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Abstract

The Dynamic System Optimum (DSO) traffic assignment problem aims to determine a time-dependent

routing pattern of travellers in a network such that the given time-dependent origin-destination demands

are satisfied and the total travel time is at a minimum, assuming some model for dynamic network

loading. The network kinematic wave model is now widely accepted as such a model, given its realism in

reproducing phenomena such as transient queues and spillback to upstream links. An attractive solution

strategy for DSO based on such a model is to reformulate as a set of side constraints apply a standard

solver, and to this end two methods have been previously proposed, one based on the discretisation

scheme known as the Cell Transmission Model (CTM), and the other based on the Link Transmission

Model (LTM) derived from variational theory. In the present paper we aim to combine the advantages

of CTM (in tracking time-dependent congestion formation within a link) with those of LTM (avoiding

cell discretisation, providing a more computationally attractive with much fewer constraints). The

motivation for our work is the previously-reported possibility for DSO to have multiple solutions, which

differ in where queues are formed and dissipated in the network. Our aim is to find DSO solutions that

optimally distribute the congestion over links inside the network which essentially eliminate avoidable

queue spillbacks. In order to do so, we require more information than the LTM can offer, but wish to

avoid the computational burden of CTM for DSO. We thus adopt an extension of the LTM called the

Two-regime Transmission Model (TTM), which is consistent with LTM at link entries and exits but which

is additionally able to accurately track the spatial and temporal formation of the congestion boundary

within a link (which we later show to be a critical element, relative to LTM). We set out the theoretical

background necessary for the formulation of the network-level TTM as a set of linear side constraints.

Numerical experiments are used to illustrate the application of the method to determine DSO solutions

avoiding spillbacks, reduce/eliminate the congestion and to show the distinctive elements of adopting

TTM over LTM. Furthermore, in comparison to a fine-level CTM-based DSO method, our formulation

is seen to significantly reduce the number of linear constraints while maintaining a reasonable accuracy.

Keywords: kinematic wave model, cell transmission model, link transmission model, two regime

transmission model, double queue model, dynamic system optimum, spillbacks
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1. Introduction

The Dynamic System Optimum (DSO) traffic assignment problem predicts the optimal time-dependent

routing pattern of travellers in a network such that the given time-dependent origin-destination demands

are satisfied and the total system travel time spent by all travellers is minimized, assuming some model

for dynamic network loading. It has been shown recently by Shen and Zhang (2014) that DSO may have

multiple solutions which share the same DSO objective (i.e. the total travel times) but have different

queue lengths at nodes in the network. There are two types of special DSO solutions: the non-holding

back solutions and the free-flow solutions. Non-holding back solutions require the system to discharge

flow as much as it can so that there might be heavy congestion at the intersections inside the network,

which in many cases might cause spillbacks to the upstream links. Here the spillback appears when

downstream congestion in a link propagates upstream and reaches the upstream node, and hence possi-

bly restricts the inflow to the link, and subsequently to restrict the exit flow from adjacent upstream links

(Qian et al., 2012). The free-flow DSO solutions does not allow vehicles to wait in the queue inside the

network, but allows the queue to build up at the origin nodes. Given the contrast in where the queues

form in the network, the interesting question to ask is how to optimally distribute queues inside the

network in order to achieve a better DSO solution at the end. This paper focuses on the DSO solutions

which optimally distribute the (horizontal) congestion over links in the network. We expect that such

optimal distribution of the congestion over links will lead to better traffic operation inside the network

such as minimal queue spillbacks or even free-flow condition, which consequently reduce the stop-start

traffic dynamics in the network and, hence, reduce emissions. To this end, there is a need to explicitly

determine the time and space evolution of the queues in the network.

There has been much effort in literature undertaken to formulate the kinematic wave model (KWM)

of Lighthill and Whitham (1955) and Richards (1956), based on an analogy between traffic flow and

certain types of wave motion in fluids, for the DSO problem. Especially, a discrete version of the KWM,

called the cell transmission model (CTM) (Daganzo, 1994, 1995) has been formulated as side constraints

in the DSO problem (Carey and Ge, 2012, Carey and Watling, 2012, Gentile et al., 2005, 2007, Lo

and Szeto, 2002, Nie and Zhang, 2005, Shen and Zhang, 2014, Szeto et al., 2011, Szeto and Lo, 2006,

Ukkusuri et al., 2012, Ukkusuri and Waller, 2008, Ziliaskopoulos, 2000). It is because knowing the time-

space dynamics of traffic flow within the link will facilitate a better understanding of the resulting SO

solution, for example the level of congestion and spillback location in the network, etc. An important

property of the CTM is the possibility to reformulate it as a relaxed set of linear constraints so that

a linear programming model for the DSO-DTA problem for a network can be solved efficiently (Beard

and Ziliaskopoulos, 2006, Li et al., 2003, Ukkusuri and Waller, 2008, Ziliaskopoulos, 2000). However,

the choice to adopt CTM is not without its computational overheads. As noted in Nie and Zhang

(2005), if we just consider the issue of DNL (of given route in-flow profiles) then the computational time

for the CTM is directly proportional to the number of cells, and hence the computational efficiency is

inversely proportional to the accuracy (in recovering the LWR). Thus the choice of discretisation level

effectively means a choice/compromise between computational efficiency and the level of agreement with
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the (continuum) KWM model. If we then consider the wider issue of how the model is integrated within

a DSO framework, then we are faced with further computational issues: if the CTM is specified as a

set of side constraints as suggested by Peeta and Ziliaskopoulos (2001) then the number of constraints

grows with the fineness of the discretisation, whereas if we represent it using a route-based mapping as

in Lo and Szeto (2002), then we are led down a path of route enumeration with all the computational

difficulties that it is known to bring. As noted in Bar-Gera (2005), the ’computational requirements

reduce the attractiveness of this model for large-scale long duration applications’. Such computational

issues of CTM based DSO problems are further explored in Shen and Zhang (2008) for different network

sizes, where the number of constraints is increased polynomially with the network size.

Recently, a well known Lax-Hopf (LH) formula for the Hamilton-Jacobi (HJ) type partial differential

equations has been used to solve the KWM, which can avoid the discretisation, hence enhance the

computational efficiency. The LH formula can be used to provide a variational formulation of the HJ

equation solutions describing the evolution of cumulative number of vehicles at the two ends of the

link. In principle, the LH formula has been derived in various ways including the traffic flow theory

by Daganzo (2005, 2006) which actually generalizes the theory of Newell (1993), the viability theory by

Aubin et al. (2008, 2011) for given boundary conditions at two ends of the link, which is then extended

to include the internal condition (i.e. information of probe vehicles) by Claudel and Bayen (2010a,b),

and the technique of calculus of variations by Evans (2010). The Link Tranmission Model (LTM) in

either discrete form (Yperman et al., 2005) or continuous form (Han et al., 2015, Jin, 2015) has been

developed using the Newells theory which is a special formulation of LH formula above, where the state

of the whole link (i.e. either free-flow or congested) will be determined by the entry and exit flow. More

specifically, the flow propagation in LTM is based on Newell’s cumulative flow curves applied at the

entry/exit of each link, with node models used to calculate the transition flows, which are based on

conservation of flow between the incoming and outgoing flows. Sending/receiving flows, together with

transition flows and other flow constraints, form the basis for updating the cumulative flows at the link

boundaries. Osorio and Flotterod (2014), Osorio et al. (2011) have then developed another version of

LTM, which is a so-called Double Queue Model (DQM). In the DQM, the link is treated as a set of two

queues, referred to as the upstream queue and the downstream queue. Both LTM and DQM can properly

capture the free-flow travel time delay when the link is in a free-flow state and the backward shockwave

time delay when the link is in a congested state, which make them possible to capture queue spillbacks.

The DQM was used in Ma et al. (2014) to find a free-flow DSO solution where spillback is tracked by

the traffic state at the link entrance (in free flowing) or at the link exit (in congested) accounting for

some time shift. Nevertheless, either LTM or DQM does not determine explicitly the propagation of the

front shocks within a link and thus is unsuitable for providing the detailed traffic state within the link.

Given the background described above, we aim to formulate a DSO problem with a KWM as linear

constraints. To fulfill our objective (i.e. optimal distribution of the queues over links), we must track the

time and space evolution of the queue lengths in the DSO problem. While LTM or DQM cannot describe

such evolution of the queue lengths, CTM can do it with high computational cost, especially for the DSO
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problem. We will address this problem by applying a recently proposed Two-regime Transmission Model

(TTM) in Balijepalli et al. (2014) for our DSO problem. The TTM principle is more desirable for our

DSO-related problem than using the CTM, LTM or DQM as, on the one hand, it utilizes the entry and

exit flows to describe the link state similarly to the LTM or DQM, and, on the other hand, it provides

the time and space evolution of the queue lengths. Basically, the TTM assumes that traffic along a link

is characterised by two regimes (i.e. either non-congested where the density is below a critical density

or congested where the density is above the critical density). In TTM, the (horizontal) length of the

congested regime can be determined by the inflow at the upstream node and outflow at the downstream

node. With these assumptions, we are only interested in the congestion formation and the propagation

of the tail of the congestion under a certain boundary condition (when and where a traffic congestion

occurs). We have shown in Balijepalli et al. (2014) that the TTM is able to capture accurately the

traffic states (e.g. the evolution of density) both in (horizontal) space and time as a fine-level CTM at

a significantly reduced computational cost. The major of this paper, therefore, is to establish a new

optimization framework to find DSO solutions which can optimally distribute the queue lengths over

links so that the spillbacks can be minimized or free-flow traffic inside the network can be attained.

The organization of this paper follows. Section 3 briefly reviews the development of the TTM for

dynamic network loading problems which has been published previously in Balijepalli et al. (2014).

Section 4 formulates the TTM as a set of linear constraints for a DSO traffic assignment problem in

which the queue lengths are calculated explicitly. Section 5 presents a new optimization framework

which finds DSO solutions optimally distributing the queue lengths over links in the network using the

linear constraints formulated in Section 4. Section 6 illustrates our numerical studies for a small and a

reasonably large network in order to support the advantages of our approach. Finally, we conclude our

paper in Section 7.

2. Notation

A traffic network is considered a directed graph, which consists of a set of links connected via a set

of nodes. The notation below will define a traffic network being considered in this paper.

• T: a set of discrete time steps, T ⊂ N. For continuous time domain, we use notation TR (TR ⊂ R).

We define T = |T| as the number of time steps.

• V: Set of nodes. There are two subsets: set of source nodes VR and set of sink nodes VS , such

that: (VR ∪ VS) ⊆ V and, VR ∩ VS = ∅.

• E: Set of directed links, combined by any two nodes in V, e.g. if (n,m) ∈ E then we call n the

upstream node, and m the downstream node of this link. There are three subsets of links: normal,

source (ER) and sink (ES) links. The last two types are the specialized and virtual links to provide

features of source nodes and sink nodes. For each link a ∈ E:

– la: physical length.
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– Υ−
a : set of inflow links to link a.

– Υ+
a : set of outflow links from link a.

– Sa(t): supply of link a.

– Da(t): demand from link a.

– ua(t): incoming traffic flow to link a at time t.

– va(t): outgoing traffic flow from link a at time t.

∗ Note that: ua(t), va(t), Sa(t) and Da(t) are continuous in time domain TR.

Also for each node n ∈ V:

– Γ−
n : set of inflow links to node n.

– Γ+
n : set of outflow links from node n.

(Γ−
n ∪ Γ+

n ) ⊆ E

Γ−
n ∩ Γ+

n = ∅

Υ−
a = {e|a ∈ Γ+

n ; e ∈ Γ−
n }

Υ+
a = {e|a ∈ Γ−

n ; e ∈ Γ+
n }

• fab(t): upstream traffic at link b, coming from downstream traffic at link a.

a, b ∈ E

a ∩ b 6= ∅

• (Va,Wa,Ka): the set of fundamental diagram parameters, e.g. free-flow speed, backward speed

and maximum density, for each link a ∈ E. In this paper, the triangular flow-density relationship is

adopted. Accordingly, the maximum flow is Qa = KaVaWa

Va+Wa
, and the critical density is Ca = KaWa

Va+Wa
.

• lca(t): length of congested regime in link a.

• lfa(t): length of non-congested regime in link a.

• Common indexes: a for links in E, n for nodes in V, i for time steps in T, t for continuous time in

TR.

Network formation. Two rules for source and sink nodes:

• There is only one link from a source node, called source link.

• There is only one link to a sink node, called sink link.
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3. Two regime Transmission Model

This section briefly discusses the concept of the TTM for traffic dynamics in a link, which has

been previously developed in Balijepalli et al. (2014), and explains the potential advantages of TTM in

solving DSO problems, which is our major contribution (Section 5). Define the fundamental relationship

according to the LWR model:
∂ρ

∂t
+

∂q

∂x
= 0 (1)

where ρ = ρ(x, t) and q = q(x, t) denote, respectively, the density and flow at continuous location x and

continuous time t. Here the link index a is dropped for the sake of simplicity since equation (1) holds

for any link. Note, by definition, q(0, t)
.
= u(t) and q(l, t)

.
= v(t). Furthermore, the flow is assumed

to be a function of the density, which refers to a so-called fundamental diagram. Thus we may write:

q(x, t) = φ (ρ(x, t)) for some function φ(.) that is independent of x and t. We shall specifically focus on

the case of a triangular flow-density relationship:

φ(ρ) =







V ρ, if 0 ≤ ρ < C;

W (K − ρ) , if C ≤ ρ ≤ K.
(2)

where C is the critical density, defined by C = KW
V+W . Together, equations (1)-(2) define the LWR model

for a link, for given entry and exit flow profiles. To apply the method of characteristics as described

by Newell (1993): from any given point (x, t) with density ρ(x, t), we are able to trace along a curve in

space-time of traffic density, back in time to a boundary location (in our case, the entry-point to or exit-

point from the link). For homogeneous links (where the capacity is unchanged spatially), this space-time

curve is linear, such that for our given point (x, t), we determine the density along the space-time points

given by tracing back to any earlier time:

ρ(x, t) =







ρ(0, t− x
V ), if 0 ≤ ρ < C;

ρ(l, t− l−x
W ), if C ≤ ρ ≤ K.

(3)

and we are then able to relate the flows corresponding to the densities in (3) to the boundary conditions:

q(x, t) = φ(ρ) =







φ
(
ρ(0, t− x

V )
)
= u

(
t− x

V

)
, if 0 ≤ ρ < C;

φ
(
ρ(l, t− l−x

W )
)
= v

(
t− l−x

W

)
, if C ≤ ρ ≤ K.

(4)

The novel feature of TTM we shall now describe is that it utilises (3) and (4) in a simplified way that

neither requires us to treat the state of the link as homogeneous along its length (as is implicitly done

in LTM or DQM, for example), nor requires a fixed, fine discretisation scheme to be applied (as in the

CTM, for example). It is also worth noticing that the proposed method can capture the traffic states in

time and space along the link as CTM while the LTM/DQM cannot. Of course, there are other more

advanced models using the LH formula such as in Aubin et al. (2008, 2011) or in Claudel and Bayen

(2010a,b) which only use the entry and exit flow to predict the traffic states within a link, but they are

not straightforward and efficient to apply in solving DSO problems.

Without loss of generality, we suppose that the initial state of all links (at time t = 0) is empty since

any initial state can belong to one of the cases below. Returning, then to the definition of our TTM

approach, we now go on to consider the different cases that may arise given time instant t:
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Figure 1: Congestion propagation

i. A downstream section of the link is empty, while there is traffic at the remaining upstream section

operating at the free-flow condition (in principle, traffic is at the non-congested conditions in the

whole link). This will occur until the first vehicle reaches the downstream end of the link, travelling

at free flow speed V for the link length l.

ii. The whole link is free-flowing (front shock reaches the downstream node). This will occur, for

example if v(t) = u(t − l/V ). This situation is similar to case i and traffic in the whole link still

belongs to the non-congested regime.

iii. The whole link is congested (front shock reaches the upstream node). This will occur, for example

if u(t) = v(t− l/W ). In this situation, traffic in the whole link belongs to the congested regime, and

congestion propagates to the entrance of the link which can cause the spillback phenomena. This

important phenomena will be illustrated later in Section 6.

iv. A downstream section of the link is congested, while the remaining upstream section is free-flowing

(See Figure 1). This will occur, for example if u(t) > v(t + l/V ). Hence, there is no interaction

between the two boundary conditions nor between upstream and downstream node.

It is clear that if the front shock reaches either upstream or downstream node, there is an interaction

between the two nodes or the two boundary conditions, which is a main reason for the queue spillback

and gridlock. To this end, both TTM and LTM (or DQM) can handle such queue spillback and gridlock

situations (or link shock-wave propagation as shown in Ma et al. (2014)) while TTM can handle how

the front shock propagates in time and space as in case (iv). That means with TTM we can compute

explicitly the time and space evolution of the length of the congested regime, which can be used for our

optimization problems: to evenly distribute the congestion over links so that the front shocks within a

link can be refrained as much as possible and the spillbacks can be minimized.

Based on the discussion above, we begin to introduce our pseudo code for the link-model by first

describing the time evolution of the ’regime lengths’ lf (t) and lc(t) defined above, with a dot used to

denote time-derivative:

i. Initialisation (t = 0). Set lf (0) = lc(0).

ii. Warm-up (0 < t ≤ l/V ). By the argument given earlier, the time evolution of the regime lengths
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during this time period obeys: l̇c(t) = 0 and l̇f (t) = V . As the link is either free-flowing or empty at

all locations, we apply equations (3)-(4) to obtain the flow and density in time and space: In sum,

in this case traffic states along the link are determined by the inflow from the upstream node.

iii. Remaining period (t > l/V ). By the start of this period (t = l/V ) flow will have reached all

locations along the link if in-flows are positive (u(t) > 0), having all travelled at free-flow speed,

and so it should be the case that the length of the non-congested regime at this time is the whole

link length, i.e. lf (l/V ) = l. During this period of continued positive in-flow we will always have

lf (t) + lc(t) = l. Note that, if ρ(x, t) ≤ C then lc(t) = 0. As congestion can only potentially form at

the downstream end of the link, and our focus will therefore be on understanding the time-evolution

of the length lc(t) that this congested regime propagates from the exit of the link.

Let us suppose then we are at a time t where congestion has indeed formed at the downstream

end of the link (Figure 1). In such a case, the shock will propagate in the upstream direction, or

dissipate in the downstream direction, at the prevailing shock-wave speed which we denote ω(t). The

shock-wave speed is influenced by the supply constraints (e.g. control settings or reduced capacity)

at the downstream node (in our present case, as reflected in the boundary condition of the given exit

flow profile v(t) (0 < t < +∞)) and by the demand entering the link through the upstream node (as

reflected, in our present case, in the given entry flow profile u(t) (0 < t < +∞)). In practice, this

speed may be computed by applying the Rankie-Hugoniot (RH) condition at the current boundary

location x = lf (t) between the non-congested and congested regimes as below:

ω(t) =
[jump in the flow]

[jump in the density]
=

q+(t)− q−(t)

ρ+(t)− ρ−(t)
(5)

where q+(t) and q−(t) denote, respectively, the flow at the right and left interface between the non-

congested and congested regime while ρ+(t) and ρ−(t) are the density at the right and left interface

between the non-congested and congested regime. By definition, q+(t) will be determined by the flow

at the exit while q−(t) will be determined by the flow at the entry of the link. To follow equations

(3) and (4) we obtain:

ω(t) =

v

(

t−
lc(t)

W

)

− u

(

t−
lf (t)

V

)

K −
1

W
v

(

t−
lc(t)

W

)

−
1

V
u

(

t−
lf (t)

V

) (6)

The dynamic equation for the length of the congested regime is computed as:

l̇c(t) = −ω(t) (7)

From equation (7), if ω(t) < 0 , that is q+(t) < q−(t), the shock is moving upstream, the length of

the congested regime is increased, whereas if ω(t) > 0, that is q+(t) > q−(t) , the shock is dissipating

downstream, the length of the congested regime is decreased. Nevertheless, if ω(t) = 0 the length

of the congested regime is unchanged (stationary). Note that ω(t) describes the slope of the line

connecting a point in the non-congested branch with a point in the congested branch of the density-

flow relationship; it should not be confused with W which is the slope of the congested branch of

the flow-density relationship.
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We have thus completed the consideration of the different cases that arise during different time

periods. In each case we have been able to describe the dynamic evolution of the different regimes across

the link length. Knowing these lengths, we are able to know when and where to apply the different cases

described via equations (3) and (4), and thereby construct flows and densities across the whole link.

4. Linear constraints formulation of the TTM

This section will show how it is possible to formulate the continuous TTM for a single link equivalently

as a system of (discrete) linear constraints and how to determine the time and space evolution of the

length of the congested regime which will be used in finding the DSO solutions in Section 5.

4.1. Definition of the discrete time variables

Let us define the following discrete time variables from the continuous TTM described in Section 3:

u(i) =
∫ i+1−

i
u(t)dt

v(i) =
∫ i+1−

i
v(t)dt

f(i) =
∫ i+1−

i
f(t)dt

D(i) =
∫ i+1−

i
D(t)dt

S(i) =
∫ i+1−

i
S(t)dt

∀i ∈ T (8)

For the sake of simplicity without loss of generality let us assume that

l

V
∈ N

l

W
∈ N

∀a ∈ E (9)

In general, we could ignore this assumption but the model becomes more complex and may bring nu-

merical issues when working with the non-integer values. As suggested in Ban et al. (2012), the mesh

size should be properly chosen to avoid such non-integer problems.

4.2. Definition of the system variables

Basically, we will consider the number of vehicles in a link a major variable for the DNL problem.

Nevertheless, the computation of such variable will take into account the dynamics of the length of the

congested regimes described by the TTM. First, let us define the the number of vehicles in a link at

time instant t ∈ TR as the number of vehicles currently staying in this link at time t, mathematically

represented by:

n(t) =

∫ t

0

(u(h)− v(h)) dh (10)

In discrete time step, the number of vehicles in a link at time step i ∈ T, means:

n(i) = lim
t→(i+1)−

∫ t

0

(u(h)− v(h)) dh =
i∑

k=0

[u(k)− v(k)] (11)
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The number of vehicles in a link can also be defined as:

n(t)
.
=

l∫

0

ρ(x, t)dx (12)

From the definition of the TTM in Section 3, the number of vehicles in a link consists of the total

number of vehicles staying in the non-congested regime and in the congested regime at time instant t.

Substituting equation (3) into equation (12) gives:

n(t) =
1

V

lf (t)∫

0

u
(

t−
x

V

)

dx

︸ ︷︷ ︸

Non-congested regime

+

l∫

lf (t)

(

K −
1

W
v(t−

l − x

W
)

)

dx

︸ ︷︷ ︸

Congested regime

=
1

V

lf (t)∫

0

u
(

t−
x

V

)

dx

︸ ︷︷ ︸

Non-congested regime

+

lc(t)∫

0

(

K −
1

W
v
(

t−
x

W

))

dx

︸ ︷︷ ︸

Congested regime

(13)

This equation indicates that the number of vehicles in a link determined in each traffic regime by

equation (3) has been implicitly incorporated and will be used latter to formulate the linear discrete link

constraints.

4.3. Linear constraints

For the sake of simplicty, we drop out the link index in this section but the derivation holds for every

link. From equation (13), we can compute two specific numbers of vehicles, nf (i) for lf (i) = l and nc(i)

for lc(i) = l, to define the states of link (i.e. either fully non-congested or fully congested):

nc(i) = K.l −

i∑

k=i+1− l
W

v(k) (14)

nf (i) =
i∑

k=i− l
V
+1

u(k) (15)

These specific numbers of vehicles are the bounds of the number of vehicles in a link as shown below.

Lemma 1 (Upper bound).

nc(i) ≥ n(i) =

i∑

k=0

[u(k)− v(k)] ; ∀i ∈ T (16)

Proof. Since the inflow and outflow are constrained by the link capacity:

u(t) ≤
KVW

V +W

v(t) ≤
KVW

V +W

we infer that:

1

V

lf (t)∫

0

u
(

t−
x

V

)

dx+
1

W

lf (t)∫

0

v

(

t−
l − x

W

)

dx ≤ Klf (t)

10



which is then substituted into equation (13) to obtain:

n(t) ≤ K(lf (t) + lc(t))−
1

W

lf (t)∫

0

v

(

t−
l − x

W

)

dx−
1

W

lc(t)∫

0

v
(

t−
x

W

)

dx

= Kl −
1

W

l∫

lc(t)

v
(

t−
x

W

)

dx−
1

W

lc(t)∫

0

v
(

t−
x

W

)

dx

= Kl −
1

W

l∫

0

v
(

t−
x

W

)

dx

Let z = t− x/W we have:
l∫

0

v(t− x
W )dx = W

t∫

t−l/W

v(z)dz. The above inequality becomes:

n(t) ≤ Kl −

t∫

t− l
W

v(z)dz

which is then converted into discrete time step as:

n(i) = lim
t→(i+1)−

n(t) ≤ Kl −
i∑

k=i+1− l
W

v(k) = nc(i)

Lemma 2 (Lower bound).

nf (i) ≤ n(i) =

i∑

k=0

[u(k)− v(k)] ; ∀i ∈ T (17)

Proof. From the constraints of the inflow and outflow, we infer that:

1

V

lc(t)∫

0

u(t−
l − x

V
)dx+

1

W

lc(t)∫

0

v(t−
x

W
)dx ≤ Klc(t)

which is then substituted into equation (13) to obtain:

n(t) ≥
1

V

lf (t)∫

0

u(t−
x

V
)dx+

1

V

lc(t)∫

0

u(t−
l − x

V
)dx

which can be converted to:

n(t) ≥
1

V

l∫

0

u(t−
x

V
)dx =

t∫

t− l
V

u(z)dz

or in the discrete time step:

n(i) = lim
t→(i+1)−

n(t) ≥ lim
t→(i+1)−

t∫

t− l
V

u(z)dz =

i∑

k=i+1− l
V

u(k) = nf (i)

11



In sum, the number of vehicles in a link has two linear constraints:

i∑

k=i+1− l
V

u(k) ≤ n(i) ≤ Kl −

i∑

k=i+1− l
W

v(k) (18)

4.4. Computation of the length of the congested regime

It can be seen from the TTM described in Section 3 that if the length of the congested regime is

given, we can compute the phase-space density ρ(x, t) and consequently the number of vehicles per link

n(t) via equation (13). In this section, we will solve an inverse problem: if the (discrete) number of

vehicles per link n(i) is given, we need to compute the regime length lc(i) or lf (i). To this end, we will

solve a fixed point problem below via a system of linear equations.

Theorem 1. Given l and a feasible value of n(i), there exists a solution of lc(i) and lf (i) satisfying:

l = lc(i) + lf (i)

n(i) = lim
t→(i+1)−

1
V

lf (t)∫

0

u
(
t− x

V

)
dx+

lc(t)∫

0

(K − 1
W v

(
t− x

W )
)
dx

(19)

Proof. We define F (x) as:

F (x) =
1

V

l−x∫

0

u
(

t−
y

V

)

dy +

x∫

0

(

K −
1

W
v
(

t−
y

W

))

dy

It is straightforward to obtain:

dF (x)

dx
=

−1

V
u

(

t−
l − x

V

)

+K −
1

W
v
(

t−
x

W

)

Since

u

(

t−
l − x

V

)

≤
KVW

V +W

v
(

t−
x

W

)

≤
KVW

V +W

hence

dF (x)

dx
≥ 0

Therefore F (x) is monotonically increasing in (0 ≤ x ≤ l), which leads to:

F (0) ≤ F (x) ≤ F (l)

From the definition of number of vehicles in the congested and non-congested regime:

nc(i) = lim
t→(i+1)−

l∫

0

K −
1

W
v
(

t−
x

W

)

dx = lim
t→(i+1)−

F (l)

nf (i) = lim
t→(i+1)−

l∫

0

1

V
v
(

t−
x

V

)

dx = lim
t→(i+1)−

F (0)

12



Since F (x) is continuous on x, using the fixed point principle, for any value n(i) ∈ (nf (i), nc(i)) we can

find x∗ satisfying: F (x∗) = n(i). This means that we can compute the dynamics of the length of the

congested regime lc(i) given the (discrete) number of vehicles per link n(i).

Theorem 2. Given l and a feasible value of n(i). The solution of the length of the congested regime in

Theorem 1 is unique if the following conditions hold:

u(h) < Q ∀h ∈ [t−
l

V
, t]

v(h) < Q ∀h ∈ [t−
l

W
, t]

where Q = KVW
V+W .

Proof. As in proof of Theorem 1, we use:

F (x) =
1

V

l−x∫

0

u(t−
z

V
)dz +

x∫

0

(K −
1

W
v(t−

z

W
))dz

and:

dF (x)

dx
= K −

( 1

V
u

(

t−
l − x

V

)

+
1

W
v
(

t−
x

W

))

With the above upper bound constraints on upstream flow and downstream flow, we derive that:

u

(

t−
l − x

V

)

< Q ∀x ∈ [0, l]

v
(

t−
x

W

)

< Q ∀x ∈ [0, l]

=⇒
1

V
u

(

t−
l − x

V

)

+
1

W
v
(

t−
x

W

)

< Q

(
1

V
+

1

W

)

= K ∀x ∈ [0, l]

It guarantees the positive value dF (x)
dx > 0 ∀x ∈ [0, l] at a given time t, meaning that:

x < x∗ ⇔ F (x) < F (x∗) ∀x, x∗ ∈ [0, l]

This implies that for a feasible value of n(t), there is a unique solution of x so that F (x) = n(t).

The condition of unique length of the congested regime will avoid the critical point which is related

to critical density and maximum flow in the triangular fundamental diagram. If this condition happens,

it assures that maximum flow does not appear at any location on the link at a given time and there

is unique solution of TTM at that time. A simple way to achieve this condition is that the dynamic

maximum flow q(t) is bounded to be strictly less than Q. Furthermore, even if the flow can reach Q at

some times, but two bounds of the number of vehicles per link satisfying the strict inequality at given

time t, e.g. nf (t) < n(t) < nc(t), it also implies the condition in Theorem 2: there is an unique solution

of the length of the congested regime at this time.

Theorem 3 (Non-congested condition).

lc(i) = 0 ⇔ nf (i) =
i∑

k=0

[ua(k)− va(k)] (20)
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Proof. • Necessary condition: If lc(i) = 0, traffic along the whole link is in the non-congested state,

we have:

i∑

k=0

[u(k)− v(k)] = lim
t→(i+1)−

1

V

l∫

0

u
(

t−
x

V

)

dx = lim
t→(i+1)−

t∫

t− l
V

u(x)dx

=

i∑

k=i+1− l
V

u(k) = nf (i)

• Sufficient condition: If nf (i) =
i∑

k=0

[u(k)− v(k)]: From Lemma 2, we infer that the equality happens

when:

– lc(t) = 0, or

– u(t − l−x
V ) = v

(
t− x

W

)
= KVW

V+W ; ∀x ∈ [0, lc(t)]. This condition happens when traffic is

operating at the critical density, at which lc(t) = 0 by definition .

Theorem 4 (Fully-congested condition).

lc(i) = l ⇔ nc(i) =

i∑

k=0

[u(k)− v(k)] (21)

Proof. Based on Lemma 1, with similar method in Theorem 3.

These two Theorems indicate that when the number of vehicles per link is equal to its bounds, the

link is either fully non-congested or congested. The algorithm below shows how to compute the dynamics

of the length of the congested regime in case the number of vehicles per link is between its bounds.

Let us define,

−jf = ⌈i+ 1−
lf (i)

V
⌉

jc = ⌈i+ 1−
lc(i)

W
⌉

∆jf = jf −

(

i+ 1−
lf (i)

V

)

∆jc = jc −

(

i+ 1−
lc(i)

W

)

then we get:

n(t) =
1

V

lf (t)∫

0

u
(

t−
x

V

)

dx+

lc(t)∫

0

(

K −
1

W
v(t−

x

W
)

)

dx

= K.lc(t) +

t∫

t−
lf (t)
V

u(h)dh−

t∫

t−
lc(t)
W

v(h)dh

n(i) = lim
t→i+1−

n(t) = K.lc(i) +

i∑

jf

u(k)−

i∑

jc

v(k)

+∆jf .u(jf − 1)−∆jc.v(jc − 1)

14



It is worth mentioning that the following constraints are imposed for each regime length:

lf (t) + lc(t) = l

lf (t) ≥ 0

lc(t) ≥ 0

(22)

From the theories 3 and 4, we adopt the following algorithm to compute the length of the congested

regime using the number of vehicles per link.

• If n(i) = nf (i), then lc(i) = 0 (Theorem 3).

• If n(i) = nc(i), then lc(i) = l (Theorem 4).

• If nf (i) < n(i) < nc(i), then let’s set up ic = 1 and if = 0.

– Increase ic until these conditions happen:

n(i) ≥ K.W.ic −
i∑

i+1−ic

v(k) +

i∑

jf

u(k) + ∆jf .u(jf − 1)

n(i) < K.W.(ic + 1)−
i∑

i−ic

v(k) +
i∑

jf

u(k) + ∆jf .u(jf − 1)

– Similarly, increase if until these conditions happen:

n(i) ≤ K.lc(i)−

i∑

jc

v(k)−∆jc.v(jc − 1) +

i∑

i+1−if

u(k)

n(i) > K.lc(i)−
i∑

jc

v(k)−∆jc.v(jc − 1) +
i∑

i−if

u(k)

– Solve the linear system of equations below to find lc(i) and lf (i).

lc(i) = icW +∆lc

lf (i) = ifV +∆lf

∆lc +∆lf = l − ifV − icW to satisfy constraint (22)

n(i) = K.lc(i) +

i∑

i+1−if

u(k)−

i∑

i+1−ic

v(k)

+
∆if

V
.u(i− if )−

∆ic

W
.v(i− ic)

The above method is used as a benchmarking value for the linearized congested regime for the DSO

problem presented in Section 5

4.5. Approximation of the congested regime

Let us assume that the time step is selected at at least l/W (Ban et al., 2012) so that u(i) and v(i)

are steady in i ∈ [0, l
W − 1], that is:

u(t0) = u(t0 + i) = u(i) (23)

v(t0) = v(t0 + i) = v(i) (24)
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then, based on Theorem 1, we can obtain:

n(i) ≈ lc(i)

(

K −
u(i)

V
−

v(i)

W

)

+
u(i)l

V

So the approximation of lc reads:

lc(i) ≈
n(i)− u(i)l

V

K − u(i)
V − v(i)

W

(25)

Using equations (23)-(24) for Lemmas 1 and 2 leads to:

nc(i) = Kl −

i∑

k=i+1− l
W

v(k) ≈ Kl −
v(i)l

W
(26)

nf (i) =

i∑

k=i+1− l
V

u(k) ≈
u(i)l

V
(27)

To substitute equations (26)-(27) to equation (25) we obtain:

lc(i) ≈
n(i)− nf (i)

nc(i)− nf (i)
l (28)

Equation (28) will be used in Section 5 for the new optimization framework, which optimally redistributes

the vehicle queues (i.e. the dynamics of lc) over links.

5. Formulation of DSO-DTA as an optimization problem with TTM based linear con-

straints

The DSO-DTA problem deals with a directed network G (V,E) where V is the set of nodes and E

the set of the directed links. During each time instant i in the study period T, the single origin node

R has time-dependent demand D(i) heading toward the destination S. The network is assumed to be

empty at i = 0 and will be cleared at i = T . Suppose vehicles travel along each link according to the

TTM principle and across any immediate node according to the demand-supply scheme Daganzo (1995).

The DSO-DTA problem is to find an optimal dynamic traffic assignment pattern which results in the

minimal total system travel time. In this paper, we only consider the DSO-DTA problem for a single

origin-destination network. Nevertheless, the modeling and solution methods underpinned by an efficient

implicit in-link congestion tracking approach for single origin-destination DSO problems proposed in the

ensuing paper will still contribute to the state-of-the-art.

Recent research by Shen and Zhang (2014) have indicated that DSO may have multiple solutions in

which all the solutions share the same objective while the difference is where the queues are formed and

dissipated in the network. This section formulates a problem to find DSO solutions which can evenly

distribute the queues (i.e. the length of the congested regime lc) over links in the network so that the

spillbacks can be avoided. To this end, we present a new optimization problem by adding a new step to

the original DSO problem to optimally distribute the congestion regime over links in the network. The

new step relies on how the congested length lc is utilized if the front shock stays within link (note that

this step cannot be modelled with the LTM or DQM).
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5.1. Objective functions

1. Stage 1: find DSO solutions via minimizing the total travel times or the total system cost. The

total system cost that all the vehicles spent in the network can be calculated as the total number

of vehicles existing in the network for each time interval i ∈ T, which is defined by the difference

between the cumulative departure at the origin and the cumulative arrival at the destination for

time interval i as below:

TT =
∑

i∈T

(
i∑

k=0

U(k)−
i∑

k=0

∑

a∈ES

ua(k)

)

(29)

Since the demand U(i) is given ∀i ∈ T, the objective to minimize the total travel cost TT is

equivalent to maximize the total outflow (Shen and Zhang, 2008):

F =
∑

a∈ES

∑

i∈T

i∑

k=0

ua(k) =
∑

a∈ES

∑

i∈T

(T + 1− i)ua(i) (30)

Let F ∗ denote the optimal value of F to achieve the DSO solutions. That is:

F ∗ = max
∑

a∈ES

∑

i∈T

(T + 1− i)ua(i) (31)

subject to the node and link constraints in sections 5.4 and 5.3.

2. Stage 2: find traffic patterns which optimally distribute the congestion in links.

Objective: G, defined as the function of the queue length lca(i)

Constraints:
∑

a∈ES

∑

i∈T

(T + 1− i)ua(i) = F ∗ (i.e. to achieve the DSO solutions).

and the node and link constraints in Sections 5.4 and 5.3.

This step restricts the solution domain to system optimal solutions via the first constraint. As

reported in Shen and Zhang (2014), there exists a solution without changing the system optimal

objective value. It indirectly shows that Stage 2 provides a feasible solution domain. By optimizing

G we can find a DSO solution that optimally distributes the congestion over links which can lead

to minimal spillbacks or even free-flow situations as shown latter in our numerical study.

Remark 1. To account for the non-holding back issue, the new constraints in Equations (38)

and (39) below can be added into the optimization framework above. Nevertheless, such constraints

are nonlinear and we will show later in our example how they affect the nature and solutions of

our framework.

Remark 2. In this paper, we consider two specific objective functions G below for the illustration

purposes:

(a) Optimizing the heterogeneity of the queue lengths (MDCL) in the network

G = min
∑

a∈A

(

− l̄c +
∑

i∈T

lca(i)

la

)2

(32)

where,

l̄c =
1

|A|

∑

a∈A

∑

i∈T

lca(i)

la
=

1

|A|

∑

a∈A

∑

i∈T

na(i)− nf
a(i)

nc
a(i)− nf

a(i)
(33)
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(b) Optimizing the total queue lengths (MCL) in the network:

G = min
∑

a∈A

∑

i∈T

lca(i)

la
(34)

5.2. Non-holding back problem

The non-holding back (NHB) solutions require the system to discharge flow as much as it can and

have been widely discussed before in the literature (Shen et al., 2007, Shen and Zhang, 2014). For our

particular TMM-DSO problem, the non-holding back condition is that, for any direct connection from

link a to link b at any time i ∈ T, at least one of the following conditions must hold:

va(i) = min

{

Qa(i);

i−la/Va∑

k=0

ua(k)−

i−1∑

k=0

va(k)

}

︸ ︷︷ ︸

Da(i)

(35)

ub(i) = min

{

Qb(i);Kblb +

i−lb/Wb∑

k=0

vb(k)−
i−1∑

k=0

ub(k)

}

︸ ︷︷ ︸

Sb(i)

(36)

∑

k≥i+1

fab(k) = 0 (37)

These conditions indicate that, at any time i, if there is some traffic from link a to link b (i.e. fab(i) > 0),

then the downstream flow of link a has to reach link-a demand (equation 35) or the upstream flow of

link b has to reach link-b supply (equation 36). Otherwise, there will not be any traffic from link a to

link b after time i (equation 37). In fact, conditions Equation (35) and Equation (36) follow the demand

and supply principle of traffic flow at nodes.

Based on Lemma 1 and Lemma 2, these non-holding back conditions are represented by the following

constraint:

(
na(i)− nf

a(i)
)(
nc
b(i)− nb(i)

)(
Qa(i)− va(i)

)(
Qb(i)− ub(i)

) ∑

k≥i+1

fab(k) = 0 (38)

∀a, b ∈ E : a /∈ ER, b /∈ ES , b ∈ Υ+
a

na(i)
(
nc
b(i)− nb(i)

)(
Qb(i)− ub(i)

) ∑

k≥i+1

fab(k) = 0 (39)

∀a ∈ ER, b ∈ Υ+
a

(
na(i)− nf

a(i)
)(
Qa(i)− va(i)

) ∑

k≥i+1

fab(k) = 0 (40)

∀b ∈ ES , a ∈ Υ−
b

Equation (38) guarantees the non-holding back traffic at any pair of normal links in the network (i.e.

holding-free at very nodes inside the network), while equations (39) and (40) are used if one of these

links is source or sink respectively.

Proposition 1. System optimal solutions guarantee the holding-free traffic to sinks.
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Proof. Assume that there exists a SO solution such that it does not satisfy non-holding back condition

at sinks. It means that there is a flow from normal link a to sink link b ∈ ES at a particular time i so

that:

(
na(i)− nf

a(i)
)(
Qa(i)− va(i)

) ∑

k≥i+1

fab(k) > 0

Let’s consider flow from link a to link b. With the above conditions, there exists time j > i so that

fab(j) > 0 and while there is still a space for traffic to move from link a to destination link b because:

na(i) > nf
a(i) and Qa(i) > va(i). For this reason, we can extract a small traffic δ at time j to move sooner

at time i (δ < fab(j)) without changing other flows (and also no violating to any other constraints):

fnew
ab (i) = fab(i) + δ ⇒ unew

b (i) = ub(i) + δ

fnew
ab (j) = fab(j)− δ ⇒ unew

b (j) = ub(j)− δ

This modification helps to improve the objective F :

F new = F ∗ + (T + 1− i)δ − (T + 1− j)δ = F ∗ + (j − i)δ > F ∗

which violates the assumption that F ∗ is the maximum value of F . For this reason, the traffic to sink is

always holding-free. That is equation (40) can be guaranteed by the SO objective. Note that, we still

need to take care of holding-free traffic from sources.

5.3. Link constraints

From the derivations in Section 4, the link constraints for the TTM are summarized as below:

∀i ∈ T:

na(i) =

i∑

k=0

[ua(k)− va(k)] (41)

nf
a(i) =

i∑

k=i− la
Va

+1

ua(k) (42)

nc
a(i) = Ka.la −

i∑

k=i− la
Wa

+1

va(k) (43)

na(i) ≥ nf
a(i) (44)

na(i) ≤ nc
a(i) (45)
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5.4. Node constraints

∀i ∈ T:

∑

a∈Γ−

n

va(i) =
∑

a∈Γ+
n

ua(i) (46)

ua(i) =
∑

b∈Υ−

a

fba(i) (47)

va(i) =
∑

b∈Υ+
a

fab(i) (48)

fab(i) ≥ 0 (49)

Constraint (46) represents the conservation of the vehicles at an immediate node while constraint (47)

determines the total number of vehicles entering a node from all upstream links of that node and con-

straint (48) defines the total number of vehicles exiting a node from all downstream links of that node.

In fact, equation (46) and pair of equations (47) and (48) are equivalent, and we only need one of them

in the final model. Constraint (49) guarantees the non-negative flow on link. It is worth noticing that no

explicit node model is considered in this paper as we only focus on the DSO problem at this stage. We

refer to Flötteröd and Rohde (2011), Ngoduy (2010), Ngoduy et al. (2005), Smits et al. (2015), Tampère

et al. (2011) for node models in the network.

5.4.1. Source node constraints

ua(i) = Ua(i)

{Qa(i)} → ∞
∀a ∈ ER, i ∈ T (50)

where Ua(i) denotes the demand to source link a at time step i.

5.4.2. Sink node constraints

va(i) = 0

{Qa(i)} → ∞
∀a ∈ ER, i ∈ T (51)

The above linear optimization problem can be solved by any simple optimization solver. In this

paper, we use the CBC solver, one of the popular open-source software in solving optimization problems

(http : //www.coin− or.org/projects/Cbc.xml), for our case studies.

6. Numerical results

This section provides some numerical results showing the application of our proposed approach for

the DSO-DTA problem in terms of accuracy and computational demand. To this end, we carry out

two case studies: (1) using a simple Braess network to demonstrate in details the abilities of the TTM-

DSO to avoid the queue spill-back problems, and (2) using a medium-sized grid network to compare the

computational performance between TTM-DSO and CTM-DSO.
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6.1. Case study 1: Braess network

Figure 2a shows the Braess network topology with a single origin-destination (R − S). Table 1

describes the network parameters for our study. According to the topology in Figure 2a, there are three

paths with increasing free-flow travel time: (1,2,3,4), (1,3,4) and (1,2,4). Without disruption of link

capacity, people would choose path (1,2,3,4) for their travelling. However, since link (3,4) is closed for

some period of time (meaning that traffic is not permitted to enter this link, but its downstream flow

is still allowed) as described in Figure 2b, it is essential to choose other paths to reach destination S as

soon as possible.
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Figure 2: Braess network with the maximum flow setting at link (3,4).

Traffic parameters (applied for all links):

Va = 900 (m/min) Wa = 450 (m/min)

Ka = 0.12 (veh/m)

Demand: 72 (veh/min), time-step: 0.25 (min).

Links la (m) Qa (veh/min.)

(1, 2) 900 36

(1, 3) 4500 36

(2, 3) 900 36

(2, 4) 14400 36

(3, 4) 900 see Figure 2b

Table 1: Networking parameters for the Braess network in Figure 2.

Figure 3 shows different DSO solutions without using the NHB constraints, including the 1-step

(original) DSO solution (Figures 3a to 3c) and the proposed 2-step DSO solution (Figures 3d to 3f). It

is clear that the 2-step framework finds DSO solution which is free-flow in link 1-3 and link 2-3 at node
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(a) Path (1,2,4) SO (b) Path (1,3,4) SO (c) Path (1,2,3,4) SO

(d) Path (1,2,4) SO-MCL (e) Path (1,3,4) SO-MCL (f) Path (1,2,3,4) SO-MCL

Figure 3: Space-time density at three paths in DSO solutions without NHB constraints.

3 due to the capacity drop in link 3-4. This is obtained by minimizing the total queue lengths (MCL).

Our 2-step DSO solution means that some vehicles are held at the source so that travellers will not have

to wait in congestion inside the network. Obviously delay at the source (i.e. stay home and start the

journey later) can be much better than waiting in congestion inside the network.

(a) Path (1,2,4) SO-NHB (b) Path (1,3,4) SO-NHB (c) Path (1,2,3,4) SO-NHB

(d) Path (1,2,4) SO-NHB-MDCL (e) Path (1,3,4) SO-NHB-MDCL (f) Path (1,2,3,4) SO-NHB-MDCL

Figure 4: Space-time density at three paths in DSO solutions with NHB constraints.
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Figure 4 describes different DSO solutions using the NHB constraints. Since the nature of the NHB

constraints is to push traffic going through the network as much as possible so there definitely heavy

congestion inside the network, as seen in Figures 4a to 4c where the 1-step framework is used. With such

NHB constraints, there are queue spillbacks from link 2-3 to link 1-2. However, our 2-step framework

finds a DSO solution which can eliminate such spillback problem by reducing the queue in link 2-3 and

increasing the queue in link 1-3 while making link 1-2 free-flowing. (Figures 4d to 4f). This is obtained

by minimizing the total difference of the queue lengths (MDCL).
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Figure 5: Inflow-outflow profiles for different DSO solutions.

The difference between DSO solutions can be further seen in Figure 5 describing the inflow-outflow

profiles for different DSO solutions without NHB conditions. In Figure 5:

• The outflow of link R-1 shows how travellers enter the network while the outflows of link 3-4 and

link 2-4 show how they exit the network

• The inflow of link R-1 shows the demand function which is the same in both solutions.

Figure 5 clearly shows the distinct difference of the inflow-outflow profiles between DSO solutions when

the congestion inside the network (i.e. in link 1-3 and link 2-3) is eliminated (in the SO-MCL solution).
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More specially, given the same demand (i.e. the inflow of link R-1), SO-MCL travellers do not suffer

from the congestion in the network except the waiting time at source R, while SO travellers experience

the congestion at link 1-3 and link 2-3.
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Figure 6: The numerical error of the congested length.

Figure 6 shows the accuracy of our approximation method for the congested length on link 2-3. While

the solid line shows the evolution of the length of the congested regime which is computed from algorithm

in Section 4.4, the dashed line describes the evolution of the length of the congested regime using an

approximation algorithm in Section 4.5. Note that, while the algorithm in Section 4.4 is used after the

DSO solution is obtained, the approximation algorithm in Section 4.5 is embedded in the DSO problem.

6.2. Case study 2: Grid network

This section compares the complexity and computational demand of the TTM-DSO against CTM-

DSO in a larger network. To this end, we generate a scalable network based on grid topology in Figure

7. Table 2 describes four network configurations for the same physical network with only difference of

time units (or the sampling time intervals). Note that smaller time step results in more accuracy of

traffic dynamics but requires more computational time (more number of cells are used). The number in

configuration name indicates a number of cells per link, for example C5 produces CTM topology with

5 cells/link (equivalently 8s time step). There are two types of link: normal and bottleneck links. The

number of bottleneck links accounts for 20% of the total links. We examine the impact of time and space

domain on CTM-DSO and TTM-DSO models by two different scenarios, both with one O-D pair from

top-left node (R) to bottom-right node (S). The first scenario evaluates all configurations, where the

time domain also changes to produce equivalent results. The second scenario focuses on some specific

configurations with varying sizes of the time domain.
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Figure 7: Grid network topology for TTM-DSO (the dashed lines show botttleneck links)

Constant parameters (applied for all links):

Va = 15 (m/s) Wa = 7.5 (m/s)

la = 600 (m), ω = Wa

Va
= 0.5 Drs = 90 (veh)

Time units (sec.): {2, 4, 8, 20} ≈ {C20, C10, C5, C2}

Link types
Ka Qa N (per cell)

(veh/m) (veh/sec.) (veh/sec.)

Normal 0.12 0.6 1.8

Bottleneck 0.6 0.3 0.9

Table 2: Grid network with parameter sets for CTM-DSO and TTM-DSO in Figure 7

6.2.1. Estimation of complexity

We consider the complexity of the model in three aspects: i) number of constraints (C), ii) number

of variables (V), and iii) computational time (T ). For TTM-DSO: CTTM = O(|E.T|),VTTM = O(|E.T|).

For CTM-DSO: CCTM = O(|C.T|),VCTM = O(|C.T|), where C is the set of all cells in the CTM-DSO

network.

In TTM-DSO, the variables are the sets of ua(i), va(i) and fab(i), ∀a, b ∈ E, i ∈ T. In our grid network

example, apart from boundary nodes, all nodes have two incoming links and two outgoing links. For

this reason, the number of inflow-outflow combinations is 2|E|. From that, the estimation of VTTM is

approximately 4|ET|. The number of TTM-DSO constraints is CTTM ≈ 8|ET|.
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To estimate complexity of CTM-DSO, we first take a look at its main constraints:

ni(t+ 1) = ni(t) +
∑

ji∈A

yji(t)−
∑

ij∈A

yij(t)

∑

ji∈A

yji(t) ≤ min{Qi(t), ωi(Ni(t)− ni(t))}

∑

ij∈A

yij(t) ≤ min{Qi(t), ni(t)}

∀i ∈ C, t ∈ T

where A is the set of links in the cell network. The number of constraints is CCTM ≈ 5|CT|. To evaluate

VCTM , we observer that the number of ni(t) is equal to |CT|, while the number of yij(t) is equal to

|AT|. Assume that each link is divided to k cells, then |C| ≈ k|E|. In the grid topology, the estimation

of the number of arcs in cell network is |A| ≈ (k + 1)|E| (|E| is large enough). This analysis leads to the

evaluation of VCTM ≈ (2k + 1)|ET|. These estimations, summarized in Table 3, help us to have a quick

calculation of the complexity of both models. From Table 3 we expect a good performance of TTM-DSO

for any k ≥ 2.

|E| = 40 (grid network in Figure 7)

k cells per link

C V

TTM 8|ET| = 320|T| 4|ET| = 160|T|

CTM 5k|ET| = 200k|T| (2k + 1)|ET| = (80k + 40)|T|

Table 3: Estimation of complexity in terms of constraints and variables (grid topology)

6.2.2. Preparation time

It is the amount of time necessarily for creating a real model of the grid network (case study 2) which

is solved by the CBC solver. Since all models are implemented in an abstract language, like AMPL,

GAMS or modern programming languages (for example Python), this time is necessary to transform

these abstract models into concrete models, which are understood by the solver. It includes processing

data input file and generating instance of abstract models with variables, constraints, and parameters.

The cost of reading input file is really small because we optimize these files by reducing duplicated values,

and no file exceeds 2 MB in our experiments.

Conf. |T| C V Tprepare (s) Tsolve(s) Obj/|T| (veh)

C2 28 9104 11690 4204 5455 0.75 2.14 0.57 0.57 41.8

C5 70 22754 71216 10504 30391 2.90 45.59 2.20 5.33 43.7

C10 140 45504 282426 21004 116751 9.60 1186.34 8.00 50.12 44.4

C20 280 91004 1124846 42004 457471 33.61 24297.18 27.48 693.44 44.7

Table 4: Performance comparison between TTM (gray column) and CTM in different traffic details
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Figure 8: Performance comparison between TTM-DSO and CTM-DSO in different configurations
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6.2.3. Comparison results

We compare the performance of TTM-DSO and CTM-DSO with respect to the complexity and

preparation time defined above in two following scenarios:

Scenario 1:. Our target is to find the (system optimal) traffic pattern for a fixed demand (90veh) from R

to S. In our experiments, all demands need around 400s to travel in the grid. Obviously, decreasing time

step leads to the increasing computational time by increasing the time domain for each configurations,

see Table 4. Especially, for CTM-DSO, not only time domain but also space domain are increased. We

use two cells per link in C2 up to 20 cells per link in C20. While TTM-DSO model changes only link

parameters in new configurations, CTM-DSO model changes the whole network topology including the

cell parameters. The results are shown in Table 4 and Figure 8. It is worth noticing that both models

produce the same objective values in any configurations (the last column in Table 4). For complexity,

the results are consistent with the estimation in Table 3. We observe that the number of constraints

and variables are increased linearly in TTM-DSO, while they are increased polynomially in CTM-DSO.

Particularly, in the most complex configuration C20, TTM-DSO solves the problem 20 times faster than

CTM-DSO. Looking at the trend of all complexity aspects in Figure 8, CTM-DSO complexity is always

increased at higher rate than TTM-DSO, which means that TTM-DSO can provide more accurate traffic

dynamics pattern at the equivalent cost.

Scenario 2:. In stead of increasing the complexity in both time and space as in the first scenario, we use

the same configuration for all test cases to ignore the impact of space, and explore the influence of time

domain on these models. Accordingly, both C and V of TTM-DSO and CTM-DSO are increased linearly

in Figure 9. We first use the most complex configuration, C20, with |T| from 160 to 300. Since the

fastest travel time is more than 320s, there is no movement of traffic with |T| less than 160. With initial

demand of 90 vehicles, all travellers will finish their trips in about 200 time slots in C10 (6.5 minutes

equivalently). From Figure 9, TTM-DSO outperforms CTM-DSO where all criteria of complexity show

its benefit, especially, their increasing rates are also smaller.

In both scenarios, the preparation time is described in Figure 8 and 9. It shows that TTM-DSO always

finishes the preparation period quickly. On the other hand, CTM-DSO preparation time dominates the

solution time at all cases. Although we only verify this observation in our programming environment, it

shows that TTM-DSO outperforms CTM-DSO in terms of efficiency.

7. Conclusions

The KWM has been widely used in the Dynamic System Optimum (DSO) traffic assignment problem

to capture the dynamics of traffic in space and time along links in the network. As DSO may have multiple

solutions which can achieve the same DSO objective (i.e. the total travel times) and the difference

is where the queues are formed/dissipated in the network, this paper has presented an optimization

framework to find DSO solutions which can achieve better traffic operation inside the network. Our new
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optimization framework contains two steps: i) find DSO solutions via minimizing the total travel times or

the total system cost, ii) find traffic patterns which optimally distribute the congestion over links in the

network. To fulfill Step 2, there is a need to determine the time and (horizontal) space evolution of the

queues in the network. To this end, we have formulated the Two regime Transmission Model (TTM)-an

extended version of the Link Transmission Model (LTM)-as a set of side linear constraints for a DSO

problem. Basically, TTM models the dynamics of the two regimes of traffic flow namely, non-congested

and congested states using a simplified Newell’s theory as LTM does and describes the traffic states in

time and space using just two regimes of the link as opposed to denser spatial discretisation adopted in

CTM. In the proposed optimization framework, the TTM utilizes the same variables at the two ends of

the link as the LTM (i.e. the entry and exit flow) in the DSO. However, the evolution of the length of

the congested regime within link tracked by the TTM is embedded in Step 2.

We have carried out case studies to illustrate the performance of our framework. On the one hand,

we have shown that optimally distributing the congestion over links in the network can help better traffic

operation inside the network via minimal spillbacks or free-flow situations. On the other hand, we have

shown that the complexity of the TTM-DSO including the number of the side constraints, the number of

the variables as well as the computational time is only increased linearly with time steps. The numerical

results have indicated that the TTM-DSO model outperforms the CTM-DSO model in terms of the

complexity. Although the proposed framework currently only applies for the single origin-destination

network, it plays an important role in the state-of-the-art and paves a way for future work covering more

generic scenario of networks and traffic demands.
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