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Abstract 157 

Ensembles of process-based crop models are increasingly used to simulate crop 158 

growth for scenarios of temperature and/or precipitation changes corresponding to different 159 

projections of atmospheric CO2 concentrations. This approach generates large datasets with 160 

thousands of simulated crop yield data. Such datasets potentially provide new information but 161 

it is difficult to summarize them in a useful way due to their structural complexities. An 162 

associated issue is that it is not straightforward to compare crops and to interpolate the results 163 

to alternative climate scenarios not initially included in the simulation protocols. Here we 164 

demonstrate that statistical models based on random-coefficient regressions are able to 165 

emulate ensembles of process-based crop models. An important advantage of the proposed 166 

statistical models is that they can interpolate between temperature levels and between CO2 167 

concentration levels, and can thus be used to calculate temperature and [CO2] thresholds 168 

leading to yield loss or yield gain, without re-running the original complex crop models. Our 169 

approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat 170 

models, and 13 rice models. Several statistical models are fitted to these datasets, and are then 171 

used to analyze the variability of the yield response to [CO2] and temperature. Based on our 172 

results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a 173 

temperature increase of +2°C in the considered sites. Compared to wheat, required levels of 174 

[CO2] increase are much higher for maize, and intermediate for rice. For all crops, 175 

uncertainties in simulating climate change impacts increase more with temperature than with 176 

elevated [CO2]. 177 

 178 

 179 

Key-words: climate change, crop model, emulator, meta-model, statistical model, yield 180 

 181 

182 



 

 7 

ϭ͘ IŶƚƌŽĚƵĐƚŝŽŶ 183 

Many studies have been carried out in recent decades to assess the effects of climate 184 

change on crop yield and other key crop characteristics. In these studies, one or several crop 185 

models were used to simulate crop growth and development for different projections of 186 

atmospheric CO2 concentration, temperature and precipitation changes (Semenov et al., 1996; 187 

Tubiello and Ewert, 2002; White et al., 2011). AgMIP, the Agricultural Model 188 

Intercomparison and Improvement Project (Rosenzweig et al., 2013), builds on these studies 189 

to explore the value of an ensemble of crop models for assessing effects of climate change 190 

scenarios for several crops in contrasting environments.  191 

The AgMIP studies generate large datasets, including thousands of simulated crop 192 

yield data. They include series of yield values that are obtained by using standardized 193 

protocols that combine several crop models with different climate scenarios defined by 194 

several climatic variables (temperature, CO2, precipitation, etc.). Such datasets potentially 195 

provide new information on the possible effects of different climate change scenarios on crop 196 

yields. However, it is difficult to summarize them in a useful way due to their structural 197 

complexity; simulated yield data can differ among contrasting climate scenarios, sites, and 198 

crop models. Another issue is that it is not straightforward to interpolate the results obtained 199 

for the considered scenarios to alternative climate scenarios not considered in the initial 200 

simulation protocols. Additional crop model simulations for new climate scenarios is an 201 

option but this approach is costly, especially when a large number of crop models is used to 202 

generate the simulated data.   203 

Statistical models have been used to analyze responses of measured yield data to 204 

climate variables in past studies (Lobell et al., 2011). They were also recently used in meta-205 

analyses on the effect of climate change on crop yields (Wilcox and Makowski, 2014; 206 

Challinor et al., 2014). However, the use of a statistical model to analyze the variability of 207 

crop model responses to climate change factors is a rather new idea. We demonstrate herewith 208 

that statistical methods can play an important role in analyzing simulated yield datasets 209 

obtained with ensembles of process-based crop models using standardized protocols. Formal 210 

statistical analysis is helpful to estimate the effects of different climatic variables on yield, 211 

and to describe the between-model variability of these effects. Statistical methods can also be 212 

used to develop meta-models, i.e., statistical models summarizing process-based crop models. 213 

Such meta-models may enable scientists to explore more efficiently the effects of new climate 214 

change scenarios not initially included in the simulation protocol.  215 
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Our approach is illustrated with three datasets of simulated yields obtained by AgMIP 216 

for maize, wheat, and rice generated by ensembles of process-based crop models (Asseng et 217 

al., 2013; Bassu et al., 2013; Li et al., 2015). The yield datasets were used to develop a meta-218 

model that provides a simplified representation of the original ensembles of crop models. The 219 

proposed meta-model is a statistical regression with random coefficients describing the 220 

variability of the simulated yield data across the original crop models. Once fitted to the 221 

simulated yield datasets, the meta-models were used to analyze the variability of the projected 222 

effects of climate changes among crop models, and between alternative crops. The meta-223 

models were also used to study the effects of temperature-change and CO2-change scenarios 224 

that were not initially tested with the original ensemble of crop models. Finally, the results 225 

obtained with the meta-model were used to compare simulated uncertainties and to assess the 226 

impact of temperature and CO2 concentration changes on yields of maize, wheat, and rice.  227 

 228 

Ϯ͘ MĂƚĞƌŝĂůƐ ĂŶĚ MĞƚŚŽĚƐ 229 

2.1. Simulated yield data 230 

We used the maize, wheat, and rice datasets presented by Asseng et al. (2013), Bassu 231 

et al. (2014), and Li et al. (2015). Yield data were simulated with 19 maize models, 26 wheat 232 

models, and 13 rice models. For each crop species, models were calibrated and then run for 233 

four contrasting sites located in France (Lusignan), USA (Ames), Brazil (Rio Verde), and 234 

Tanzania (Morogoro) for maize, in The Netherlands (Wageningen), Argentina (Balcarce), 235 

India (New Delhi), and Australia (Wongan Hills) for wheat, and in the Philippines (Los 236 

Baños), China (Nanjing), India (Ludhiana) and Japan (Shizukuishi) for rice. 237 

The simulation protocols and climate scenarios are described in Rosenzweig et al. 238 

(2013), Asseng et al. (2013), Bassu et al. (2014), and Li et al. (2015). The baseline scenario 239 

corresponded to the 1980-2010 historical climates and assumed a CO2 concentration of 240 

360ppm (mean of 1995). The other climate scenarios were defined from the baseline weather 241 

series by changing the daily maximum and minimum temperature and CO2 concentration For 242 

all species, four temperature changes (+0, +3, +6, +9°C) and five atmospheric CO2 243 

concentration changes (+0, +90, +180, +270, +360 ppm) were used. Thirty years of yield data 244 

were generated with each crop model for each scenario, and the simulated yield values were 245 

averaged over the years. The total number of mean yield data was equal to 1,764 (441 per 246 
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site) for maize, to 2,592 (648 per site) for wheat, to 1,138 (282 to 286 per site) for rice. 247 

Details of the maize, wheat, and rice protocols can be found in Bassu et al. (2014), Asseng et 248 

al. (2013), and Li et al. (2015) respectively.  249 

2.2. Statistical model 250 

Simulated maize, wheat and rice yield data were analyzed using two-level statistical 251 

random-effect models (Davidian and Giltinan, 1995; Pinheiro and Bates, 2000) relating mean 252 

yield (averaged over 30 years) to temperature change, atmospheric CO2 concentration change, 253 

and their interaction. The following statistical model was used to analyze yield data for each 254 

crop and each site separately: 255 

 256 

Level 1, within crop model 257 

 Yij =a0i +a1iDTij +a 2iDTij
2 +a3iDCij +a 4iDCij

2 +a5iDCijDTij +eij ,   (1) 258 

where eij ~ N 0,t 2( ) (assumed independently and identically distributed), Yij  is the mean yield 259 

(averaged over 30 years) simulated with the ith crop model, i=1, ..., P, for the jth scenario; j=1, 260 

..., Qi, DTij,  DCij  
are the temperature change (compared to the baseline scenario), and 261 

atmospheric CO2 concentration change for model i and scenario j, Qi is the number of 262 

scenarios tested with model i, t 2 is a variance describing the residual error, 263 

 264 

Level 2, between crop models 265 

a ki ~ N mk,s k

2( ), k =0, ..., 5.        (2) 266 

where a ki
, k=0, ..., 5, are six random regression coefficients distributed according to 267 

independent Gaussian probability distributions, mk  k=0, ..., 5, are the seven mean regression 268 

coefficient values representing the mean yield baseline (m0 ), the mean effect of temperature, 269 

the mean effect of CO2, and the mean effect of temperature-CO2 interaction (m1,...m5)  over 270 

the P crop models (i.e., the expected values of a ki
, k=0, ..., 5). The six variances, s k

2 k=0, ..., 271 

5, describe the between-model variability of the random regression coefficients (i.e., the 272 

variances of a ki
, k=0, ..., 5).  273 

This statistical model assumes that the ensemble of P crop models is a sample taken 274 

within a population including all possible crop models for a given crop while flexibly 275 

allowing for the incorporation of additional crop models in the future. The probability 276 
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distributions defined by Eq. (2) describe the between-crop model variability of the yield 277 

response to climate change factors within the whole population of crop models. These 278 

probability distributions cover the ranges of climate effects considered by different crop 279 

models. The relationship defined by Eq. (1) is assumed to be valid for all crop models, but its 280 

parameters a ki
, k=0, ..., 5, are assumed to vary among crop models. This statistical model 281 

describes 30-year mean yield responses and is not intended to describe the year-to-year 282 

variability of crop yields. Considering year-to-year variability would require extra random 283 

terms and additional parameters and would overly complicate the calculated model. This 284 

option was thus not considered here. The statistical model could be easily extended to deal 285 

with additional variables such as rainfall or farmers’ practices.   286 

The population parameters of the statistical model mk , s k

2, and t 2 were estimated by 287 

restricted maximum likelihood. The model-specific regression coefficients a ki
, k=0, ..., 5, 288 

i=1, ..., P, were estimated by Best Linear Unbiased Predictor using the R software package 289 

“nlme” (Pinheiro and Bates, 2000), and the estimated values will be henceforth referred to as 290 

a eki
. The model was fitted to data for each crop and each site separately, but for all crop 291 

models together. Results were analyzed site by site.  292 

2.3. Assessment of the statistical model  293 

The statistical model (Eqs. 1-2) was compared to other statistical models, including 294 

models with fewer explanatory variables, models with fewer random coefficients, and a 295 

model including no random coefficient (i.e., classical linear regression). All models were 296 

compared by using the Akaïke Information Criterion (AIC, Akaïke, 1973), where a lower AIC 297 

value corresponds with a better model. The AIC was calculated using the “AIC” function of 298 

R. We found that the model defined by Eqs. (1-2) led to lower AICs than the simpler models. 299 

The AIC of classical linear regression model was very different from the value obtained with 300 

the random coefficient model (Eqs. 1-2); the values of AIC obtained with the classical linear 301 

regression model were higher by 78% to 357% depending on the crop and on the site. The 302 

assumption that the residual errors eij  were independent was assessed by developing another 303 

statistical model that incorporated the correlated residual errors. This model was fitted using 304 

the “correlation” argument of the “lme” function of R. The AIC of this model was higher, and 305 

the estimated correlation coefficients were very close to zero (from -9.9 10-3 to 7.6 10-4, 306 

depending on the crop and on the site). In order to check the assumption of constant residual 307 
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variance, a statistical model with a non-constant residual variance was fitted to the data using 308 

the “weights” argument of the “lme” function of R. This model was not selected because its 309 

AIC was higher. The quality of fit of the statistical model (Eqs. 1-2) was also assessed using 310 

graphical analysis and by calculating the coefficient of determination (R2). The value of R2 311 

was 0.99 for all crops (Fig.1). Outputs of the statistical model (Eqs. 1-2) were also compared 312 

to the original simulated yield data in Fig. 2 for three sites and three crop models per site.  313 

2.4. Estimation of the effect of climate change on yield 314 

The statistical model described above was used to compute three different types of outputs: 315 

-  The average yield loss/gain due to climate change over the ensemble of crop models. 316 

-  The yield gain/loss estimated for individual crop models due to changes in climate 317 

variables. 318 

-  The probability of yield loss compared to the baseline yield.  319 

For maize, the average yield difference obtained between a given climate change scenario 320 

(characterized by DT  and DC ) and the baseline scenario was expressed as 321 

DY =m1DT +m2DT
2 +m3DC+m4DC

2 +m5DCDT      (3) 322 

The yield difference described in Eq.(3) is averaged over all crop models; this 323 

difference corresponds to an average yield gain or to an average yield loss over the P crop 324 

models. Eq. (3) defines a meta-model that simulates the average output of the original 325 

ensemble of crop models. This meta-model enables the computation of the yield differences 326 

for any change in temperature and CO2, DT  and DC , at each of the four considered sites.   327 

For a given crop model i, the expected yield difference was expressed as 328 

DYi =a e1iDT +a e2iDT
2 +a e3iDC+a e4iDC

2 +a e5iDCDT     (4) 329 

Eq.(4) defines a meta-model simulating the output of the ith crop model. The yield 330 

difference (4) is crop model-specific, and represents an estimation of the expected yield 331 

difference resulting from changes in temperature and CO2 concentration change equal to DT  332 

and DC , calculated with the ith crop model. It corresponds to an emulation of the mean 333 

climate change effect on yield that would have been obtained with the ith crop model if this 334 

crop model was run for a climate change scenario characterized byDT  and DC . 335 

The statistical model defined by Eqs. (1-2) was also used to compute the probability of 336 

yield loss Prob DYi > 0( )  that results from a change in the temperature and CO2 concentration. 337 
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This probability was computed from the following Gaussian probability distribution 338 

N mDY ,s DY
2( )  as  339 

mDY =m1DT +m2DT
2 +m3DC+m4DC

2 +m5DCDT      (5) 340 

s DY
2 =s 1

2DT 2 +s 2
2DT 4 +s 3

2DC2 +s 4
2DC4 +s 5

2DC2DT 2    (6) 341 

Note that the variance defined by Eq.(6) is not constant but varies as a function of the 342 

climate-scenario characteristics. For illustration, the quantities defined by Eqs.(3-6) were 343 

calculated for values of DT  and of DC ranging from 0 to +6°C (with a step of 0.1°C) and 344 

from 0 to +360ppm (with a step of 1ppm) respectively, i.e., DT=0, 0.1, 0.2, ..., 5.9, 6°C, DC  345 

=0, 1, ..., 359, 360ppm. Some of the considered values of DT  and of DC were initially 346 

included in the simulation protocol (e.g., DT=+3°C, DC  =+180ppm) but most of them were 347 

not (e.g., DT =+2°C, DT =+4°C, DC  =+100ppm). These calculations were done to 348 

demonstrate the capability of the meta-model to study the effects of temperature-change and 349 

CO2-change scenarios that were not initially tested with the original ensemble of crop models.       350 

 351 

ϯ͘ RĞƐƵůƚƐ 352 

3.1. Yield response to increase in temperature  353 

Fig. 3 shows the change in yield from the baseline for one maize site (Fig.3A), one 354 

wheat site (Fig.3C), and one rice site (Fig.3E) as affected by an atmospheric CO2 355 

concentration increase of 180ppm ([CO2]=540ppm) and an increase of mean seasonal 356 

temperature ranging from 0°C to 6°C (Fig.3 ACE). Each emulated model yield response is 357 

calculated by using the crop model-specific coefficients a eki
 (k=0, ..., 5, i=1, ..., P) and is 358 

plotted with a grey line, and thus can be seen as a substitute for a given crop model, but 359 

without the need for re-running the original, process-based crop models. Positive yield 360 

differences can be interpreted as mean yield gain and, conversely, negative yield differences 361 

can be interpreted as mean yield loss. The solid red curve indicates the mean of the emulated 362 

yield responses to the given climate scenario as compared to the baseline, i.e., the effect 363 

averaged over all crop models. The red dashed curves indicate the 10th and 90th percentiles of 364 

the climate-change effect. About 10% of the crop models predict yield effects lower/higher 365 

than the values given by the lower/upper dashed curve.  366 
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According to Fig. 3(A, C, E), most crop models estimate that a temperature increase 367 

negatively impacts yields of maize, wheat, and rice at these sites. But this effect is highly 368 

variable among crop models, with some models predicting little response to temperature. For 369 

maize, Fig. 3A illustrates how, on average across the ensemble of crop models, the statistical 370 

model emulates a yield loss when the temperature exceeds +1°C with a CO2 concentration 371 

increase of 180ppm in Morogoro, Tanzania. In contrast, the models suggest that wheat in 372 

Wageningen (The Netherlands) and rice in Shizukuishi (Japan) would require a temperature 373 

increase of 3.6 °C and 5°C, respectively, before experiencing a yield loss. For a CO2 374 

concentration increase of 180ppm, the averaged emulated projections reported in Fig. 3(ACE) 375 

indicate that moderate temperature increases could lead to gains in wheat and rice productions 376 

in these two locations. However, some of the considered crop models predict a stronger 377 

negative impact of temperature for wheat and rice. The 10th percentile of the emulated wheat 378 

and rice yield response to temperature is indeed negative when the temperature increase 379 

exceeds 1.5°C (Fig. 3 ACE).  380 

Fig. 3 also reveals the large variability among crop models and displays how this 381 

variability increases as a function of temperature. The differences between the 10th and 90th 382 

percentiles are much larger for higher temperature increases, at a given CO2 concentration. 383 

For example, for wheat in Wageningen (The Netherlands), the difference between the 10th and 384 

90th percentiles is lower than 2 t ha-1 when the temperature increase is equal to +1°C, but 385 

becomes higher than 4 t ha-1 when the temperature increase reaches +4°C. This result 386 

indicates that the differences among crop models and therefore the model uncertainties are 387 

much larger for high than for small temperature increases.  388 

This result is confirmed by the probability densities N mDY ,s DY
2( )  (Eqs. 3-4) shown in 389 

Fig. 4 for each crop (maize, wheat, rice) and all sites. The distributions presented in Figure 4 390 

describe the variability of simulated yield loss (or yield gain) values among crop models, for a 391 

temperature increase of either +2 or +4°C at a concurrent CO2 concentration increase equal to 392 

+180ppm.  In all sites, the distributions are more peaked for a temperature increase of +2°C 393 

and are flatter for a temperature increase of +4°C. This result reveals that the variability 394 

among crop models is systematically greater for a large than for a low temperature increase.  395 

The difference is particularly important for rice (Fig. 4EF). These plots also show which 396 

regions are most affected by a +2 or +4°C temperature increase, especially for rice, showing 397 

the already warm Philippines and India as the most affected sites. 398 
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3.2. Yield response to increase in CO2 concentration 399 

Fig. 3 shows the effect of climate change at one site for maize (Fig.3B), wheat 400 

(Fig.3D), and rice (Fig.3F) yields under increasing levels of CO2 concentration, ranging from 401 

0 to +360ppm from the simulated baseline concentration (i.e., 360 to 720ppm) and for a 402 

constant temperature increase of +2°C. Fig. 3B illustrates for maize how a majority of the 403 

crop models for maize in Tanzania predict a yield loss for a temperature increase of 404 

temperature increase of +2°C and the full range of considered CO2 concentration. For maize 405 

in this site, the mean curve suggests that the benefits of an increased CO2 concentration are 406 

small, and do not outweigh the negative effect resulting from an increase of +2°C.  407 

The fitted response curves obtained for wheat in Wageningen (The Netherlands) and 408 

for rice in Shizukuishi (Japan) (Fig.3 DF) show a different pattern. Compared to maize in 409 

Tanzania, the effect of a CO2 concentration increase is stronger for wheat and rice. This result 410 

was expected based on literature for crops with C-3 vs C-4 photosynthesis (Hatfield et al., 411 

2011). The effect of CO2 is highly variable among crop models; some models have strongly 412 

positive slopes over the range of CO2 concentrations, whereas others show slopes close to 413 

zero. When averaged over crop models, the negative effect of the +2°C temperature increase 414 

is overcome by the positive CO2 effect (yield gain) as soon as the CO2 concentration increase 415 

reaches 100ppm in the two considered sites (Fig. 3DF). However, the 10th percentiles are 416 

negative for all tested CO2 concentrations for both wheat and rice, and this result reveals that 417 

more than 10% of the crop models predict a yield loss compared to the baseline, even for high 418 

CO2 concentrations (Fig. 3DF). 419 

Fitted rice yield response to CO2 concentration in Shizukuishi in Japan (Fig. 3F) is 420 

similar to wheat response in Wageningen in The Netherlands (Fig. 3D). On average over crop 421 

models, the climate change effect on rice yield is positive for the whole range of tested CO2 422 

concentrations in Shizukuishi. As for wheat, the 10% percentiles of yield effects are negative 423 

for all tested CO2 concentrations, and this result reveals that more than 10% of the crop 424 

models predict a yield loss compared to the baseline, even for high CO2 concentrations (Fig. 425 

3F). Fig. 3BDF shows that between-crop model variability tends to increase with CO2 426 

concentration, but this effect is much smaller than for the effect of temperature (Fig. 3ACE). 427 

The level of divergence between crop model predictions does not strongly increase in 428 

response to CO2.  429 
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Figure 2 also illustrates the yield responses to CO2 concentration increase, but for a 430 

limited number of models and for a temperature increase of +3°C. This confirms that the yield 431 

response to CO2 concentration is stronger for wheat and rice than for maize.  432 

3.3. Probability of yield loss 433 

Fig. 5 gives a more general picture of the results. Here, the three crops (maize, wheat, 434 

rice), and two temperature changes (+2°C and +4°C) are considered for all the sites. The 435 

curves displayed in Fig. 5 show the yield loss probability Prob DY < 0( )  attributed to two 436 

levels of temperature increase (+2° and +4°C) as a function of increasing increments of CO2 437 

concentration, ranging from 0 to +360ppm. The yield loss probability represents the 438 

proportion of crop models that predict a yield loss due to changes in temperature and CO2 439 

concentration for a given crop in a given site. A probability of 0.5 indicates no evidence of 440 

yield loss or yield gain.  441 

The higher the CO2 concentration, the lower the risk of yield loss (Fig.5). The yield 442 

loss probability curves show different patterns between crops, sites and temperature change. 443 

For maize (Fig.5AB), yield loss probabilities are almost always higher than 0.5 (with one 444 

exception in Ames (USA) for a temperature increase of +2°C, and CO2 concentrations higher 445 

than 250ppm). For wheat (Fig.5CD), yield loss probabilities become lower than 0.5 in all sites 446 

for at least some of the considered CO2 concentrations. In one site (Wongan Hills in 447 

Australia), these probabilities are even systematically lower than 0.5 for all tested 448 

concentration when the temperature increase is equal to +2°C (Fig.5C). These results show 449 

that, for wheat, a majority of crop models predict that an increase of CO2 concentration can 450 

outweigh the negative effect of a temperature increase. Results obtained for rice are highly 451 

variable across sites (Fig. 5 EF). In some sites, the yield loss probability is lower than 0.5 for 452 

relatively low levels of CO2 concentration increases, whereas the probability remains higher 453 

than 0.5 for all tested CO2 concentrations in other sites (Los Baños in Philippines, and 454 

Ludhiana in India).    455 

The curves presented in Fig. 5 were used to compute the thresholds of [CO2] increase 456 

required to obtain a probability of maize, wheat, and rice yield gain higher than 0.5 (i.e., more 457 

than 50% chance of yield gain). These thresholds were computed for two values of 458 

temperature increase (+2 and +4 °C) and four sites per crop (Table 1). As expected, these 459 

thresholds are all higher than +360ppm for maize (the highest CO2 concentration increase 460 
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considered in this study) with one exception (Ames in USA with a temperature increase of 461 

+2°C). For wheat, the thresholds range from +0 to +117ppm and from +59ppm to +358ppm 462 

for a temperature increase of +2°C and +4°C respectively. The thresholds take intermediate 463 

values for rice (Table 1).  464 

 465 

ϰ͘ DŝƐĐƵƐƐŝŽŶ ĂŶĚ ĐŽŶĐůƵƐŝŽŶƐ 466 

Our study shows how yields simulated by ensembles of process-based dynamic crop 467 

models can be summarized by statistical models (meta-models) that are based on random 468 

coefficient regressions. These statistical models describe the between-crop model variability 469 

of the simulated yield data using probability distributions. They can be used to compute key 470 

simulated quantities such as mean yield loss, percentiles of yield loss, and probabilities of 471 

yield loss as functions of temperature change and CO2 concentration change. These statistical 472 

models are helpful for analyzing risk of yield loss due to climate change factors at the 473 

locations where the original simulations were conducted, but for a higher number of climate 474 

scenarios and without the need of re-running the original ensemble of process-based models.  475 

Regression models with random parameters were previously used in a meta-analysis 476 

on the effect of climate change on crop yields (Wilcox and Makowski, 2014), where yield 477 

data were extracted from published papers, and random parameters were used to describe the 478 

between-site variability of the yield response to climate change factors. In these simulation 479 

experiments, the results varied not only due to different locations, crop management and 480 

climate data, but also due to the use and parameterization of different individual crop models 481 

(Wilcox and Makowski, 2014; Challinor et al., 2014). Contributing variability to model 482 

uncertainty and natural variability, an important distinction for using such results for decision 483 

making (Lehmann and Rillig, 2014), was not possible in the studies by Wilcox and Makowski 484 

(2014) and Challinor et al. (2014) due to the non-systematic variation in models, model 485 

parameters, sites, and climate scenarios considered. In our study, the use of standardized 486 

protocols for each model and applied across the three crops allowed a clear separation of 487 

causes of impact variability due to models, sites and climate factors. Therefore, in our study, 488 

the random parameter distributions applied do not describe the between-site variability but the 489 

variability among process-based crop models. The statistical models proposed in this study 490 

thus correspond to meta-models emulating ensembles of complex crop models.  491 
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An important advantage of our meta-models is that they handle the interpolation 492 

between temperature levels and between CO2 concentration levels in a standardized manner. 493 

Our meta-models can thus be used to calculate temperature and [CO2] thresholds leading to 494 

yield loss or yield gain, and these thresholds can help agricultural and climate scientists to 495 

identify the climate change scenarios that are likely to lead to yield gains and yield losses. 496 

The capabilities of the meta-models were illustrated using three yield datasets generated by 497 

the AgMIP model intercomparison studies for maize, wheat, and rice (Asseng et al., 2013; 498 

Bassu et al., 2014, Li et al., 2015). Our results show that, for wheat, climate change has a 50% 499 

chance to result in a yield gain if [CO2] increases by at least +117ppm (depending on the site) 500 

(i.e., [CO2]=507ppm) and if temperature concurrently increases by +2°C (Table 1). Required 501 

levels of [CO2] increase were found to be much higher for maize, and intermediate for rice. It 502 

is important to mention that the [CO2] thresholds for yield gain/loss are related to the baseline 503 

scenario considered for simulating yield data. The use of other baselines (characterized by 504 

different temperature regimes) may lead to different thresholds. We do not advise using the 505 

meta-models for temperature and CO2 concentration changes beyond the intervals considered 506 

in the original protocols. These intervals are already large (from 0 to +9°C for temperature 507 

changes and from 0 to +360ppm) and there is thus little practical interest in considering more 508 

extreme temperature and [CO2] increases. Moreover, there is no guarantee that the meta-509 

models will perform correctly for more extreme climate scenarios  510 

Our meta-models can be used to quantify the effects of temperature and [CO2] on 511 

yields, their interactions, and their variability between sites and between all the considered 512 

crop models. They thus constitute powerful tools for exploring process-based crop model 513 

responses to climate factors. Results obtained here partly confirm those obtained by Wilcox 514 

and Makowski (2014) who found that the effects of high CO2 concentrations outweighed the 515 

effects of increasing temperature (up to +2ƕC), leading to increasing yields of wheat. 516 

However, the CO2 concentration threshold leading to a yield gain is smaller in our study 517 

(from 390 to 507ppm, depending on the sites) than in Wilcox and Makowski (2014) (640 ppm 518 

in average). This difference is partly due to the fact that Wilcox and Makowski (2014) 519 

considered a higher number of sites located in many different countries whereas only four 520 

sites were considered here per crop. 521 

Our meta-models also show that the divergence among the maize, wheat, and rice crop 522 

models (and therefore the uncertainty in the simulated results) increases as a function of 523 

temperature (the higher the temperature change, the higher the between-crop model 524 

variability) due to model uncertainties. The effect of CO2 concentration on the variability 525 
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among crop models is much smaller. This is consistent with the individual crop results 526 

reported by Asseng et al. (2013), Bassu et al. (2014), and Li et al. (2015). This however does 527 

not necessarily mean that models capture the effects of increased CO2 better than the effects 528 

of increased temperature: rather it could indicate that models use similar approaches to 529 

simulate the effect of elevated CO2. Therefore, caution is required when models are used for 530 

impact assessments with late century climate scenarios where temperature changes are 531 

expected to be large. Multi-model applications (Martre et al. 2015) and model improvements 532 

with field experimental data (Asseng et al. 2015) are needed to reduce model uncertainties for 533 

such assessments.    534 

One of the main interests of the proposed statistical model lies in its ability to describe 535 

the between crop-model variability using probability distribution functions. The estimated 536 

parameter values of this statistical model are linked to the chosen ensemble of process-based 537 

crop models used to simulate the yield outputs. The use of a different set of crop models may 538 

change the fitted responses. For example, if one uses an ensemble of crop models all showing 539 

similar responses to temperature and to CO2 concentration, the estimated variances of the 540 

random coefficients will be close to zero and the fitted yield probability distribution will be 541 

narrow and peaked. On the other hand, if the crop models included in the ensemble show 542 

contrasting responses, the estimated variances of the random coefficients will be high, and the 543 

fitted yield probability distribution will be less peaked and more flat. 544 

The results presented in this paper are only valid for the locations and the range of 545 

climate conditions considered for fitting the statistical model. The simulated yield responses 546 

are thus site-specific. In future work, the meta-models presented here could be extended in 547 

two different ways. First, they could be applied to a dataset including simulations obtained for 548 

a larger number of sites. It may then possible to improve the meta-models by including 549 

covariables describing site characteristics (e.g., soil type, agricultural practices) in order to 550 

explain the dominant causes of the between-site variability. Second, our meta-models could 551 

be extended in order to describe the between-year variability of yields for different climate 552 

scenarios. This could be achieved by using a more complex statistical model in order to 553 

describe yearly yield values and their distributions. Simulated yearly yields are likely to be 554 

correlated across models, and more sophisticated probability distributions thus need to be 555 

considered in order to provide a realistic description of the data.     556 

 557 
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