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Determination of forcing functions in the wave equation.
Part II: the time-dependent case

S.O. Hussein and D. Lesnic
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
E-mails: ml10soh@leeds.ac.uk, D.Lesnic@leeds.ac.uk

Abstract. The determination of an unknown time-dependent force function in the wave
equation is investigated. This is a natural continuation of Part I (J. Eng. Maths 2015,
this volume), where the space-dependent force identification has been considered. The ad-
ditional data is given by a space integral average measurement of the displacement. This
linear inverse problem has a unique solution, but it is still ill-posed since small errors in the
input data cause large errors in the output solution. Consequently, when the input data is
contaminated with noise we use the Tikhonov regularization method in order to obtain a
stable solution. The choice of the regularization parameter is based on the L-curve method.
Numerical results show that the solution is accurate for exact data and stable for noisy data.

Keywords: Inverse force problem; Regularization; L-curve; Wave equation.

1 Introduction

The wave equation governs many physical problems such as the vibrations of a spring or
membrane, acoustic scattering, etc. When it comes to mathematical modeling probably the
most investigated are the direct and inverse acoustic scattering problems, see e.g. [1]. On the
other hand, inverse source/force problems for the wave equation have been less investigated.
External force estimation consists of the inverse process of identifying the applied loadings
from the output measurements of the system responses and can be experienced in many
engineering applications dealing with wave, wind, seismic, explosion, or noise excitations, [2].

It is the objective of this study to investigate such an inverse force problem for the
hyperbolic wave equation. The forcing function is assumed to depend only upon the single
time variable in order to ensure uniqueness of the solution. The identification of a space-
dependent forcing function has been investigated elsewhere, see [3]- [6], [7, Sect. 8.2] and Part
I of this topic submitted in the companion paper [8]. The theoretical basis for our numerical
investigation is given in [7, Sect. 9.2], where the existence and uniqueness of solution of the
inverse time-dependent force function for the wave equation have been established. However,
no numerical results were presented and it is the main purpose of our study to develop an
efficient numerical solution for this linear, but ill-posed inverse problem.

The mathematical formulation of the inverse problem under investigation is given in
Section 2. No a priori information is assumed available on the functional form of the unknown
external force. The numerical discretisation of both the direct and inverse problems based
on the finite-difference method (FDM) are described in one-dimension in Sections 3 and 4,
respectively. Both these problems are linear, but the direct problem is well-posed, whilst
the inverse problem is ill-posed. Consequently, upon the numerical FDM discretisation the
resulting systems of linear algebraic equations are well-, respectively, ill-conditioned. The
ill-conditioning is dealt with by employing the Tikhonov regularization method, [9]. The
choice of the regularization parameter introduced by this technique is important for the
stability of the numerical solution and in our study this is based on the L-curve criterion, [10].
The accuracy and stability of the inverse problem solution is analysed by using exact and
numerically simulated noisy measurements. Numerical results are illustrated and discussed
in Sections 5, and conclusions are provided in Section 6.
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2 Mathematical Formulation

The governing equation for a vibrating bounded structure Ω ⊂ R
n, n = 1, 2, 3, acted upon

by a force F (x, t) is given by the wave equation

utt(x, t) = c2∇2u(x, t) + F (x, t), (x, t) ∈ Ω× [0, T ], (1)

where T > 0 is a given time, u(x, t) represents the displacement and c > 0 is the wave
speed of propagation. For simplicity, we assume that c is a constant, but we can also let
c be a positive smooth function depending on the space variable x. We also assume that
the boundary ∂Ω is smooth enough. Equation (1) has to be solved subject to the initial
conditions

u(x, 0) = u0(x), x ∈ Ω, (2)

ut(x, 0) = v0(x), x ∈ Ω, (3)

where u0 and v0 represent the initial displacement and velocity, respectively. On the bound-
ary of the structure ∂Ω we can prescribe Dirichlet, Neumann or Robin boundary conditions.
Due to the linearity of equation (1) and of the direct and inverse force problems which are
investigated we can assume, for simplicity, that these boundary conditions are homogeneous.
We can therefore take

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (4)

or,

∂u

∂n
+ σ(x)u = 0, (x, t) ∈ ∂Ω× [0, T ], (5)

where n is the outward unit normal to the boundary ∂Ω and σ is a sufficiently smooth
function. Equation (5) includes the Neumann boundary condition which is obtained for
σ ≡ 0.

If the force F (x, t) is given, then the equations above form a direct well-posed problem for
the displacement u(x, t). However, if the force function F (x, t) cannot be directly observed
it hence becomes unknown and then clearly, the above set of equations is not sufficient to
determine the pair solution (u(x, t), F (x, t)). Then, we can consider the additional integral
measurement

∫

Ω

ω(x)u(x, t)dx = ψ(t), t ∈ [0, T ], (6)

where ω is a given weight function, and further assume that

F (x, t) = f1(x, t)h(t) + f2(x, t), (x, t) ∈ Ω× [0, T ], (7)

where f1(x, t) and f2(x, t) represent known forcing function components and h(t) is an un-
known time-dependent coefficient that is sought. Physically, the expression (6) represents a
space average measurement of the displacement. Also, if one takes the weight function ω to
mimic an approximation to the Dirac delta distribution δ(x − x0), where x0 ∈ Ω is fixed,
then (6) becomes a pointwise measurement of the displacement, namely, u(x0, t) = ψ(t) for
t ∈ [0, T ]. The assumption (7) is needed in order to ensure the unique solvability of the
inverse force problem under investigation, see Theorems 1 and 2 below. We finally men-
tion that instead of (7) one can seek a space-wise component g(x) of the force in the form
F (x, t) = f1(x, t)g(x) + f2(x, t), and this case has been thoroughly investigated elsewhere in
Part I, [8].
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For the definition and notation of the functional spaces involved in the sequel and related
concepts, see Chapter 1 of [7].

We assume that the input data satisfy the regularity conditions

u0 ∈ W̊ 1
2 (Ω), v0 ∈ L2(Ω), ψ ∈ C2[0, T ], f1, f2 ∈ C([0, T ];L2(Ω)), ω ∈ W̊ 1

2 (Ω), (8)

the compatibility conditions
∫

Ω

u0(x)ω(x)dx = ψ(0),

∫

Ω

v0(x)ω(x)dx = ψ′(0), (9)

and the identifiability condition
∫

Ω

f1(x, t)ω(x)dx 6= 0, t ∈ [0, T ]. (10)

Based on Rellich’s theorem that W̊ 1
2 (Ω) is compactly embedded into L2(Ω), we can also

consider stronger regularity conditions than (8), namely,

u0 ∈ W 2
2 (Ω) ∩ W̊

1
2 (Ω), v0 ∈ W̊ 1

2 (Ω), ψ ∈ C2[0, T ], f1, f2 ∈ C([0, T ]; W̊ 1
2 (Ω)),

ω ∈ W̊ 1
2 (Ω). (11)

Then, collecting the statements of corollaries 9.2.1 and 9.2.2 of [7], we obtain the following
unique solvability theorem of the inverse problem (1)-(4), (6) and (7).

Theorem 1. (i) If the input data satisfy conditions (8)-(10), then there exists a unique
solution (u(x, t), h(t)) of the inverse problem (1)-(4), (6) and (7) in the class of functions

u ∈ C([0, T ];W 1
2 (Ω)) ∩ C

1([0, T ];L2(Ω)), h ∈ C[0, T ]. (12)

(ii) If the input data satisfy conditions (9)-(11), then there exists a unique solution (u(x, t), h(t))
of the inverse problem (1)-(4), (6) and (7) in the class of functions

u ∈ C2([0, T ];L2(Ω)) ∩ C
1([0, T ];W 1

2 (Ω)) ∩ C([0, T ];W
2
2 (Ω)), h ∈ C[0, T ]. (13)

When we consider the Robin boundary condition (5), we replace the regularity conditions
(8) by the slightly weaker assumptions

u0 ∈ W 1
2 (Ω), v0 ∈ L2(Ω), ψ ∈ C2[0, T ], f1, f2 ∈ C([0, T ];L2(Ω)), ω ∈ W̊ 1

2 (Ω), (14)

and (11) by

u0 ∈ W 2
2 (Ω), v0 ∈ W 1

2 (Ω), ψ ∈ C2[0, T ], f1, f2 ∈ C([0, T ];W 1
2 (Ω)), ω ∈ W̊ 1

2 (Ω),
(

∂fi
∂n

+ σfi

)

∣

∣

∣

∣

∣

∂Ω×[0,T ]

= 0, i = 1, 2,

(

∂u0
∂n

+ σu0

)

∣

∣

∣

∣

∣

∂Ω

= 0. (15)

Then, collecting the statements of corollaries 9.2.3 and 9.2.4 of [7], we obtain the following
unique solvability theorem of the inverse problem (1)-(3), (5)-(7).

Theorem 2. (i) If the input data satisfy conditions (9), (10) and (14), then there ex-
ists a unique solution (u(x, t), h(t)) of the inverse problem (1)-(3), (5)-(7) in the class of
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functions (12).
(ii) If the input data satisfy conditions (9), (10) and (15), then there exists a unique solution
(u(x, t), h(t)) of the inverse problem (1)-(3), (5)-(7) in the class of functions (13).

Theorems 1 and 2 establish the existence and uniqueness of solution of the inverse force
problems (1)-(4), (6), (7) and (1)-(3), (5)-(7), respectively. Although these theorems ensure
that a unique solution exists, the following example shows that this solution does not depend
continuously upon the input data.

Example of instability. Consider the one-dimensional case, i.e. n = 1 and Ω = (0, π),
and the inverse problem given by equations (1)-(4), (6) and (7) in the form

utt(x, t) = uxx(x, t) + f1(x, t)h(t) + f2(x, t), (x, t) ∈ (0, π)× (0, T ), (16)

u(x, 0) = u0(x) = 0, ut(x, 0) = v0(x) =
x(x− π)

n1/2
, x ∈ (0, π), (17)

u(0, t) = u(π, t) = 0, t ∈ [0, T ], (18)

ψ(t) =

∫ π

0

ω(x)u(x, t)dx =
π5 sin(nt)

30n3/2
, t ∈ [0, T ], (19)

where n ∈ N
∗ and

ω(x) = x(x− π), f1(x, t) = −x(x− π), f2(x, t) = −
2 sin(nt)

n3/2
.

One can observe that conditions (8)-(10) are satisfied and that the analytical solution of the
inverse problem (16)-(19) is given by

u(x, t) =
sin(nt)x(x− π)

n3/2
, (20)

h(t) = n1/2 sin(nt). (21)

Then, one can easily see that, as n → ∞ all the input data (17)-(19) tend to zero, but
the output time-dependent component (21) becomes unbounded and oscillatory. This shows
that the inverse problem under investigation is ill-posed by violating the stability condition
with respect to errors in the data (19). On the other hand, as pointed out by one of the
referees, stability could be restored if one assumes higher regularity for the measured input
data (19); for example, the data (input) and unknown (output) become of comparable norms
if ψ is measured in H2[0, T ] (or C2[0, T ]) and then h is in L2[0, T ] (or C[0, T ]).

The next Sections 3 and 4 describe the actual numerical reconstruction of the solution
of the direct and inverse problems, respectively.
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3 Numerical Solution of the Direct Problem

In this section, we consider the direct initial boundary value problem (1)-(4), for simplicity,
in one-dimension, i.e. n = 1 and Ω = (0, L) with L > 0, when the force F (x, t) is known and
the displacement u(x, t) is to be determined, namely,

utt(x, t) = c2uxx(x, t) + F (x, t), (x, t) ∈ (0, L)× [0, T ], (22)

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ [0, L], (23)

u(0, t) = u(L, t) = 0, t ∈ [0, T ]. (24)

The discrete form of this problem is as follows. We divide the solution domain (0, L) ×
(0, T ) into M and N subintervals of equal lengths ∆x and ∆t, where ∆x = L/M and
∆t = T/N . We denote by ui,j = u(xi, tj), where xi = i∆x, tj = j∆t, and Fi,j := F (xi, tj)
for i = 0,M , j = 0, N . Then, a central-difference approximation to equations (22)-(24) at
the mesh points (xi, tj) = (i∆x, j∆t) of a rectangular mesh covering the solution domain
(0, L)× (0, T ) is, [11],

ui,j+1 = r2ui+1,j + 2(1− r2)ui,j + r2ui−1,j − ui,j−1 + (∆t)2Fi,j,

i = 1, (M − 1), j = 1, (N − 1), (25)

ui,0 = u0(xi), i = 0,M,
ui,1 − ui,−1

2∆t
= v0(xi), i = 1, (M − 1), (26)

u0,j = 0, uM,j = 0, j = 0, N, (27)

where r = c∆t/∆x. Expression (25) represents an explicit FDM formula which is stable if
r ≤ 1, giving approximate values for the solution at mesh points along t = 2∆t, 3∆t, ..., as
soon as the solution at the mesh points along t = ∆t has been determined. Putting j = 0 in
equation (25) and using (26), we obtain

ui,1 =
1

2
r2u0(xi+1) + (1− r2)u0(xi) +

1

2
r2u0(xi−1) + (∆t)v0(xi) +

1

2
(∆t)2Fi,0,

i = 1, (M − 1). (28)

The desired output (6) is calculated using the trapezium rule

ψ(tj) =
∆x

2

(

ω0u0,j + 2
M−1
∑

i=1

ωiui,j + ωMuM,j

)

= ∆x
M−1
∑

i=1

ωiui,j, j = 1, N, (29)

where ωi = ω(xi) for i = 0,M , and use has been made of (27).
The normal derivative at the boundary is calculated using the second-order finite-difference

approximations

−
∂u

∂x
(0, tj) = −

4u1,j − u2,j − 3u0,j
2∆x

=
u2,j − 4u1,j

2∆x
,

∂u

∂x
(L, tj) =

3uM,j − 4uM−1,j + uM−2,j

2∆x
=
uM−2,j − 4uM−1,j

2∆x
, j = 1, N, (30)

where again use has been made of (27). This is also consistent with the general second-order
finite-difference scheme used.
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4 Numerical Solution of the Inverse Problem

We now consider the inverse initial boundary value problem (2)-(4), (6) and (7), in one-
dimension, i.e. n = 1 and Ω = (0, L), when both the force h(t) and the displacement u(x, t)
are to be determined, from the governing equation

utt(x, t) = c2uxx(x, t) + f1(x, t)h(t) + f2(x, t), (x, t) ∈ (0, L)× [0, T ], (31)

subject to the initial and boundary conditions (23) and (24), and the measurement (6).
In discretised finite-difference form equations (23), (24) and (31) recast as equations (26),

(27), and

ui,j+1 − (∆t)2f1i,jhj = r2ui+1,j + 2(1− r2)ui,j + r2ui−1,j − ui,j−1 + (∆t)2f2i,j,

i = 1, (M − 1), j = 1, (N − 1), (32)

where f1i,j := f1(xi, tj), hj := h(tj) and f2i,j := f2(xi, tj). Putting j = 0 in equation (32)
and using (26), we obtain

ui,1 −
1

2
(∆t)2f1i,0h0 =

1

2
r2u0(xi+1) + (1− r2)u0(xi) +

1

2
r2u0(xi−1) + (∆t)v0(xi)

+
1

2
(∆t)2f2i,0, i = 1, (M − 1). (33)

In practice, the additional observation (29) comes from measurement which is inherently
contaminated with errors. We therefore model this by replacing the exact data ψ(tj) with
the noisy data

ψǫ(tj) = ψ(tj) + ǫj, j = 1, N, (34)

where (ǫj)j=1,N areN random noisy variables generated (using the MATLAB routine ’normrd’)
from a Gaussian normal distribution with mean zero and standard deviation σ̃ given by

σ̃ = p× max
t∈[0,T ]

|ψ(t)| , (35)

where p represents the percentage of noise.
Assembling equations (29), (32) and (33), and using (26) and (27), the discretised inverse

problem reduces to solving a global linear, but ill-conditioned system of (M − 1) × N + N
equations with (M − 1) × N + N unknowns. Since this system is linear we can eliminate
the unknowns ui,j for i = 1, (M − 1), j = 1, N , to reduce the problem to solving an ill-
conditioned system of N equations with N unknowns of the generic form

Ah = bǫ, (36)

where the right-hand side bǫ includes the noisy data (34).
For the examples that will be considered in the next section, the condition numbers of

the matrix A in (36) (calculated using the command cond(A) in MATLAB) given in Table
1 are of O(102) to O(104) for M = N ∈ {10, 20, 40, 80}, respectively. These large condition
numbers indicate that the system of equations (36) is ill-conditioned. The ill-conditioning
nature of the matrix A can also be revealed by plotting its normalised singular values σk/σ1
for k = 1,M , in Figure 1. These singular values have been calculated in MATLAB using the
command svd(A).
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Table 1: Condition number of the matrix A.

N =M Example 1 Example 2 Example 3
10 57.8 73.9 78.3
20 234.5 309.9 313.8
40 939.5 1273.7 1251.7
80 3755.7 5172.4 4993.9
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Ex3, N = M = 10
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Figure 1: Normalised singular values σk/σ1 for k = 1,M , for Examples 1-3.

5 Numerical Results and Discussion

In all examples we take, for simplicity, c = L = T = 1.

5.1 Example 1

As a typical test example, consider first the direct problem (22)-(24) with the input data

u(x, 0) = u0(x) = x(x− 1), ut(x, 0) = v0(x) = 0, x ∈ [0, 1], (37)

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1], (38)

F (x, t) = 6tx(x− 1)− 2(t3 + 1), (x, t) ∈ (0, 1)× [0, 1]. (39)
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The exact solution of this direct problem is given by

u(x, t) = x(x− 1)(t3 + 1), (x, t) ∈ [0, 1]× [0, 1]. (40)

For the weight function

ω(x) = x(x− 1), x ∈ (0, 1), (41)

the desired output (6) is given by

ψ(t) =

∫ 1

0

ω(x)u(x, t)dx =
1

30
(t3 + 1), t ∈ [0, 1]. (42)

The absolute errors between the numerical and exact solutions for u(x, t) at interior
points are shown in Figure 2 and one can observe that an excellent agreement is obtained.
From this figure it can also be observed that the errors are reduced by a factor of 4(= 22),
when N is doubled, which confirms that the numerical results are correct, and accurate up
to second-order, due to the second-order FDM used. Figure 3 also gives the corresponding
absolute errors for ψ(t). From this figure it can be seen that the numerical results are in
very good agreement with the exact solution (42), and that convergence is rapidly achieved
as N =M increases.

The inverse problem given by equations (31) with f1(x, t) = 6x(x − 1) and f2(x, t) =
−2(t3 + 1), (37), (38) and (42) is considered next. One can easily check that conditions
(9)-(11) are satisfied and hence Theorem 1 ensures the existence of a unique solution in the
class of functions (13). In fact, the exact solution (u(x, t), h(t)) of the inverse problem is
given by equation (40) for u(x, t) and h(t) = t.
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Figure 2: The absolute errors between the exact (40) and numerical displacement u(x, t)
obtained by solving the direct problem with N =M = (a) 10, (b) 20, (c) 40, and (d) 80, for
Example 1.
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Figure 3: The absolute error between the exact (42) and numerical ψ(t) obtained by solving
the direct problem with N =M ∈ {10, 20, 40, 80}, for Example 1.

5.1.1 Exact Data

We first consider the case of exact data, i.e. p = 0 and hence ǫ = 0 in (34). The numerical
results corresponding to h(t) and u(x, t) are plotted in Figures 4 and 5, respectively. From
these figures it can be seen that convergent and accurate numerical solutions are obtained.
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Figure 4: The exact (—) solution for h(t) in comparison with the numerical solution (—∆—)
for various N =M = (a) 10, (b) 20, (c) 40, and (d) 80, and no regularization, for exact data,
for the inverse problem of Example 1.
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Figure 5: The absolute errors between the exact (40) and numerical displacement u(x, t)
obtained with N = M = (a) 10, (b) 20, (c) 40, and (d) 80, and no regularization, for exact
data, for the inverse problem of Example 1.

5.1.2 Noisy Data

In order to investigate the stability of the numerical solution we include some p ∈ {1, 3, 5}%
noise into the input data (29), as given by equation (34). The numerical solution for h(t)
obtained with N = M = 80 and no regularization has been found highly oscillatory and
unstable, as shown in Figure 6. In order to deal with this instability we employ the Tikhonov
regularization which gives the regularized solution, [9],

hλ = (ATA+ λDT
kDk)

−1ATbǫ, (43)

where Dk is the regularization derivative operator of order k ∈ {0, 1, 2} and λ ≥ 0 is the
regularization parameter. The regularization derivative operator Dk imposes continuity, i.e.
class C0 for k = 0, first-order smoothness, i.e. class C1 for k = 1, or second-order smoothness,
i.e. class C2 for k = 2, namely D0 = I,
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Figure 6: The exact (—) solution for h(t) in comparison with the numerical solution (—∆—)
for N = M = 80, p = 1% noise, and no regularization, for the inverse problem of Example
1.

D1 =









1 −1 0 0 ... 0
0 1 −1 0 ... 0
... ... ... ... ... ...
0 0 ... 0 1 −1









, D2 =









1 −2 1 0 0 ... 0
0 1 −2 1 0 ... 0
... ... ... ... ... ... ...
0 0 ... 0 1 −2 1









.

Including regularization we obtain the solution (43) whose accuracy error, as a function
of λ, is plotted in Figure 7. The minimum points λopt and the minimal errors are listed in
Table 2. From Figure 7 and Table 2 it can be seen that the errors decrease as the amount
of noise p decrease and that the 2nd-order regularization produces much smaller errors than
the zeroth and 1st-order regularisations. However, these arguments and conclusions cannot
be used for choosing the regularization parameter λ in the absence of an analytical (exact)
solution being available. Then, one possible criterion for choosing λ is given by the L-curve
method, [10], which plots the residual norm ||Ahλ−b

ǫ|| versus the solution norm ||Dkhλ|| for
various values of λ. This is shown in Figure 8 for various values of λ ∈ {10−8, 10−7, ..., 103}
and for p ∈ {1, 3, 5}% noisy data. The portion to the right of the curve corresponds to
large values of λ which make the solution oversmooth, whilst the portion to the left of
the curve corresponds to small values of λ which make the solution undersmooth. The
compromise is then achieved around the corner region of the L-curve where the aforemen-
tioned portions meet. Figure 8 shows that this corner region includes the values around
{λ0th = 10−6, λ1st = 10−5, λ2nd = 2.5} for p = 1%, {λ0th = 10−5, λ1st = 10−3, λ2nd = 2.5}
for p = 3%, and {λ0th = 10−5, λ1st = 10−3, λ2nd = 2.5} for p = 5%, which were previously
obtained from Figure 7.

Figure 9 shows the regularized numerical solution for h(t) obtained with λopt given in
Table 2 for p ∈ {1, 3, 5}% noise and zeroth, first and second-order Tikhonov regularizations.
From this figure it can be seen that the 2nd-order regularization produces the most stable
and accurate numerical solution.
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Figure 7: The accuracy error ||hnum − hexact||, as a function of λ, for M = N = 80, p ∈
{1, 3, 5}% noise, obtained using (a) zeroth, (b) first, and (c) second-order regularization, for
the inverse problem of Example 1.
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Figure 9: The exact (—) solution for h(t) in comparison with the regularized numerical
solution (43), for N =M = 80, p ∈ {1, 3, 5}% noise, for the inverse problem of Example 1.

Table 2: The error norms ||hnum − hexact|| for various order regularization methods and
percentages of noise p, for the inverse problem of Example 1.

Regularization p = 1% p = 3% p = 5%
zeroth λopt = 10−6 λopt = 10−5 λopt = 10−5

2.4756 3.1978 3.5291
first λopt = 10−5 λopt = 10−3 λopt = 10−3

2.19566 2.70695 2.8813
second λopt = 2.5 λopt = 2.5 λopt = 2.5

0.0597 0.1781 0.2965

5.2 Example 2

As another example, consider first the direct problem (23), (24) and (31) with the input data
(38),

u(x, 0) = u0(x) = 0, ut(x, 0) = v0(x) = 0, x ∈ [0, 1], (44)

f1(x, t) = x2 + t2, f2(x, t) = 0, x ∈ [0, 1], t ∈ [0, 1], (45)
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and

h(t) =

{

t if 0 ≤ t ≤ 1
2
,

1− t if 1
2
< t ≤ 1.

(46)

Remark that in this example, the expression (46) has a triangular shape, being continuous
but non-differentiable at the peak t = 1/2. Furthermore, an explicit analytical solution for
the displacement u(x, t) does not seem readily available.

The numerical FDM solutions for the displacement u(x, t) at interior points are shown
in Figure 10, whilst the desired output (6) for ω given by (41) is presented in Figure 11.
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Figure 10: Numerical solutions for the displacement u(x, t) obtained by solving the direct
problem with various N =M = (a) 10, (b) 20, (c) 40, and (d) 80, for Example 2.
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Figure 11: Numerical solution for the integral (6), obtained by solving the direct problem
with various N =M ∈ {5, 10, 20, 40, 80}, for Example 2.

The inverse problem given by equations (31), (38), (44), (45) and (6) with ψ numerically
simulated by solving the direct problem using the FDM with N = M = 160 is considered
next. Remark that from (41) and (45) it follows that the identifiability condition (10) is
satisfied. The solution of the inverse problem is given exactly for h(t) by equation (46) and
numerically for u(x, t) illustrated for sufficiently large N =M such as 80, in Figure 10(d).

5.2.1 Exact Data

We first consider the case of exact data, i.e. p = 0 and hence ǫ = 0 in (34). The numerical
results for h(t) are shown in Figure 12 and very good agreement with the exact solution (46)
can be observed. The numerical solution is convergent as N = M increase from 20 to 40,
but some slight instabilities start to manifest as N = M further increases to 80, see Figure
12(d) and the condition number of the matrix A given in Table 1 for Example 2.
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Figure 12: The exact (—) solution (46) for h(t) in comparison with the numerical solution
(—∆—) for various N = M = (a) 10, (b) 20, (c) 40, and (d) 80, and no regularization, for
exact data, for the inverse problem of Example 2.

5.2.2 Noisy Data

In order to investigate the stability of the numerical solution we include some p ∈ {1, 3, 5}%
noise into the input data (29), as given by equation (34). The numerical solution for h(t)
obtained with N = M = 80 and no regularization has been found highly oscillatory and
unstable similar to that obtained in Figure 6 and therefore is not presented. In order to deal
with this instability we employ the Tikhonov regularization which gives the stable solution
(43) provided that an appropriate regularization parameter λ is chosen. The accuracy error
of this regularized solution, as a function of λ, is plotted in Figure 13. The minimum points
λopt and the minimal errors are listed in Table 3. The L-curve criterion for choosing λ
produces an L-corner, as it also happened in Example 1. This is shown in Figure 14 for
various values of λ ∈ {10−9, 10−8, ..., 10} and for p ∈ {1, 3, 5}% noisy data. Figure 14 shows
that this corner region includes the values around {λ0th = 10−6, λ1st = 10−6, λ2nd = 10−5}
for p = 1%, λ0th,1st,2nd = 10−4 for p = 3%, and λ0th,1st,2nd = 10−2 for p = 5%, which were
previously obtained from Figure 13.

Figure 15 shows the regularized numerical solution for h(t) obtained λopt given in Table 3
for p ∈ {1, 3, 5}% noisy data, in the zeroth, first and second-order Tikhonov regularization.
As in this example the desired solution (46) is less smooth than the solution h(t) = t of
Example 1, from Figure 15 it can be seen that the first-order regularization produces the
most stable and accurate numerical solution.
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Figure 13: The accuracy error ||hnum − hexact||, as a function of λ, for M = N = 80,
p ∈ {1, 3, 5}% noise, obtained using (a) zeroth, (b) first, and (c) second-order regularization,
for the inverse problem of Example 2.
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Figure 14: The L-curves for N =M = 80, p ∈ {1, 3, 5}% noise, and (a) zeroth, (b) first and
(c) second-order regularization, for the inverse problem of Example 2.
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Figure 15: The exact solution (46) for h(t) in comparison with the regularized numerical
solution (43), for N =M = 80, p ∈ {1, 3, 5}% noise, for the inverse problem of Example 2.

Table 3: The error norms ||hnum − hexact|| for various order regularization methods and
percentages of noise p, for the inverse problem of Example 2.

Regularization p = 1% p = 3% p = 5%
zeroth λopt = 10−6 λopt = 10−6 λopt = 10−5

0.2008 0.3388 0.3925
first λopt = 10−4 λopt = 10−4 λopt = 10−4

0.1909 0.2365 0.3125
second λopt = 10−2 λopt = 10−2 λopt = 10−2

0.2475 0.3641 0.4980

5.3 Example 3

We finally consider the Robin boundary condition (5). Let the initial conditions (23) be
given by

u(x, 0) = u0(x) = sin

(

3π

4
x+

π

8

)

, ut(x, 0) = v0(x) = 0, x ∈ [0, 1], (47)
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and the Robin boundary conditions (5) be given by

−
∂u

∂x
(0, t) +

3π

4
cot
(π

8

)

u(0, t) = 0,
∂u

∂x
(1, t)−

3π

4
cot

(

7π

8

)

u(1, t) = 0, t ∈ [0, 1]. (48)

We also take in (31),

f1(x, t) = sin

(

3π

4
x+

π

8

)

, f2(x, t) =
9π2

16
sin

(

3π

4
x+

π

8

)

, x ∈ (0, 1), (49)

h(t) = 6t+
9π2

16
t3, t ∈ [0, 1]. (50)

Then, the exact solution of the direct problem (31), (47) and (48) is given by

u(x, t) = (t3 + 1) sin

(

3π

4
x+

π

8

)

, (x, t) ∈ [0, 1]× [0, 1]. (51)

For the weight function (41), the desired output (6) is given by

ψ(t) =

∫ 1

0

ω(x)u(x, t)dx =
32

27π3

(

3π sin
(π

8

)

− 8 cos
(π

8

))

(t3 + 1), t ∈ [0, 1]. (52)

The FDM requires slight modifications from the Dirichlet boundary condition (38) when
implementing the Robin boundary conditions (48), but this poses no difficulty, [11]. We
simply approximate the x-derivatives at x = 0 and 1 using central finite differences by
introducing fictitious points outside the space domain [0, 1] and apply the general FDM
scheme (25) for j = 0 and N , as well.

The absolute errors between the numerical and exact solutions for u(x, t) at interior
points are shown in Figure 16 and one can observe that an excellent agreement is obtained.
Figure 17 also gives the absolute error between the exact (52) and numerical desired output
integral (6). From this figure it can be seen that the numerical results converge to the exact
solution (52), as N =M increases.
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Figure 16: The absolute errors between the exact (51) and numerical displacement u(x, t)
obtained by solving the direct problem with N =M = (a) 10, (b) 20, (c) 40, and (d) 80, for
Example 3.
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Figure 17: The absolute error between the exact (52) and numerical ψ(t) obtained by solving
the direct problem with N =M ∈ {10, 20, 40, 80}, for Example 3.

The inverse problem given by equations (31), (47), (48) and (52) is considered next. One
can easily check that conditions (9), (10) and (14) are satisfied and hence Theorem 2 ensures
the existence of a unique solution in the class of functions (12). In fact, the exact solution
is given by equations (50) and (51).

The discretised inverse problem reduces to solving a global linear, but ill-conditioned
system of (M + 1)×N +N equations with (M + 1)×N +N unknowns. Since this system
is linear we can eliminate the unknowns ui,j for i = 0,M , j = 1, N , as in (36), to reduce the
problem to solving an ill-conditioned system of N equations with N unknowns.

5.3.1 Exact Data

We first consider the case of exact data, i.e. p = 0 and hence ǫ = 0 in (34). The numerical
results corresponding to h(t) and u(x, t) are plotted in Figures 18 and 19, respectively. From
these figures it can be seen that convergent and accurate numerical solutions are obtained.
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Figure 18: The exact (—) solution (50) for h(t) in comparison with the numerical solution
(—∆—) for various N = M = (a) 10, (b) 20, (c) 40, and (d) 80, no regularization, for exact
data, for the inverse problem of Example 3.
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Figure 19: The absolute errors between the exact (51) and numerical displacement u(x, t)
obtained with N = M = (a) 10, (b) 20, (c) 40, and (d) 80, and no regularization, for exact
data, for the inverse problem of Example 3.

5.3.2 Noisy Data

In order to investigate the stability of the numerical solution we include some p ∈ {1, 3, 5}%
noise into the input data (29), as given by equation (34). The numerical solution for h(t)
obtained with N = M = 80 and no regularization has been found highly oscillatory and
unstable similar to that obtained in Figure 6 and therefore is not presented. In order to
deal with this instability we employ the zeroth order, first-order and second-order Tikhonov
regularization, similar to Section 5.1.2 for Example 1. The accuracy error of the regularized
solution (43), as a function of λ, is plotted in Figure 20. The minimum points λopt and
the minimal errors are listed in Table 4. The L-curve criterion for choosing λ produces an
L-corner, as it also happened in Example 1. This is shown in Figure 21 for various values of
λ ∈ {10−8, 10−7, ..., 10} and for p ∈ {1, 3, 5}% noisy data. Figure 21 shows that this corner
region includes the values around {λ0th = 10−7, λ1st = 5×10−5, λ2nd = 5×10−2} for p = 1%,
{λ0th = 10−6, λ1st = 10−4, λ2nd = 10−1} for p = 3%, and {λ0th = 10−5, λ1st = 10−4, λ2nd =
10−1} for p = 5%, as previously predicted from Figure 20.

Figure 22 shows the regularized numerical solution for h(t) obtained with λopt given
in Table 4 for p ∈ {1, 3, 5}% noisy data, in the zeroth, first and second-order Tikhonov
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regularization. As in Example 1, one can see that the second-order regularization method
produces the most stable and accurate numerical results.
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Figure 20: The accuracy error ||hnum − hexact||, as a function of λ, for M = N = 80,
p ∈ {1, 3, 5}% noise, obtained using (a) zeroth, (b) first, and (c) second-order regularization,
for the inverse problem of Example 3.
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Figure 21: The L-curves for N =M = 80, p ∈ {1, 3, 5}% noise, and (a) zeroth, (b) first and
(c) second-order regularizations, for the inverse problem of Example 3.
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Figure 22: The exact solution (50) for h(t) in comparison with the numerical regularized
solution (43), for N =M = 80, p ∈ {1, 3, 5}% noise, for the inverse problem of Example 3.

Table 4: The error norms ||hnum − hexact|| for various order regularization methods and
percentages of noise p, for the inverse problem of Example 3.

Regularization p = 1% p = 3% p = 5%
zeroth λopt = 10−7 λopt = 10−6 λopt = 10−5

24.4962 29.5028 33.5244
first λopt = 5× 10−5 λopt = 10−4 λopt = 10−4

23.0137 24.4016 26.1625
second λopt = 5× 10−2 λopt = 10−1 λopt = 10−1

1.5648 2.1300 3.3874

6 Conclusions

In this paper, the determination of a time-dependent force from the space average integral
of the displacement in the wave equation has been investigated. This linear inverse problem
is uniquely solvable, but is still ill-posed since small errors in the input data cause large
errors in the output force. The problem is discretised numerically using the FDM, and in
order to stabilise the solution, the Tikhonov regularization method of various orders has been
employed. The choice of the regularization parameter was based on the L-curve criterion.
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Numerical simulations for a wide range of external forces have been performed in order to
test the validity of the present investigation. The obtained results indicate that the method
can accurately and stably recover the unknown force. Although the numerical method and
results have been presented for the one-dimensional time-dependent wave equation a similar
FDM can easily be extended to higher dimensions. Future work will consist in investigating
the nonlinear inverse problem in which the unknown force f(u) depends on the displacement
u.
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