regions. In this analysis, the age of the subfamily was taken as a proxy for

the age of insertion of the element, as has continued in further studies. All elements from

‘old’ subfamilies, such as AluJo and AluJb, are assumed to be old elements. However, the

actual age of the elements themselves has not been calculated and, therefore, all elements in

each subfamily are assumed to have approximately the same age and the same insertional

behaviour and mechanisms.

The Human Genome Sequencing Consortium (Lander et al., 2001) argued that this

difference in GC content surrounding Alu sequences older or younger than five million
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years ago was due to one of three possibilities. These were, firstly, that there is a higher

rate of random loss of Alus in GC-poor regions, secondly, that negative selection is acting

against Alu elements in GC-poor areas and thirdly, that positive selection is acting in

favour of Alu elements in GC-rich areas. The first two hypotheses are dismissed as unlikely

because DNA with a low GC percentage is gene-poor and has been shown to tolerate the

accumulation of other transposable elements such as LINE1. The third hypothesis was

assumed to be the most likely and the conclusion was that Alu sequences confer a higher

level of Darwinian fitness on the individual. It has been suggested (Conley, Miller & Jordan,

2008) that it is a functional role of Alu sequences in supplying antisense transcription start

sites that has brought about their selective retention.

Brookfield argues that this positive selection hypothesis is itself unlikely and inconsis-

tent with our knowledge of human population genetics (Brookfield, 2001). Specifically,

once elements have been in the genome for five million years they will be fixed in the

population, and natural selection cannot, in principle, increase their abundance. He

suggests that Alu sequences are inserted into both GC-rich and -poor regions. However,

since there is no specific deletion process that recognises Alu sequence ends, any deletion

that removes an Alu will remove other DNA too. While Alus and their flanking DNA

may be deleted from GC-poor regions with little or no harm to the organism, deletions

removing Alu sequences from GC-rich DNA are more likely to be harmful, since they

remove functionally important sequences in addition to the Alu, and are therefore

prevented from spreading in the population by natural selection. This hypothesis implies

no functional importance for the Alu sequence itself, but assumes that the insertion of an

Alu into a GC-rich region is likely to confer less damage on the fitness of the organism than

the subsequent, imprecise, deletion.

A further study (Belle, Webster & Eyre-Walker, 2005) found that Alu elements are not

preferentially degraded in GC-poor regions, although the study was only carried out

using a comparison of human and chimp Alu sequences. This would appear to refute the

Brookfield hypothesis (2001), although the Brookfield hypothesis would apply only to

large indels, rather than the small microdeletions which were the focus of Belle, Webster &

Eyre-Walker (2005).

Costantini, Auletta & Bernardi (2012) tackle the problem from an isochore-centric

position. They conclude that the difference in distributions between young and old Alu

subfamilies is explained by Alu sequences being unstable in GC-poor isochores, but stable

in GC-rich isochores, although it is not entirely clear whether the comparative instability in

GC-poor isochores is due to a higher rate of mutational loss or lower selective constraint.

In each of these studies, elements in a subfamily are analysed as a group, assuming

that all elements in the subfamily are the same age and have the same behaviour and

characteristics. We investigate the GC bias shown in Alu flanking regions by differentiating

between elements within a subfamily and as such discard less data.

In this study we investigate the relationship between the flanking GC content of

an Alu element and its presence in modern primate species, assuming that elements

found in multiple organisms at the same chromosomal location were inserted into a

Hellen & Brookfield (2013), PeerJ, DOI 10.7717/peerj.78 3/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.78


common ancestor species (Hellen & Brookfield, 2013). The pattern of presence in other

primate species shown by Alu elements from the human genome is the result of two

characteristics of the elements. The first of these characteristics is age. A specific insertion

of an element that is found in the genomes of multiple primate species can be assumed to

be older than one found only in the human genome. The second characteristic that these

patterns represent is the conservation of the elements in non-human lineages. Rather than

assuming that element copies only found in humans are the result of recent transposition

events, never having existed in ancestors of the other species being compared, it could,

instead, be that all element copies were present before the divergence between macaque

and the apes (macaque being the species most diverged from humans in our study). The

pattern of orthologous elements in modern species is then explained by the orthologous

elements in other species having been deleted (or mutated to a point where they are

no longer recognisable as Alu elements). Such deletion events will be the result of the

combination of the underlying mutation rate for element loss in the genome, coupled with

the possibility that the deleted chromosome might have been selectively spread through the

population as a result of the deletion being an advantageous event conferring fitness upon

the individual.

METHODS
Data collection
All Human (GRCh37/hg19) Alu sequences in Chromosomes 1, 2, 3, 4, 21 and 22 found

on the Repbase track on the UCSC browser (Dreszer et al., 2012) were downloaded

(n = 345,708). 500bp of DNA up- and down-stream of each Alu sequence was also

retrieved from the UCSC browser. The GC% content of these flanking regions was

calculated using bespoke perl scripts. Alu elements were divided into subfamilies and

the mean GC content for each subfamily was calculated. Previous studies in the literature

(Kapitonov & Jurka, 1996; Lander et al., 2001) were used to divide the Alu subfamilies

into age groups: very young (Ya5, Yb9, Yb8, Yd8, Yg6, Yf4), young (Yk11, Yk4, Yc3, Yc),

medium (Sx3, Sx1, Sc5, Sq2, Sg4, Sz, Sq10, Sg7, Sq4, Sc8, Sx4, Sz6, Jr4, Jr, Y, Sc, Jo) and

old (FAM, Sq, FRAM, Sx, Sg, Sp, Jb). This is the order in which the elements are shown in

Figs. 2 and 4.

Determining orthologs and primate profiles
All Chimpanzee (CGSC 2.1.3/panTro3), Gorilla (gorGor3.1/gorGor3), Orangutan

(WUGSC 2.0.2/ponAbe2) and Rhesus Macaque (MGSC Merged 1.0/rheMac2) Alu

sequences were downloaded. The presence of orthologous elements, in the other primate

species, to the human Alu elements was traced by BLASTing (Altschul et al., 1990) the

element and separately BLASTing its flanking regions, against the elements & flanking

sequences found in the four other primate genomes. The 500bp flanking regions were

included in the BLAST search to ascertain synteny. Matches were only retained where

at least two of the three BLAST analyses (upsteam flank, Alu, downstream flank) gave

a match to the same primate Alu and flanking sequences. We have assumed that top
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Figure 1 Frequency graph showing the length of elements as a percentage of the consensus. The length
of each element, downloaded from UCSC, was compared to its corresponding consensus sequence.
The percentage lengths are shown as a frequency graph. The majority of elements can be seen to be
approximately full length.

BLAST hits which match the same Alu sub-species and have an e-value of 0.0 (which

corresponds to e below 1e-200) are orthologous sequences. A frequency distribution of

the length of elements compared to their consensus sequence (Fig. 1) shows that the

majority of elements are ‘full length’ copies, however there is a smaller spike in frequency

of elements between 40% and 65% length. Therefore we have decided to discard elements

shorter than two-thirds of the length of the consensus sequence. This has been done to

reduce the number of falsely assigned elements, shorter elements being more difficult to

correctly identify due to the small number of differences in sequence between families.

It is possible that there is also an issue with the validity of the GC flanking regions in

fragmented elements as the flanking region may be the remains of the end of a mutated Alu

element rather than representative of the environment in which the element was originally

inserted. Only Alu elements with a traceable evolutionary history through the primate

species have been included. Those elements without orthologs in some species where the

element would be expected to be present, assuming the element was originally inserted into

a common ancestor of the species in which orthologs could be found, have been removed

from the dataset to reduce noise. A small fraction of these elements removed will have

absences that are the result of lineage sorting, particularly for elements seen in the gorilla

and human but absent in the chimpanzee. This resulted in a dataset of 103,906 elements

from 34 Alu subfamilies.
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Elements within a subfamily were assigned to a group depending on the primate

genomes in which an ortholog could be found. Timetree (Hedges, Dudley & Kumar, 2006;

Kumar & Hedges, 2011) was used to provide approximate dates (retrieved 24 April 2012)

between species and confirm the phylogeny used in the analysis. The mean GC content

in these groups was analysed to determine whether young and old elements within a

subfamily showed the same pattern of low GC in young elements and high GC in old

elements that is reported when using subfamilies as a proxy for age.

The frequency distributions of subfamily groups were compared using two-sample

Kolmogorov–Smirnov tests, chosen because the test makes no assumptions about the

distribution of the data. P-values < 0.05 were deemed significant.

Analysis of whether primate profiles are related to age or conser-
vation of elements
To distinguish between the two hypotheses explaining the presence of elements in different

primate organisms (age or retention), a further BLAST search was carried out. Flanking

regions of human elements were concatenated after removing the element sequence.

These concatenated sequences were BLAST searched against the primate genomes in

which orthologous elements could not be found. High scoring matches would indicate the

likelihood of no insertion having taken place in these species.

The flanking GC% content, the element’s similarity score to the sub-family con-

sensus sequence and the length of the element was calculated for each human Alu in

chromosome 1. The consensus sequences, retrieved from Repbase (Jurka et al., 2005),

were assumed to be similar to the ancestral sequence for each family. Pearson correlation

coefficients were calculated between the length of the element and the GC flanking content

and between the similarity score, normalised for length, and the GC flanking content.

These analyses were carried out on 29 of the subfamilies, the remaining 5 did not have

a consensus sequence deposited in Repbase. If the difference in the number of species in

which an Alu could be found was the result of higher levels of mutation in elements found

in areas of high GC content, we would expect to see a negative correlation between GC

flanking content and similarity to the consensus sequence, as a result of either deletion

events or nucleotide substitutions.

RESULTS AND DISCUSSION
GC flanking content analysed by age of human Alu family
For each of the Alu sub-families, we first analysed the mean GC content of 500bp

flanking regions on either side of each Alu element. The data were taken from 6 human

chromosomes (1, 2, 3, 4, 21 and 22) and consisted of 103,906 elements, after removing

those elements which could not be found in species where they would be expected, given

a vertical transmission from a common ancestor of the species where orthologs could be

found. The Alu subfamilies were divided by age and family into four groups: very young

(Ya5, Yb9, Yb8, Yd8, Yg6, Yf4), young (Yk11, Yk4, Yc3, Yc), medium (Sx3, Sx1, Sc5, Sq2,

Sg4, Sz, Sq10, Sg7, Sq4, Sc8, Sx4, Sz6, Jr4, Jr, Y, Sc, Jo) and old (FAM, Sq, FRAM, Sx, Sg, Sp,

Jb) (Kapitonov & Jurka, 1996; Lander et al., 2001).
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Figure 2 The GC flanking regions of Alu subfamilies with subfamily as a proxy for age. 34 Alu
subfamilies are grouped into 4 ages: very young, young, medium, old. The mean GC flanking content
of each family is plotted. Horizontal red lines represent the mean GC content of the age group, with bars
showing standard deviations.

The mean GC content of flanking regions of the very young subfamily group is much

lower than those in the other three groups (Fig. 2), although the standard deviation bars

show the large overlap in flanking GC content that can be seen between the families.

Several subfamilies characterised as ‘young’, ‘medium’ or ‘old’ have a lower mean GC

flanking content that is more consistent with the ‘very young’ group, however, in general

a difference can be seen between the very young group and the older age groups. The

observation that lower GC flanking content is associated with very young Alu subfamilies is

consistent with previous research (Lander et al., 2001).

GC flanking content of elements analysed by presence in other
primate genomes
The frequency distribution observed when dividing elements into groups according to

their presence in primate genomes, rather than by subfamily (Fig. 3), shows a very different

picture from that seen in Fig. 2. Here we see that elements only present in the human

genome have a high GC flanking content and elements found in more of the primate

genomes analysed have a lower GC profile. This pattern was also shown in the larger

analysis which included elements where the evolutionary history of the element was

less certain (e.g. orthologs could be found in Chimpanzee and Orangutan but not in

Macaque), however the inclusion of these other elements also increased the level of noise,

as might be expected (Fig. S1).
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Figure 3 The frequency distribution of Alus with presence of primate orthologs as a proxy for
age. Frequency distribution of GC content of human Alu flanking regions, categorised by the most
distant primate species in which orthologs could be found. Elements are found in the labelled species
and all primate species with a smaller divergence time from human, but not in the species with a larger
divergence time from human e.g. a sequence labelled “Macaque” is found in all five species, a sequence
labelled “Chimpanzee” is found in chimpanzees but not gorillas. GC content is calculated in 500bp up-
and down-stream of the Alu element sequence in the human genome.

If the distribution patterns shown here hold true for each subfamily and if we assume

that the profile of presence of elements in primate genomes can be used as a proxy for

age, then we have younger elements with higher GC values than older elements, running

contrary to the data shown in Fig. 2. If the presence/absence of orthologs in other species

reflects age, then the high GC content of human-specific flanking regions represents the

GC bias at, or close to, the moment of insertion, while the lower GC content in DNAs

flanking older elements represents preferential loss, in the lineage leading to humans,

of elements from high-GC loci. Alternatively, if the presence or absence of othologous

Alu elements in other genomes is not a result of differences in the age of insertion of the

element, but rather of the mutational and selective forces acting on the element in other

species, the data imply that Alu elements are preferentially retained in GC-poor areas,

while elements have been removed from some of the other primate genomes in areas with

higher GC content. If either of these explanations is true, it would lead to the conclusion

that elements in areas with high GC content are preferentially lost from primate genomes.

This hypothesis of a higher rate of loss of elements in areas with high GC content is the

opposite of the hypotheses used in previous studies to explain the lower GC flanking

content in very young Alu subfamilies (Brookfield, 2001; Lander et al., 2001; Costantini,

Auletta & Bernardi, 2012).
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Figure 4 The GC flanking regions of Alu elements by both primate ortholog presence and subfam-
ily. Mean GC content of Alu flanking regions in each subfamily, classified by presence in each of the
primate species in a cumulative manner, hence ‘Human’ elements are found only in humans but ‘Gorilla’
elements are found in humans, chimpanzees and gorillas.

To analyse further this unexpected pattern of GC content in the flanking regions of

Alu elements, elements were grouped by both presence in primate species and subfamily

(Table S1). The data still show a trend for GC content to be higher in human-specific

elements and lower in elements found in a greater number of primate species (Fig. 4).

For the young subfamilies a greater range of mean values can be seen, with the older

elements having much lower GC than is shown in the medium and old elements. The

pattern cannot be seen in the very young elements, due to the noise arising from the

shortage of elements found in the studied organisms most distantly related to humans. The

orthologs to very young Alu elements are somewhat unexpected, however a careful look

at these elements show that many of them are annotated as members of other subfamilies

in the other primate species. It is possible that mutations in the element once in situ have

changed the sequence so that it appears to be a member of one of the very young families

when in an evolutionary sense, it is not (Table S2). However, the flanking regions of the

human-specific, very young, Alu elements can be seen to have a much lower GC content

than is observed in any of the other subfamily groupings.

For each of the subfamilies in the young, medium and old age groups, the pattern of

retention of elements in primate genomes can be explained by either of the two hypotheses

we have put forward. In each case, elements in high GC regions are being lost from the

genome. Either old elements have lower average GC flanking regions than the younger

elements because there has not been enough time for the younger elements in high GC
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regions to be deleted, or the elements in a subfamily, having originally been inserted at a

similar time, are more likely to be deleted from genomes when they are situated in areas

of high GC content and more likely to be retained in areas of low GC content. This would

result in a profile where elements found in all the primate genomes are preferentially found

in lower GC regions than those only found in a few genomes. However, while the loss of

Alu elements in regions of high GC content explains the data shown for the young to old

subfamilies, it does not explain the low GC flanking content shown by elements from very

young subfamilies.

Two-sample Kolmogorov–Smirnov tests were used to compare the total distributions

of each subfamily to each of the other subfamilies, as a way of classifying the subfamilies.

A group of 8 subfamilies were found with ‘low’ GC profiles. These subfamilies were found

to have significantly different GC profiles from those with ‘high’ GC profiles (p < 0.05),

but not from each other. The group consisted of five of the six very young subfamilies (Alu

Yd8 did not have enough elements to show a significantly different profile from that of any

other subfamily), but also contained AluYk4, AluJr4 and FAM. The inclusion of these older

subfamilies in the ‘low’ GC profile group suggests that the GC flanking region content of

Alu elements may be a characteristic of certain subfamilies and not linked to the age of the

elements at all. However, a sequence analysis of the consensus sequences in each group did

not show any consistent sequence differences which could be responsible for the differing

profiles. It is therefore unclear what might be driving this suggested difference in insertion

profile.

Analysis of whether differences in GC profiles for elements
shared by different primates are related to age or conservation of
elements
Further analyses were carried out to attempt to distinguish between the two hypotheses.

The two flanking regions of each of the elements found in humans, but not other species,

were concatenated together, without the Alu element, and BLASTed against the other

species of interest, to look for cases where those flanking sequences were not separated by

an Alu. We were unable to find many clear-cut examples of positions where the flanking

regions could be found with a high enough similarity to be able to assume that the element

was never inserted at this position. We believe this was due to a number of reasons: a high

proportion of elements being in non-coding regions where the sequence conservation was

low, the divide between element and flank regions being inaccurate as many elements had

low conservation in the terminal regions and, finally, a high similarity threshold.

The second analysis consisted of Pearson correlation analyses comparing the flanking

GC content (as a percentage) for each element against the similarity of that element to its

subfamily’s consensus sequence (Fig. 5). The length of each element was also compared

to the corresponding flanking GC content. The consensus sequences were assumed to be

similar to the ancestral sequence. 29 analyses of each type were carried out, one for each of

the subfamilies with a consensus sequence deposited in Repbase.

28 of the 29 correlations between length and GC content were found to be negative,

as would be expected if elements in high GC areas were preferentially degraded through
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Figure 5 Correlation between GC flanking content and similarity to consensus and between GC flank-
ing content and length of element. Pearson correlation coefficients were calculated, for each subfamily,
between the GC flanking content and both the similarity of the element to its consensus sequence and
the length of the sequence. Significant correlations are shown using filled-in points, non-significant
correlations are represented by empty points.

deletion events. Sixteen of the correlations were found to be significant (p < 0.05).

The similarity comparisons showed a positive correlation in the young, middle and old

families, significantly in 14 cases. This implies that the elements in the high GC regions are

closer in sequence to the consensus and have undergone fewer nucleotide mutations than

those in low GC regions. However, the five very young families in the correlation analysis

showed a negative correlation, although only one was significant. This difference may be

due to the effects of the evolutionary processes not having had time to show in the data

yet, but may also show further evidence of a different relationship between the very young

elements and their genomic environment.

CONCLUSIONS
Since the human genome project analysis was released (Lander et al., 2001), 10 years

ago, researchers have been attempting to explain why older Alu subfamilies are found in

GC-rich regions and younger Alu subfamilies are found in GC-poor regions. By analysing

each element individually, rather than the mean values shown by sub-families, we have

delved deeper into the issue. This closer examination of the evidence has shown that

previous assumptions may have lead to misleading conclusions. Our element-specific

approach clearly shows that although very young, human-specific, Alu subfamilies are

found in areas of lower GC content than those of older families, this observation cannot be

extrapolated to cover ‘young’ and ‘old’ individual elements. Instead, we have shown that

Alu elements are preferentially removed from GC-rich areas rather than GC-poor areas.
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This loss of Alu elements cannot therefore explain the presence of old Alu sub-families in

GC-rich areas and young Alu sub-families in GC-poor areas.

It is not clear whether the difference between profiles of GC-content, conditional

upon the presence of orthologous elements in different primate species, is differentiating

elements by age of insertion or by differential retention in other species. In either case,

it is clear that Alu elements are preferentially removed from areas of high GC content

rather than low GC content, as was previously assumed. Some part of the loss from

high-GC-content areas may be the result of selection, as some of the human specific

elements may not be fixed in the population and may be subsequently lost by selection.

High GC content is known to correlate with areas of high gene frequency (Lander et

al., 2001; Venter et al., 2001) and as it is likely that insertions near gene regions may

have negative consequences for the fitness of the host organism. However, any strong

selection would have prevented insertions in high GC regions from reaching appreciable

frequencies, and would thus have prevented their being included in the human-specific

data, although these data could include insertions which are only very weakly deleterious.

Furthermore, simple selection as a result of elements’ harmful effects in high GC regions

cannot explain the differences among chimpanzee, gorilla, orangutan and macaque

profiles in Fig. 3.

This hypothesis of loss from high GC regions is sufficient to explain the pattern of GC

bias shown within the subfamilies and to explain the patterns shown for all but the very

young Alu subfamilies. The differences in GC flanking content shown by very young AluY

elements appears to be due to a difference in insertion bias, a bias that is shared with three

older subfamilies – AluYk4, AluJr4 and FAM. As suggested by Belle, Webster & Eyre-Walker

(2005), it appears as if these subfamilies have a different pattern of insertion from the

remainder of the old elements. However, we could find no systematic DNA sequence

differences between the ‘low GC’ and ‘high GC’ subfamily groups which would account for

this differing behaviour.
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Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S,
Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen H-C, Church D, Clamp M,
Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JGR, Harmon C,
Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA,
Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D,
Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP,
Schuler G, Schultz J, Slater G, Smit AFA, Stupka E, Szustakowki J, Thierry-Mieg D,
Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang S-P,
Yeh R-F, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Myers RM,
Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N,
Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Patrinos A, Morgan MJ.
2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
DOI ./.

Laperriere D, Wang TT, White JH, Mader S. 2007. Widespread Alu repeat-driven expansion of
consensus DR2 retinoic acid response elements during primate evolution. BMC Genomics 8:23
DOI ./---.

Hellen & Brookfield (2013), PeerJ, DOI 10.7717/peerj.78 14/15

https://peerj.com
http://dx.doi.org/10.1159/000084979
http://dx.doi.org/10.1007/BF00163212
http://dx.doi.org/10.1093/bioinformatics/btr315
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1186/1471-2164-8-23
http://dx.doi.org/10.7717/peerj.78


Li WH, Gu Z, Wang H, Nekrutenko A. 2001. Evolutionary analyses of the human genome. Nature
409:847–849 DOI ./.

Nekrutenko A, Li WH. 2001. Transposable elements are found in a large number of human
protein-coding genes. Trends in Genetics 17:619–621 DOI ./S-()-.

Polak P, Domany E. 2006. Alu elements contain many binding sites for transcription factors
and may play a role in regulation of developmental processes. BMC Genomics 7:133
DOI ./---.

Stewart C, Kural D, Stromberg MP, Walker JA, Konkel MK, Stütz AM, Urban AE, Grubert F,
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