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The Kalman-Bucy Filter for Integrable Lévy

Processes with Infinite Second Moment

David Applebaum∗, Stefan Blackwood†

School of Mathematics and Statistics,
University of Sheffield,

Sheffield S3 7RH
United Kingdom.

Abstract

We extend the Kalman-Bucy filter to the case where both the sys-

tem and observation processes are driven by finite dimensional Lévy

processes, but whereas the process driving the system dynamics is

square-integrable, that driving the observations is not; however it

remains integrable. The main result is that the components of the

observation nose that have infinite variance make no contribution to

the filtering equations. The key technique used is approximation by

processes having bounded jumps.

Keywords: Lévy process, Riccati equation, Kalman-Bucy filter.
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1 Introduction

The Kalman-Bucy filter is the continuous time version of the famous Kalman
filter, which was developed in discrete time to find the “best estimate” of a
linear system based on observations which are also assumed to dynamically
evolve in a linear fashion. These techniques have had an enormous influence
on control theory and signal processing, as well as the analysis of time series,
and have found important applications within such areas as navigational and
guidance systems and satellite orbit determination (see e.g. [8].)

∗D.Applebaum@sheffield.ac.uk
†stefan.blackwood@sheffield.ac.uk
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In this paper we focus on the continuous time Kalman-Bucy filter. This
is usually presented with Brownian motion as driving noise (see e.g. [15]
chapter 6, [4] section 6.2 or [19] Chapter 9), although it can be more generally
developed when the noise has orthogonal increments [10], or is a fractional
Brownian motion [13]. But all of these extensions require that both the
signal and the observation noise have a finite second moment for all time.
An exception to this is the paper [7], but that uses a very different approach
to the one that we will present, and it seems that the only concrete examples
that fit naturally into that framework are the α-stable Lévy processes. We
also mention [1] that deals with a very similar problem to ours. We compare
the approach of that paper with ours below. An extension of the discrete
time Kalman filter to deal with some noise distributions having heavy tails
may be found in [18].

Lévy processes are the most general class of stochastic processes with
suitably regular sample paths that have stationary and independent incre-
ments. Although they have been part of the classical theory of probability
and stochastic processes since the 1930s, they are currently going through
a stage of intense development and broad application due to their flexibil-
ity in modeling phenomena that combine continuous random motion with
discontinuous jumps of arbitrary size. There have been many interesting ap-
plications of these processes, in e.g. mathematical finance (see Chapter 5 of
[2] and [9]), evolutionary biology [5] and signal processing [16, 3].

In this paper we describe how the Kalman-Bucy filter can be extended
to Lévy noise in both the system and observations, with the system noise
having a finite second moment while the observation noise has infinite second
moment but finite mean. Our method is to truncate the size of the jumps
in the observation noise, set up standard Kalman-Bucy filters for processes
having finite second moments, and then take a passage to the limit. We are
thus able to obtain a standard form of the Kalman-Bucy filter for a natural
L1 linear estimate of the system; note however that the solution of the Riccati
equation cannot any longer be interpreted as a “mean square error”, although
it is a limit of such terms. The components of the observation noise that have
infinite variance make no contribution to either the Riccati equation or the
Kalman-Bucy filter. In particular, if the variance of every component blows
up to infinity (and this always happens in the one-dimensional case in this
context) then the limiting Riccati equation linearises, the Kalman-Bucy filter
is deterministic, and is the solution of a linear first-order differential equation.

In contrast to our linear filter, [1] obtain a non-linear optimal filter for
the best measurable estimate. Having the system evolve with Gaussian noise
is also a vital aspect of their set-up, indeed the authors describe this as a
“significant limitation” in the closing paragraph of their paper. We do not
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discuss optimality of the filter in this paper; this seems to be quite a difficult
problem in our Banach space setting, where we cannot exploit orthogonality
as in the standard Hilbert space framework.

The plan of the paper is as follows. In section 2 we gather together all the
facts that we need about Lévy processes. In section 3, we set up the stan-
dard Kalman-Bucy filter for Lévy processes having finite second moments.
In section 4 we describe the limiting processes, and obtain our main results.
Some numerical simulations are presented in section 5, where we make prac-
tical comparisons of our filter with those of [1] and [7]. A more detailed
account of the results presented here can be found in [6]. Finally we remark
that non-linear filtering with Lévy processes has also recently received some
development, and we direct the interested reader to [14, 17, 6].

Notation. In this paper we will work with vectors in R
d where d takes at

least four different values. If v ∈ R
d we denote its Euclidean norm by |v| or

|v|d if we want to emphasise the dimension of the space in which v lies. If A
is a d×m real valued matrix, its transpose will be denoted by AT . For such
matrices the operator norm is defined to be ||A||∞ = sup{|Au|d; |u|m = 1}
and we frequently use the fact that if u ∈ R

m then |Au|d ≤ ||A||∞|u|m.
In the last part of the paper we will also need the Hilbert-Schmidt norm
||A||hs := tr(ATA)

1

2 (where tr denotes the trace) and we recall the well
known inequality ||A1A2||hs ≤ ||A1||∞||A2||hs. If (Ω,F , P ) is a probability
space, we use || · ||p to denote the norm in Lp(Ω,F , P ;Rd) for 1 < p < ∞,

so that if X = (X1, . . . , Xd) ∈ Lp(Ω,F , P ;Rd), then ||X||p = E(|X|p)
1

p . In
this paper we will only be interested in the cases p = 1, 2 and we note that
L2(Ω,F , P ;Rd) is continuously embedded into L1(Ω,F , P ;Rd) and that the
embedding is a contraction. If P is an orthogonal projection acting in a
Hilbert space, we write P⊥ := I − P , where I is the identity operator.

2 Preliminaries on Lévy Processes

Let (Ω,F , P ) be a probability space and (Ft, t ≥ 0) be a filtration of F that
satisfies the “usual hypotheses” of right continuity and completeness. Let
L = (L(t), t ≥ 0) be a Lévy process taking values in R

d, that is defined
on this space and adapted to the given filtration. This means that L has
stationary and independent increments in the strong sense that L(t)− L(s)
is independent of Fs for all 0 ≤ s < t <∞, that L is stochastically continuous
and has càdlàg paths, and that L(0) = 0 (a.s.). Under these conditions, we
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have the Lévy-Itô decomposition (see [2], section 2.4, pp.112-31)

L(t) = bt+Wa(t) +

∫

|y|≤1

yÑ(t, dy) +

∫

|y|>1

yN(t, dy) (2.1)

for all t ≥ 0. Here b ∈ R
d,Wa is a Brownian motion in R

d with Cov(W i
a(s),W

j
a (t)) =

(s ∧ t)aij for all 1 ≤ i, j ≤ d, s, t ≥ 0 where a = (aij) is a non-negative def-
inite symmetric d × d matrix, N is a Poisson random measure defined on
R

+ × R
d which is independent of Wa, and Ñ is its compensator for which

Ñ(dt, dy) = N(dt, dy) − dtν(dy), where ν is a Lévy measure on R
d, i.e. a

Borel measure for which ν({0}) = 0 and
∫
Rd(|y|

2 ∧ 1)ν(dy) < ∞. Note that
we can always write W i

a(t) =
∑m

j=1 σ
i
jW

j(t) where W = (W 1, . . . ,Wm) is a

standard Brownian motion in R
m and σ = (σi

j) is a d×m matrix for which
σσT = a.

We say that a Lévy process L is p-integrable for p > 0 if E(|L(t)|p) < ∞
for all t ≥ 0. It is well-known (see e.g. [2], section 2.5, pp.131-3) that L is p-
integrable for p ∈ N if and only if

∫
|y|>1

|y|pν(dy) <∞. In particular we will

frequently deal with integrable Lévy processes (p = 1) which are also centred,
i.e. E(L(t)) = 0 for all t ≥ 0. In this case the Lévy-Itô decomposition can
be written

L(t) = Wa(t) +

∫

Rd

yÑ(t, dy). (2.2)

If such a process L is also square-integrable (p = 2) we have Cov(Li(s), Lj(t)) =
(s ∧ t)Θij for all 1 ≤ i, j ≤ d, s, t ≥ 0, where Θij = aij + ψij and

ψij =

∫

Rd

yiyjν(dy). (2.3)

We always assume that the matrix ψ = (ψij) is non-degenerate and so has
strictly positive determinant. We will also need λ = tr(Θ) and note that

λ = tr(a) +

∫

Rd

|y|2ν(dy). (2.4)

Next we describe an approximation result that we will find useful in
section 4. Let L be a centred integrable Lévy process as in (2.2) and let
(Ln, n ∈ N) be the sequence of centred square-integrable Lévy processes
where each Ln has the Lévy-Itô decomposition (for t ≥ 0)

Ln(t) = Wa(t) +

∫

|y|≤n

yÑ(t, dy). (2.5)

Proposition 2.1 The sequence (Ln(t), n ∈ N) converges to L(t) for all t ≥ 0
in the L1-sense and the convergence is uniform on finite intervals.
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Proof. For all T ≥ 0,

sup
0≤t≤T

||L(t)− Ln(t)||1 = sup
0≤t≤T

E

(∣∣∣∣
∫

|y|>n

yÑ(t, dy)

∣∣∣∣
)

≤ 2T

∫

|y|≥n

|y|ν(dy) → 0 as n→ ∞,

where we have used the well-known fact that if h ∈ L1(Rd, ν) then

E

(∣∣∣∣
∫

Rd

h(y)Ñ(t, dy)

∣∣∣∣
)

≤ 2t

∫

Rd

|h(y)|ν(dy). �

Now suppose that L is integrable but not square-integrable. Then
∫
|y|≥1

|y|2ν(dy) =

∞ and so
∫
|y|≥1

y2i ν(dy) = ∞ for q values of i where 1 ≤ i ≤ d. As-

sume for simplicity that these q values are 1, 2, . . . , q and write βν(n) :=

max
{∫

|y|≤n
y2i ν(dy); 1 ≤ i ≤ q

}
. In order to develop a manageable theory,

we will also make the assumption that
∣∣∣
∫
|y|≥1

yiyjν(dy)
∣∣∣ < ∞ for all i 6= j.

An example of such a set up arises when the components of L are inde-
pendent, centred one-dimensional Lévy processes, q of which have infinite
variance. In that case, for each i 6= j,

∫

|y|≥1

yiyjν(dy) =

(∫

|y|≥1

yiν(dy)

)(∫

|y|≥1

yjν(dy)

)
= 0.

More generally, we say that L is of fully infinite variance whenever q = d.
For each n ∈ N, let Λ(n) = (Λ

(n)
ij ) be the covariance matrix corresponding

to the jump part of the process Ln, as in (2.3). In section 4, we will require
the existence of limn→∞(Λ(n))−1. If d = 1 it is easy to see that this limit
exists and is zero. If d > 1 and q = d, then each element of the matrix of
cofactors of Λ(n) is O(βν(n)

α) as n → ∞, where 1 ≤ α ≤ d − 1, however
det(Λ(n)) is O(βν(n)

d). It follows that limn→∞(Λ(n))−1 = 0 also in this case.
If d > 1 and q < d then the sequence (Λ(n)−1, n ∈ N) may converge to a

non-zero limit as n → ∞. For an illustrative example, let (ei, 1 ≤ i ≤ d) be
the natural basis in R

d and for each n ∈ N, let Ln be the Lévy process:

Ln(t) =

q∑

i=1

J (i)
n (t)ei +

d∑

i=q+1

W (i)(t)ei,

where t ≥ 0,W (q+1), . . . ,W (d) are independent one-dimensional standard
Brownian motions and J

(1)
n , . . . , J

(q)
n are independent one-dimensional pure
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jump Lévy processes, which are also independent of all the W (i)’s, with each
J
(i)
n (t) =

∫
|yi|<n

yÑi(t, dyi) having Lévy measure that is concentrated on the

linear span of the vector ei. In this case, for each n ∈ N,

Λ(n) = diag

(∫

y2
1
<n

y21ν1(dy), . . . ,

∫

y2q<n

y2qνq(dy), 1, . . . , 1

)
,

and we have
lim
n→∞

(Λ(n))−1 = diag (0, . . . , 0, 1, . . . , 1) .

In the sequel, we will always assume that limn→∞(Λ(n))−1 exists, and we
denote the limit by Υ∞.

3 The Kalman-Bucy Filter With Square-Integrable

Lévy Processes

The Kalman-Bucy filter has been extensively developed in the case where
the noise (at both the system and the observation level) is in the general
class of processes with orthogonal increments (see e.g. [10]) and the theory
we describe in this section is no more than a special case of this. However it
is important for us to write down the key equations as we will need to use
these in the main part of the paper where we go beyond the framework of
square-integrability. We also point out that in the literature (see also e.g.
[15, 4, 19]), it is typical for authors to present the theory using standard
Brownian motion, or a noise process whose covariance matrix is the identity.
When we use Lévy processes, the covariance matrix is typically non-trivial
(see (2.3)) and it will play a key role in the approximation scheme that we
develop in the next section.

We begin by formulating the general linear filtering problem within the
context of Lévy processes. Let L1 and L2 be independent, centred, square-
integrable Lévy processes defined on Ω and taking values in R

l and R
p (re-

spectively). In the sequel we will use the notation bi, νi, λi etc. when dealing
with characteristics of Lévy processes Li(i = 1, 2) as described in section 2.

Consider the following stochastic differential equation (SDE) in R
d1 :

dY (t) = A(t)Y (t−)dt+B(t)dL1(t), (3.6)

Here A and B are locally bounded left continuous functions taking values
in the space of d1 × d1 and d1 × l matrices (respectively). We assume that
the initial condition Y0 := Y (0) is a F0-measurable random variable. Under
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these conditions, the SDE (3.6) has a unique càdlàg solution (see e.g. [2],
Chapter 6) Y = (Y (t), t ≥ 0) taking values in R

d1 . We call Y the system

process. Note that using the variation of constants formula we have

Y (t) = exp

{∫ t

0

A(u)du

}
Y (0) +

∫ t

0

exp

{∫ t

s

A(u)du

}
B(s)dL1(s), (3.7)

for all t ≥ 0. We have that E(|Y (t)|2) < ∞ for all t ≥ 0 (see e.g. Corollary
6.2.4 on p.373 of [2].) Now let d2 ≤ d1 and let C and D be locally bounded,
left continuous functions taking values in the space of d2 × d1 and d2 × p

matrices (respectively). Then the SDE

dZ(t) = C(t)Y (t)dt+D(t)dL2(t) (3.8)

with initial condition Z(0) = 0 (a.s.) has a unique càdlàg solution Z =
(Z(t), t ≥ 0) taking values in R

d2 . We call Z the observation process. Just
as in the case of the system, E(|Z(t)|2) <∞ for all t ≥ 0.

From now on we will restrict ourselves to working on a time interval [0, T ].
We will also assume that the d2 × d2 matrix D(t)D(t)T is invertible for all
0 ≤ t ≤ T and that the mapping t→ D(t)D(t)T is bounded away from zero.

We define G(t) := (D(t)D(t)T )−
1

2 for all 0 ≤ t ≤ T .
Let X = (X(t), 0 ≤ t ≤ T ) be a square-integrable stochastic process

defined on Ω and taking values in R
d2 . Let L(X) denote the closure in

L2(Ω,F , P ;Rd1) of all finite linear combinations of random variables of the
form

c0 + c1X(t1) + · · ·+ cnX(tn)

where c0 ∈ R
d1 , c1, . . . , cn are arbitrary d1 × d2 matrices and 0 ≤ t1 <

· · · < tn ≤ T . We will use PX to denote the orthogonal projection in
L2(Ω,F , P ;Rd1) whose range is L(X). Now for all 0 ≤ t ≤ T , we define

Ŷ (t) = PZ(Y (t)),

then Ŷ is the best linear estimator of Y . Note that E(Ŷ (t)) = E(Y (t)) for

all 0 ≤ t ≤ T and Ŷ (0) = µ0 := E(Y0). We define the innovations process

N = (N(t), 0 ≤ t ≤ T ) by the prescription:

N(t) = Z(t)−

∫ t

0

C(s)Ŷ (s−)ds,

then N is a process with orthogonal increments taking values in R
d2 . We

further introduce the process R = (R(t), 0 ≤ t ≤ T ) taking values in R
d2

which is the unique solution of the SDE:

dR(t) = G(t)dN(t),
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with R(0) = 0 (a.s.). Then R is centred and has orthogonal increments with
covariance E(R(s)R(t)T ) = Σ2(s∧t) for all 0 ≤ s, t ≤ T where for 0 ≤ u ≤ T ,

Σ2(u) :=

∫ u

0

G(r)D(r)Λ2D(r)TG(r)T dr.

We assume that Σ2(t)
−1 exists for all 0 ≤ t ≤ T and that the mapping t →

Σ2(t)
−1 is bounded. Note that we also have that E(R(s)TR(t)) = λ2(s ∧ t).

We then find that for all 0 ≤ t ≤ T , we have the following representation of
the estimator.

Ŷ (t) = E(Y (t)) +

∫ t

0

∂

∂s
E(Y (s)R(t)T )Σ2(s)

−1ds.

We define the mean squared error

S(t) = E((Y (t)− Ŷ (t))(Y (t)− Ŷ (t))T ),

for each 0 ≤ t ≤ T . Then S satisfies the Riccati equation

dS(t)

dt
= A(t)S(t) + S(t)A(t)T +B(t)Λ1B(t)T

− S(t)C(t)TG(t)T Σ2(t)
−1G(t)C(t)S(t)T , (3.9)

with initial condition S(0) = Cov(Y0), and the Kalman-Bucy filter represents

the best linear estimate Ŷ as the solution of the following SDE:

dŶ (t) = A(t)Ŷ (t)dt

+ S(t)C(t)TG(t)T Σ2(t)
−1G(t)(dZ(t)− C(t)Ŷ (t)dt). (3.10)

Full details of the above derivations can be found in [6], but we stress that
these results are essentially known (see e.g. [10]).

4 The Kalman-Bucy Filter With Integrable

(Infinite Second Moment) Lévy Processes

From now on we assume that the Lévy process L2 is centred and integrable so
that it has Lévy-Itô decomposition (2.2). We further assume that it fails to be
square-integrable, i.e. E(|L2(t)|

2) = ∞ for all t > 0 and so
∫
|y|>1

|y|2ν(dy) =

∞1. For each n ∈ N we consider the approximating Lévy processes L
(n)
2 that

1From now on, we drop the subscript 2 for all characteristics and component processes

associated with L2.
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have Lévy-Itô decomposition (2.5). We now set up a sequence of observation
processes (Zn, n ∈ N) where for each n ∈ N, 0 ≤ t ≤ T ,

dZn(t) = C(t)Y (t−)dt+D(t)dL
(n)
2 (t) (4.11)

Proposition 4.1 The sequence (Zn(t), n ∈ N) converges to Z(t) for all t ≥ 0
in the L1-sense and the convergence is uniform on finite intervals.

Proof. This is by a similar argument to that of Proposition 2.1. �

For simplicity we now write Lp(Ω) := Lp(Ω,F , P ;Rd1), p = 1, 2. For
all n ∈ N, we can form the linear spaces L(Zn) as described in section 3.
The orthogonal projection from L2(Ω) to L(Zn) is denoted Pn and for each

0 ≤ t ≤ T , we write Ŷn(t) = Pn(Y (t)). The mean square error of Ŷn(t) is
denoted by Sn(t).

Lemma 4.1 For all n ∈ N, 0 ≤ t ≤ T ,

||Sn(t)||∞ ≤ d1||Y (t)||22 (4.12)

Proof. For each 1 ≤ i, j ≤ d1,

|Sn(t)ij| ≤ E(|Y (t)i − Ŷn(t)i||Y (t)j − Ŷn(t)j|)

≤ E(|Y (t)− Ŷn(t)|
2
d1
)

= ||P⊥
n Y (t)||22

≤ ||Y (t)||22,

and the result follows by a easy matrix estimate. �

In order to proceed further, we assume that the sequence of matrices
(Σ

(n)
2 (t)−1, n ∈ N) converges for each t ∈ [0, T ] to a matrix we denote by

Φ(t). For example, if for all 0 ≤ t ≤ T,D(t) = Df(t) where D is invertible
and f is strictly positive, then G(t) = Gf(t)−1 where G = (DDT )−1, then

Σ
(n)
2 (t) = tGDΛ

(n)
2 DTGT ,

and

Φ(t) =
1

t
(GT )−1(DT )−1Υ∞D

−1G−1.

If the process Z2 has fully infinite variance, then it is clear that Φ(t) = 0, for
all 0 ≤ t ≤ T .

In fact, we will need to impose a somewhat stronger condition, namely
that (G(t)T Σ

(n)
2 (t)−1G(t), n ∈ N) converges uniformly to Φ(t) on (0, T ]. In
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the special case just described, this condition is satisfied if f is such that
inft>0 tf(t)

2 > 0. The search for general conditions for convergence seems to
be a tricky problem in matrix analysis, and we will will not pursue it further
here.

To simplify the presentation of proofs of the next two theorems, we in-
troduce the notation M(t) := G(t)C(t) for 0 ≤ t ≤ T .

Theorem 4.1 For each 0 ≤ t ≤ T , the sequence (Sn(t), n ∈ N) converges to
a matrix S∞(t). The mapping t → S∞(t) is differentiable on (0, T ] and S∞

is the unique solution of the Riccati equation

dS∞(t)

dt
= A(t)S∞(t) + S∞(t)A(t)T +B(t)Λ1B(t)T

− S∞(t)C(t)TG(t)T Φ(t)G(t)C(t)S∞(t)T , (4.13)

Proof. Let (Ξ(t); 0 ≤ t ≤ T ) be the unique solution of the linear differen-
tial equation

dΞ(t)

dt
= A(t)Ξ(t) + Ξ(t)A(t)T +B(t)Λ1B(t)T

− Ξ(t)M(t)T Φ(t)M(t)Ξ(t)T ,

with initial condition, Ξ(0) = Cov(Y0). We will show that Ξ(t) = S∞(t)
for all 0 ≤ t ≤ T . Using (3.9), for all n ∈ N we have

d

dt
(Ξ(t)− Sn(t)) = A(t)(Ξ(t)− Sn(t)) + (Ξ(t)− Sn(t))A(t)

T

+ Sn(t)M(t)T Σ
(n)
2 (t)−1M(t)Sn(t)

T

− Ξ(t)M(t)T Φ(t)M(t)Ξ(t)T

= A(t)(Ξ(t)− Sn(t)) + (Ξ(t)− Sn(t))A(t)
T

+ (Sn(t)− Ξ(t))M(t)T Σ
(n)
2 (t)−1M(t)Sn(t)

T

+ Ξ(t)M(t)T (Σ
(n)
2 (t)−1 − Φ(t))M(t)Sn(t)

T

+ Ξ(t)M(t)T Φ(t)M(t)(Sn(t)
T − Ξ(t)T ).

Integrating both sides, taking matrix || · ||∞ norms and using (4.1) yields
for all 0 < t ≤ T ,

||Ξ(t)− Sn(t)||∞ ≤ 2

∫ t

0

||A(r)||∞||Ξ(r)− Sn(r)||∞dr

+

∫ t

0

||Sn(r)− Ξ(r)||∞||C(r)||2∞(||Sn(r)||∞||G(r)T Σ
(n)
2 (r)−1G(r)||∞

+ ||Φ(r)||∞||Ξ(r)||∞)dr

+

∫ t

0

||Σ
(n)
2 (t)−1 − Φ(t)||∞||M(r)||2∞||Ξ(r)||∞||Sn(r)||∞dr.
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By our assumptions, we have

sup
n∈N

sup
0<t≤T

||G(t)T Σ
(n)
2 (t)−1G(t)||2∞ = K <∞.

We now apply Gronwall’s inequality and use (4.12) to obtain

||Ξ(t)− Sn(t)||∞ ≤ d1 exp

{∫ t

0

[2||A(r)||∞ + ||M(r)||2∞(K||Y (r)||22 + ||Φ(r)||∞||Ξ(r)||∞)]dr

}

×

∫ t

0

||Σ
(n)
2 (r)−1 − Φ(r)||∞||M(r)||2∞||Ξ(r)||∞||Y (r)||22dr.

and so by dominated convergence, limn→∞ ||Ξ(t)− Sn(t)||∞ = 0, and the
result follows. �

Note that when the observation process Z has fully infinite variance, then
Φ(t) is identically zero for all 0 ≤ t ≤ T and (4.13) linearises and takes the
form:

dS∞(t)

dt
= A(t)S∞(t) + S∞(t)A(t)T +B(t)Λ1B(t)T . (4.14)

In particular, (4.14) always holds in the one-dimensional case.

Our next result is the desired L1- Lévy Kalman-Bucy filter:

Theorem 4.2 For each 0 ≤ t ≤ T , the sequence (Ŷn(t), n ∈ N) converges

in L1(Ω) to a random variable Ŷ (t). The process Ŷ is the solution of the

following SDE:

dŶ (t) = A(t)Ŷ (t)dt

+ S∞(t)C(t)TG(t)T Φ(t)G(t)(dZ(t)− C(t)Ŷ (t)dt) (4.15)

Proof. Let Ψ = (Ψ(t), 0 ≤ t ≤ T ) be the unique solution (see e.g. Chapter
6 of [2]) of the SDE

dΨ(t) = A(t)Ψ(t)dt

+ S∞(t)C(t)TG(t)T Φ(t)G(t)(dZ(t)− C(t)Ψ(t)dt)

with initial condition Ψ(0) = µ0 (a.s.) We will show that limn→∞ ||Ψ(t) −

Ŷn(t)||1 = 0 and the result then follows by uniqueness of limits. We use a

11



similar argument to that in the proof of Theorem 4.1. Using (3.10) we find
that

Ψ(t)− Ŷn(t) =

∫ t

0

A(r)(Ψ(r)− Ŷn(r))dr

+

∫ t

0

S∞(r)M(r)T Φ(r)G(r)dZ(r)

−

∫ t

0

Sn(r)M(r)T Σn(r)
−1G(r)dZn(r)

−

∫ t

0

S∞(r)M(r)T Φ(r)M(r)Ψ(r)dr

+

∫ t

0

Sn(r)M(r)T Σn(r)
−1M(r)Ŷn(r)dr

=

∫ t

0

A(r)(Ψ(r)− Ŷn(r))dr

+

∫ t

0

(S∞(r)− Sn(r))M(r)T Φ(r)G(r)dZ(r)

+

∫ t

0

Sn(r)M(r)T (Φ(r)− Σn(r)
−1)G(r)dZ(r)

+

∫ t

0

Sn(r)M(r)T Σn(r)
−1G(r)(dZ(r)− dZn(r))

−

∫ t

0

(S∞(r)− Sn(r))M(r)T Φ(r)M(r)Ψ(r)dr

−

∫ t

0

Sn(r)M(r)T (Φ(r)− Σn(r)
−1)M(r)Ψ(r)dr

−

∫ t

0

Sn(r)M(r)T Σn(r)
−1M(r)(Ψ(r)− Ŷn(r))dr.

Taking the L1-norm and using the fact that Z(t)−Zn(t) =
∫ t

0

∫
|y|>n

D(r)yÑ(dr, dy)

we find that

||Ψ(t)− Ŷn(t)||1 ≤

∫ t

0

(||A(r)||∞ + ||S∞(r)M(r)T Σn(r)
−1M(r)||∞)||Ψ(r)− Ŷn(r))||1dr

+ E

(∣∣∣∣
∫ t

0

(S∞(r)− Sn(r))M(r)T Φ(r)G(r)dZ(r)

∣∣∣∣
)

+ E

(∣∣∣∣
∫ t

0

Sn(r)M(r)T (Φ(r)− Σn(r)
−1)G(r)dZ(r)

∣∣∣∣
)

+ 2

∫

|y|>n

|y|ν(dy)

∫ t

0

||Sn(r)M(r)T Σn(r)
−1)G(r)||∞dr.
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+

∫ t

0

||Sn(r)− S∞(r)||∞||M(r)T Φ(r)M(r)Ψ(r)||∞dr

+

∫ t

0

||Φ(r)− Σn(r)
−1||∞||Sn(r)M(r)TM(r)Ψ(r)||∞dr (4.16)

To proceed further we need some additional estimates. Using (3.8) and writ-
ing J(t) :=M(t)T Φ(t)G(t) for all 0 ≤ t ≤ T , we find that

E

(∣∣∣∣
∫ t

0

(Sn(r)− S∞(r))J(r)dZ(r)

∣∣∣∣
)

≤ E

(∣∣∣∣
∫ t

0

(Sn(r)− S∞(r))J(r)C(r)Y (r)dr

∣∣∣∣
)

+ E

(∣∣∣∣
∫ t

0

(Sn(r)− S∞(r))J(r)D(r)dWa(r)

∣∣∣∣
)

+ E

(∣∣∣∣
∫ t

0

∫

R

(Sn(r)− S∞(r))J(r)D(r)Ñ(dy, dr)

∣∣∣∣
)

≤

∫ t

0

||Sn(r)− S∞(r)||∞||J(r)||∞||C(r)||∞||Y (r)||1dr

+

(
E

(∣∣∣∣
∫ t

0

(Sn(r)− S∞(r))J(r)D(r)dWa(r)

∣∣∣∣
2
)) 1

2

+ 2

∫

R

|y|ν(dy)

∫ t

0

||Sn(r)− S∞(r)||∞||J(r)||∞||C(r)||∞dr,

and by Itô’s isometry,

E

(∣∣∣∣
∫ t

0

(Sn(r)− S∞(r))J(r)D(r)dWa(r)

∣∣∣∣
2
)

=

∫ t

0

||(Sn(r)− S∞(r))J(r)D(r)a
1

2 ||2hsdr

≤ tr(a)

∫ t

0

||(Sn(r)− S∞(r)||2∞||J(r)||2∞||D(r)||2∞dr.

The other term that involves E is dealt with in the same manner. We in-
corporate these estimates into (4.16) and also make use of (4.1) to conclude
that there exist bounded measurable positive functions t→ Hj(t) defined on
[0, T ] for j = 1, . . . , 6 so that

||Ψ(t)− Ŷn(t)||1
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≤

∫ t

0

H1(r)||Ψ(r)− Ŷn(r))||1dr +

∫ t

0

H2(r)||Sn(r)− S∞(r)||∞dr

+

∫ t

0

H3(r)||Φ(r)− Σn(r)
−1||∞dr +

(∫ t

0

H4(r)||Sn(r)− S∞(r)||∞dr

) 1

2

+

(∫ t

0

H5(r)||Φ(r)− Σn(r)
−1||∞dr

) 1

2

+

∫

|y|>n

|y|ν(dy)

∫ t

0

H6(r)dr.

Then by Gronwall’s lemma

||Ψ(t)− Ŷn(t)||1 ≤ exp

(∫ t

0

H1(r)dr

)[∫ t

0

H2(r)||Sn(r)− S∞(r)||∞dr

+

∫ t

0

H3(r)||Φ(r)− Σn(r)
−1||∞dr

+

(∫ t

0

H4(r)||Sn(r)− S∞(r)||∞dr

) 1

2

+

(∫ t

0

H5(r)||Φ(r)− Σn(r)
−1||∞dr

) 1

2

+

∫

|y|>n

|y|ν(dy)

∫ t

0

H6(r)dr

]
,

and the result follows by using dominated convergence (which is justified by
using (4.1)) and the fact that limn→∞

∫
|y|>n

|y|ν(dy) = 0. �

When the observation noise has fully infinite variance (4.15) collapses to
a linear first order differential equation:

dŶ (t)

dt
= A(t)Ŷ (t). (4.17)

5 Numerical Results

In this section we look at three different methods for filtering an infinite
variance observation process in a linear framework. We work in the one-
dimensional case using (4.17) and compare our results with those of [1] and
[7].

The example we will look at will be that of infinite variance α-stable noisy
obervations of a mean reverting Brownian motion, i.e.

Y (t) = Y0 −

∫ t

0

Y (t)dt+X1(t)

dZ(t) = Y (t)dt+ dX2(t)
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where (X1(t), t ≥ 0) is a standard Brownian motion, Y0 is a Gaussian random
variable and (X2(t), t ≥ 0) is a symmetric α-stable process with dispersion
parameter 1 and α ∈ (1, 2), so that E(eiuX2(t)) = e−t|u|α for each u ∈ R, t ≥ 0.
We set the signal to be 0 at time 0 and assume the observations occur at
a fixed rate with interarrival time 0.01 and expiry T = 10. Finally we take
100, 000 Monte-Carlo simulations to estimate the mean square error of the
filter from the system, after which a median value of these were taken, the
results are summarised in Table 1.

Table 1: A Comparison of Filters

α No Filter Error LBM Filter Error AF Filter Error

1.1 0.6601 0.7819 0.7445
1.5 0.6593 0.6819 0.7507
1.9 0.6603 0.6446 0.7508

Here “No filter” refers to the filter of this paper and LBM and AF are
those developed in [7] and [1], respectively.

The following figure provides a graphical representation of one instance
of the above calculations. It shows that the filter of Le Breton and Musiela
is quite prone to large jumps in the observations, causing a higher error
in this instance. The filter of Ahn and Feldman remains relatively close
to 0, but having no filter provides the lowest error. Whilst this may seem
counter-intuitive it should be noted that when α = 1.1 the noise in the
observation process is very wild, and so the observation process bears almost
no resemblance to the system process.
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