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The Dynamic Characterisation of Disk Geometry Particle Dampers 

W Liu, G R Tomlinson and J A Rongong 

Department of Mechanical Engineering, University of Sheffield 

Mappin Street, Sheffield S1 3JD, UK 

 

Abstract 

Particle dampers (PDs) have the advantages of being simple in geometry, small in 

volume and applicable in extreme temperature environments. Experimental studies 

have shown that PDs can offer considerable potential for suppressing structural 

resonant conditions over a wide frequency range. In this paper, the nonlinear 

characters of PDs are studied experimentally in a series of response-level-controlled 

tests. The effect of the geometry is studied and a method is developed to model the 

nonlinear damping of PDs as equivalent viscous dampers that can be applied directly 

to engineering structures at the design stage.  
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1. Introduction 

A particle damper is a device with one or more cavities filled with dry granular solids. 

A particularly important aspect that contributes to the unique properties of granular 

materials is that the interactions between individual grains (and between grains and 

the container walls) are dissipative because of surface friction and the inelasticity of 

collisions. An overwhelming advantage of particle dampers, compared with 

conventional damping devices that employ viscoelastic materials, is that particle 

dampers can operate in extreme temperature conditions when using metallic, tungsten 

carbide or ceramic particles.  

The behaviour of vibrating structures with particle dampers attached to them have 

been investigated experimentally [1], where it was shown that particle dampers are 

highly effective over a wide range of frequencies, resulting in several modes of 

vibration being damped simultaneously. There exist a large number of parameters 

affecting the damper performance such as: particle shapes, sizes, cavity filling 

fractions, material properties (viscosity, elasticity, friction coefficients and density), 

and cavity shape. Because of this and due to the complex interactions of the loss 

mechanisms in a particle damper, it is extremely difficult to define explicitly a particle 

damper configuration for a particular application. Instead, “rule-of-thumb” guidelines 

for designing particle dampers have been proposed [4]. 

Analytical studies require a way of modelling the properties of granular media. Over 

the last century, many researchers (particularly physicists) have studied the properties 

of granular media. However, the mechanical state of granular matter is still an open 

and frequently debated question. For instance, to date, there is no consensus on how 
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to express the macroscopic constitutive relations solely from microscopic 

considerations under various boundary conditions or loading histories [7]. 

The mechanics of granular materials is often studied by formulating the macro-

behaviour in terms of micro-quantities [6], i.e. the dynamic behaviour is derived from 

the analysis of individual particles. In order to reduce computational effort, 

simplifying assumptions are frequently made. A two-dimensional analysis, based on 

molecular dynamics principles, has been used to study effects of frequency and 

amplitude on the response of a container filled with particles [3]. In this study, an 

effective damping parameter, which describes an equivalent linear oscillator with the 

same damping properties, is defined by dividing the averaged dissipated power under 

stationary vibration with the amplitude of input energy. More complicated models, 

including 3D behaviour and particle rotation have been developed [4, 5] and used 

simulate the response of dampers containing small numbers of particles. By solving 

the equations of motion of the entire set of particles at each time step, the state of the 

system can be obtained from a given initial condition. However, in practical 

applications such as the case described in reference [1], particle dampers often contain 

tens of thousands of particles. The prediction of the response of a structure with such 

a damper attached is computationally very expensive. 

In contrast, experiments can reveal the collective behaviour of particle dampers more 

accurately. As particle dampers are easy to make and install on a structure, it is 

relatively simple to investigate their dynamic behaviour via controlled experiments 

[2]. This paper presents the results from a series of dynamic tests of particle dampers 

on a SDOF test-rig. The energy dissipation mechanism, which characterises the 
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nonlinear damping, is represented by a discrete parameter model that can be 

employed in the design of particle dampers. 

2. Dynamic Behaviour of Particle Dampers 

The test-rig employed for all the experimental studies is shown in Figure 1. The rig 

was designed such that the first resonant frequency (246Hz) was well below the next 

measured structural resonance allowing the rig to effectively behave as a single 

degree of freedom (SDOF) system. The rig comprised a hollow block or mass that 

housed the particle damper, the block being rigidly connected to a spring (a section of 

a rectangular tube) which in turn was ‘grounded’ to a very stiff support structure.  The 

mass of the block was 0.780 kg. The stiffness of the frame spring was found (from the 

resonant frequency) to be 2.017×106 N/m. The SDOF system was excited in the 

horizontal plane by an electrodynamic exciter. The particle dampers used in the tests 

comprised of a steel container enclosing a cylindrical cavity. The cavity was filled to 

approximately 95% volume with 0.8mm diameter steel spheres, the mass of the 

particles being 90 grams. Controlled stepped-sine tests were carried out using SigLab, 

a dynamic signal analyser integrated with MATLAB. SigLab generates the stepped-

sine signal which is amplified and then input into the exciter. Simultaneously, SigLab 

can record the response of the system which allows a controlled output response at a 

pre-set level via a close-loop control system to be maintained during testing. 

Frequency response functions (FRFs) were measured in terms of the acceleration of 

the block (measured using a B&K miniature accelerometer) divided by the input force 

(measured using a force gauge). The frequency range of interest (220-260Hz) 

encompassed the first resonant frequency of the test-rig. The typical collective or 
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macro-dynamic behaviour of a particle damper attached to the SDOF system, 

presented as a set of frequency response functions, is shown in Figure 2. For these 

results, the diameter and depth of the cavity were 39  and 15  respectively. 

The dashed line is the FRF of the system with an empty damper – the cavity is not 

filled with the granular material. This FRF was found to be independent of excitation 

level. The FRFs, marked 1, 2, 3 and 4 were measured with the filled damper at 

response levels 0 , ,  and . It can be seen that at the very low response 

level (0.1g) the particles behave as an added mass, which simply causes the system’s 

resonant frequency to drop from  to about . With the increase of the 

excitation level, the damping rises dramatically and the resonant frequency of the 

SDOF system shifts gradually towards that measured with the empty particle damper 

(FRF marked 11 in Figure 2). When the response level reaches  (FRF marked 5), 

the resonant frequency is 246Hz – the same as when the particle damper was empty. 

Further increases in the response level to 16 , , , ,  and 40  

(FRFs marked 6 to 11) result in an almost unchanged resonant frequency and in 

reducing damping behaviour.  

Hz246 Hz234

g12

g20 g30

The dynamic behaviour of the particle dampers can be explained by the mechanism of 

collision and friction. The collision and friction between particles and between 

particles and the walls dissipate the kinetic energy of the vibrating system. When the 

response level is very low (>>1g), there is almost no relative motion between particles 

and between particles and the walls.  There is little damping as the particle damper 

simply plays the role of an added mass. When the response level is close to 1 , the 

inertia forces of the particles on the top (free) surface exceed the static friction forces 

locking them together. These particles move in the vicinities of their original 
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positions. The movement of these layers dissipates energy (via friction) producing the 

FRF shown as curve 2 in Figure 2, which is approximately  lower in amplitude 

compared with curve 1.  

As the excitation level is increased, the depth of moving particles increases with an 

increase in the dissipated energy. With further increases in the excitation amplitude, 

particles tend to roll over one another (reducing dissipated energy) until eventually all 

the particles in the cavity display a form of convective motion. As the amplitude is 

increased further, the particles display a gas-phase character [1, 3]. In the gas-phase 

the particle friction interaction is substantially reduced which results in an effective 

damping decrease. This can been seen in Figure 2, when the response levels are above 

 (curves 5 to 11). 

It is interesting to note that there appears to be a stick-slip friction mechanism present 

that depends on the frequency of excitation. In Figure 2, at very low ( ≤ ) or very 

high ( ) acceleration response levels, where the friction mechanism does not 

dissipate significant vibration energy, the FRF curves are relatively smooth. For 

response levels between 1  and , the FRF curves display fluctuations. A typical 

FRF, at a response level of , is shown in Figure 3. The stick-slip process is 

denoted by points A-B-C on the FRF. From A to B, clusters of particles display no 

relative motion until the slip process starts at frequency B. When slip occurs, the 

particles are activated and the level of the FRF drops to C. The process is 

continuously repeated as the frequency of the excitation changes which results in 

fluctuations appearing in the FRF as shown in Figure 3. This process was independent 

of the sequence of the tests in that several tests were repeated, with the same 

g



configuration, and exactly the same phenomena were observed. 

3. Particle Dampers with Geometry Variations 

The performance of a particle damper depends on several parameters. One of the 

crucial parameters is the cavity geometry. With the same size, material and almost the 

same volume of particles, five different geometries were tested as detailed in Figure 4 

and Table 1. The ratio of depth L  to diameter  is defined as 
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D α , DL=α . 

The results shown in Figures 2, 5, 6, 7 and 8 correspond to particle damper geometries 

of 4.0=α , 0.2, 0.6, 0.8 and 1.0 respectively. The controlled output response levels 

were , , , , , , , , ,  and  respectively 

for these tests.  
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By comparing the FRFs in Figures 2, 5, 6, 7 and 8 it can be observed that the cavity 

geometry plays a very important role in the dynamic behaviour of particle dampers. 

With increasing values of α , the transition from solid to convective (fluidisation) and 

then to gas-like behaviour occurs at a lower excitation level. This phenomenon can be 

explained in general terms by considering the relative magnitude of static and 

dynamic forces acting on particles at different positions in the cavity. When at rest, 

the pressure distribution is controlled by gravity – if one were to assume hydrostatic 

pressure, average normal forces at contact points would increase linearly with depth. 

For relative motion to occur under dynamic loading, normal and/or tangential inertia 

forces have to exceed the static ones locking the particles together. For example, 

sliding can occur where tangential forces exceed the product of the normal force and 

the coefficient of friction. Thus, the static pressure distribution gives an indication of 



the ease with which fluidisation occurs under excitation without resorting to the 

calculation of the dynamic pressure (and hence contact condition), by for example 

using the Discreet Element Method [5]. A simple, approximate assessment method, 

such as the consideration of static pressure, is of particular value in the design of 

dampers where large numbers of particles (well in excess of 5000 particles for the 

dampers considered in this paper) make the DEM method computationally very 

demanding. 

In a contained granular medium, static pressure does not increase hydrostatically. One 

of the simplest models is Jansen’s [6] for a cylindrical container containing particles 

that has its polar axis parallel to the gravitational field. In this approach, a single 

parameter is K  used to describe the way in which the stress field of the particles tends 

to be redirected perpendicularly to the initial load [6]. In the configuration used in the 

experiments described in this paper, the polar axis of the cylinder is horizontal and so 

a modification to Jansen’s model is required. 

Figure 9 shows the model for the pressure distribution analysis. The equilibrium 

condition in the vertical direction for the particular slice of particles is, 

 gAdhFFAdpv ρφ=++

xLA 2=

21       (1) 

in which the surface area , ρ  is the mass density of a particle and φ  the 

volume fraction,  ,  are the friction force on the straight walls and  the circular 

wall respectively.  

1F F

xdhKpF

2

 vsµ41 =        (2) 
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dhKpLF vs ⋅= αµ sin22       (3) 

In these equations sµ  is the static friction coefficent between grains and walls and K  

is the Janssen parameter or coefficient of redirection toward the wall of the vertical 

stress applied to the material [6]. Substituting equation (2) and (3) into (1) gives, 
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Integrating equation (6) gives, 
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where C  is a constant to be determined from the initial conditions. If one assumes the 

initial pressure on the top of the structure is , then the constant  is, 0vp C
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and (7) becomes 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= h

R
K

ph
R

K
K

gR
p

e

s
v

e

s

s

e
v

µµ
µ

ρφ 2
exp

2
exp1

2 0   (9) 

It is noticed that an equivalent cylindrical Janssen model to equation (9) exists which 

has a radius . eRR =

If the parameters in equation (9) are assumed to be 74.0=sµ  (steel to steel),  

(suggested by [7]), 

7.0=K

38.7 cmgrams=ρ , 58.0=φ  (measured) and  (particles 

are in equilibrium under their own weight), then for the five particle dampers with 

different 

00 =vp

α - values, a group of curves,  versus  can be drawn according to 

expression (9). This is shown in Figure 10. 

vp h

p h

2.0

The curves show that the static pressure  saturates exponentially with depth . 

Pressure saturation occurs because contact point friction allows the medium to carry 

shear loads in the vertical plane. At saturation pressure, the weight of a layer of 

particles is supported by the side walls by this mechanism, thus further increases in 

pressure do not occur [6]. For the damper geometries considered, saturation occurs at 

a depth of approximately 20mm when 

v
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=α  and 30mm when 4.0=α . Where 

6.0=α  and above, saturation does not occur in the dampers and peak pressures are 

up to 50% higher. Initially, this might seem to disagree with the hypothesis that 

increased static pressure reduces the ease with which fluidisation occurs. However, it 

is important to remember that the dampers have circular cross-section so that there are 

different numbers of particles at different depths. Also, for a given excitation force, 

the instantaneous dynamic pressure varies from damper to damper because of the 



change in cross-sectional area. Two parameters are used here to compare the ease of 

fluidisation between dampers. The first is the static pressure normalised by cross 

sectional area, 

 
2
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R
R
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where Rn and R0 are the radii of the baseline and nth dampers respectively. This is a 

measure of the forces stopping the particles from fluidising. The second is Np the 

number of particles in the damper that are below a given static pressure – indicative of 

the number of particles that fluidise at a given excitation level. For the dampers 

considered, using the condition =α  as the baseline, a plot showing these parameters 

is presented in Figure 11. It can be seen from this plot that the low diameter dampers 

(large α) contain a greater number of particles at low pressure making them easier to 

fluidise. This can clearly be seen from the experimentally obtained FRFs in Figure 2, 

5, 6, 7 and 8.  

4. An Equivalent Viscous Damping Model 

The model used to represent the experimental system is shown in Figure 12. The 

effective mass of the particles is denoted by m  and the nonlinear damping is denoted 

by . Since the mass m  (mass of the block) and stiffness  of the system are 

known, the equivalent viscous damping coefficient  for the i

p

eqc k

)(i

0

eqc th response level can 

be obtained from 

iieq kmς2=ic )(        (11) 

 11



in which iς  is identified by curve fitting to the measured FRF and . The 

discrete nonlinear damping coefficient of the particle damper , as a function of 

velocity, can be expressed as a continuous function by fitting a curve to the equivalent 

viscous damping coefficients , 

pi 0 mmm +=

)(vc

)(i

eq

eqc n ..., 2, 1,i =  as shown in Figure 13.  

In this example, the curve fitting function is based on the Gamma distribution 

function in probability [9], 

( ) ( ) BevAvceq +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Γ

=
−

β

β
µ

γβ

v−− µγ 1

, with µ≥v , and 0, >γβ   (12) 

in which γ is the shape parameter, µ is the location parameter, β is the scale 

parameter, and Γ is the gamma function which has the formula , 

( ) ∫ −−=Γ
0

1 dteta ta∞
       (13) 

Shape parameters allow the function to take on a variety of shapes. A location 

parameter simply shifts the graph left or right on the horizontal axis. The effect of the 

scale parameter is to stretch out the graph. Parameter A is designated to adjust the gain 

and parameter B is the constant to which the function converges. The asymptotic 

property of the damping dynamic behaviour is clearly described by the function. To 

obtain the parameters, an optimisation problem was constructed using, 

(∑ −
i

i
eqieqv

cvc 2)()(
2

min )1

)(i n ..., 2, 1,i

      (14) 

The parameters are obtained by solving the nonlinear Least Squares problem. The 

curve-fitted results to the discrete values of the , eqc = , are shown in 
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Figure 13. The parameters obtained from nonlinear optimisation implementations are 

listed in Table 2. 

µ≥vIt should be noticed that the restriction in the velocity range, , in equation (11) 

indicates that the model does not cover the low velocity range, µ<< v0 . In practice, 

however, it is only the relatively high response levels of the particle dampers that is of 

concern and the absence of the predictions at low velocities does not significantly 

affect the application of the model. As shown in Figure 13, the nonlinear damping 

coefficient in the range µ<< v0  can be estimated approximately by linear 

extrapolation.  

The functions described by equation (11) can then be used in a Finite Element model 

for prediction purposes. 

5. Conclusions 

The dynamic behaviour of disc-geometry particle dampers has been characterised. It 

has been shown that the damping is strongly dependent on the response level. A stick-

slip process was observed from the FRFs measured at various response levels, which 

reveals that the vibration energy is mainly dissipated by the friction between particles 

and between particles and the walls of the cavity. 

The effect of geometry parameters on the dynamic behaviour of particle dampers was 

investigated by changing the diameter and thickness of the cavity simultaneously with 

the volume kept constant. It has been shown that the ratio of thickness to diameter of 

the disk cavity plays an important role due to the different pressure distributions 

which in turn control the eventual motion of the particles. The static pressure 
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distribution of particles in a disk cavity with the polar axis horizontal was derived, 

yielding similar result to Janssen’s model. This was used to relate the damper 

geometry to the ease of activation. 
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)(v

The nonlinear behaviour of particle dampers was characterised by an equivalent 

viscous damping model. The parameters in the model were estimated by solving a 

nonlinear least squares problem. The important parameters contributing to the 

nonlinear damping curve such as the peak damping and the convergence damping 

level are defined by a five-parameter model. The procedure of modelling the 

equivalent viscous damping of particle dampers by c  is experiment-based. It is 

accurate, physically meaningful and easy to implement. Compared with the studies 

based on the microscopic scale such as molecular dynamics or the discrete element 

method, it is more efficient and applicable. The model extracted can be applied to 

other systems with the corresponding particle damper applied at the stage of design by 

adding a nonlinear dashpot at the mesh point of the finite element model of the 

structure. 
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Figure 1: SDOF test rig 

 

 

Figure 2: Dynamic behaviour of SDOF system with a particle damper ( 4.0=α ) 
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Figure 3: Demonstration of friction: stick-slip process 
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Figure 4: Design of cavity (dimensions in mm) 
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Figure 5: FRFs of particle damper with 2.0=α  

 

 

Figure 6: FRFs of particle damper with 6.0=α  
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Figure 7: FRFs of particle damper with 8.0=α  

 

 

Figure 8: FRFs of particle damper with 0.1=α  
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Figure 10: Static pressure distribution of five different particle dampers 
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Figure 11: Number of particles Np against normalised pressure distribution, pnorm

 

 

Figure 12: SDOF model 
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Figure 13: Curve fits of the equivalent damping coefficien

velocity from Equation (11) 

 

Table 1. Dimensions of PDs used 

α 0.2 0.4 0.6 0.8

D (mm) 50.0 39.7 34.7 31.

L (mm) 10.0 15.9 20.8 25.

Volume (mm³) 19635 19682 19670 196

 

 

●  α = 0.2 
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Table 2. Parameters of the nonlinear damping model for Equation (11) 

α γ β µ A B 

0.2 5.1 0.016 0.040 6.1 55.0 

0.4 2.3 0.030 0.022 5.5 22.0 

0.6 2.0 0.032 0.008 5.2 15.0 

1.0 2.0 0.033 0.000 4.3 13.5 
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