

This is a repository copy of A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/91996/

Version: Accepted Version

Article:

Makowski, D, Asseng, S, Ewert, F et al. (89 more authors) (2015) A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 214. 483 - 493. ISSN 0168-1923

https://doi.org/10.1016/j.agrformet.2015.09.013

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

A statistical analysis of three ensembles of crop model responses to temperature and CO₂ concentration

4	D. Makowski ¹ *, S. Asseng ² , F. Ewert ³ , S. Bassu ¹ , J.L. Durand ⁴ , T. Li ⁵ , P. Martre ^{6,7} ,
5	M. Adam ⁸ , P.K. Aggarwal ⁹ , C. Angulo ³ , C. Baron ¹⁰ , B. Basso ¹¹ , P. Bertuzzi ¹² , C. Biernath ¹³ ,
6	H. Boogaard ¹⁴ , K.J. Boote ¹⁵ , B. Bouman ⁵ , S. Bregaglio ¹⁶ , N. Brisson ^{1,12,#} , S. Buis ¹⁷ , D.
7	Cammarano ⁶⁶ , A.J. Challinor ^{18,19} , R. Confalonieri ¹⁶ , J.G. Conijn ²⁰ , M. Corbeels ²¹ , D.
8	Deryng ²² , G. De Sanctis ⁶⁸ , J. Doltra ²³ , T. Fumoto ²⁴ , D. Gaydon ²⁵ , S. Gayler ²⁶ , R. Goldberg ²⁷ ,
9	R. F. Grant ²⁸ , P. Grassini ²⁹ , J.L. Hatfield ³⁰ , T. Hasegawa ²⁴ , L. Heng ³¹ , S. Hoek ¹⁴ , J. Hooker ³² ,
10	L.A. Hunt ³³ , J. Ingwersen ³⁴ , R.C. Izaurralde ^{35, 63} , R.E.E. Jongschaap ²⁰ , J.W. Jones ² , R.A.
11	Kemanian. ³⁶ , K.C. Kersebaum ³⁷ , SH. Kim ³⁸ , J Lizaso ³⁹ , M. Marcaida III ⁵ , C. Müller ⁴⁰ , H.
12	Nakagawa ⁴¹ , S. Naresh Kumar ⁴² , C. Nendel ³⁷ , G.J. O'Leary ⁴³ , J.E. Olesen ⁴⁴ , P. Oriol ⁸ , T. M.
13	Osborne ⁴⁵ , T. Palosuo ⁵⁶ , M.V. Pravia ^{36,46} , E. Priesack ¹³ , D. Ripoche ¹² , C. Rosenzweig ²⁷ , A.C.
14	Ruane ²⁷ , F. Ruget ^{17,47} , F. Sau ⁴⁸ , M.A. Semenov ⁴⁹ , I. Shcherbak ¹¹ , B. Singh ⁵ , U. Singh ⁵⁰ , H.K
15	Soo ⁵¹ , P. Steduto ⁵² , C. Stöckle ⁵³ , P. Stratonovitch ⁴⁹ , T. Streck ³⁴ , I. Supit ⁵⁴ , L. Tang ⁵⁵ , F. Tao ⁵⁶ ,
16	E.I. Teixeira ⁵⁷ , P. Thorburn ⁵⁸ , D. Timlin ⁵⁹ , M. Travasso ⁶⁰ , R.P. Rötter ⁵⁶ , K. Waha ^{40,67} , D.
17	Wallach ⁶¹ , J.W. White ⁶² , P. Wilkens ⁵⁰ , J.R. Williams ⁶³ , J. Wolf ⁵⁴ , X. Yin ⁶⁴ , H. Yoshida ⁴¹ , Z.
18	Zhang ⁶⁵ , Y. Zhu ⁵⁵
19	
20	¹ INRA, UMR 211 Agronomie INRA AgroParisTech 78850 Thiverval-Grignon France
21	Email: makowski@grignon.inra.fr
22	² Agricultural & Biological Engineering Department, University of Florida,
23	Gainesville, FL 32611, USA,
24	sasseng@ufl.edu & jimj@ufl.edu & davide.cammarano@ufl.edu
25	³ Institute of Crop Science and Resource Conservation INRES, University of Bonn,
26	53115, Germany, email: fewert@uni-bonn.de & klav@uni-bonn.de,
27	⁴ Unité de Recherche Pluridisciplinaire sur la Prairie et les Plantes Fourragères,
28	INRA, CS 80006, 86600 Lusignan, France, Email: jean-louis.durand@lusignan.inra.fr
29	⁵ International Rice Research Institute, Los Baños, Philippines, email:t.li@irri.org
30	⁶ INRA, UMR1095 Genetic, Diversity and Ecophysiology of Cererals (GDEC), F-63
31	100 Clermont-Ferrand, France, email: pierre.martre@clermont.inra.fr,
32	⁷ Blaise Pascal University, UMR1095 GDEC, F-63 170 Aubière, France,
33	⁸ CIRAD, UMR AGAP/PAM, Av. Agropolis, Montpellier, France.

- ⁹CGIAR Research program on Climate Change, Agriculture and Food Security,
- 35 International Water Management Institute, New Delhi-110012, India. email:
- 36 <u>p.k.aggarwal@cigar.org</u>,
- ¹⁰CIRAD, UMR TETIS, 500 rue J-F. Breton, Montpellier, F-34093.
- ¹¹Department of Geological Sciences and W.K. Kellogg Biological Station, Michigan
- 39 State University East Lansing, Michigan 48823, USA, email: basso@msu.edu,
- 40 <u>shcherba@mail.msu.edu</u>
- 41 ¹²INRA, US1116 AgroClim, F- 84 914 Avignon, France, email:
- 42 dominique.ripoche@avignon.inra.fr; <u>patrick.bertuzzi@avignon.inra.fr</u>,
- 43 ¹³Institute of Soil Ecology, Helmholtz Zentrum München German Research Center
- 44 for Environmental Health, Neuherberg, D-85764, Germany, email: priesack@helmholtz-
- 45 muenchen.de & <u>christian.biernath@helmholtz-muenchen.de</u>,
- ¹⁴Centre for Geo-Information, Alterra, P.O. Box 47, 6700AA Wageningen, The
- 47 Netherlands.
- ¹⁵Department of Agronomy, University of Florida, Gainesville, FL 32611-0500, USA,
- 49 email: <u>kjboote@ufl.edu</u>,
- 50 <u>pkaggarwal.iari@gmail.com</u>,
- 51 ¹⁶University of Milan, Italy;
- 52 ¹⁷INRA, UMR1114 EMMAH, F-84914 Avignon, France;
- ¹⁸Institute for Climate and Atmospheric Science, School of Earth and Environment,
- 54 University of Leeds, Leeds LS29JT, UK, CGIAR-ESSP Program on Climate Change,
- 55 Agriculture and Food Security, International Centre for Tropical Agriculture (CIAT), A.A.
- 56 6713, Cali, Colombia, email: <u>a.j.challinor@leeds.ac.uk</u>,
- ¹⁹CGIAR-ESSP Program on Climate Change, Agriculture and Food Security,
- 58 International Centre for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia.
- ²⁰WUR-Plant Research International, Wageningen University and Research Centre,
- 60 Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands. Email:
- 61 raymond.jongschaap@wur.nl; <u>sjaak.conijn@wur.nl</u>.
- 62 ²¹Agro-ecology and Sustainable Intensification of Annual Crops, CIRAD, Avenue
- 63 Agropolis, 34398 Montpellier cedex 5, France, Embrapa-Cerrados, PO Box 8233, 73301-970
- 64 Planaltina, DF, Brazil, Email: <u>corbeels@cirad.fr</u>
- ²²Tyndall Centre for Climate Change research and School of Environmental Sciences,
 University of East Anglia, Norwich, NR4 7TJ, UK.

67	²³ Cantabrian Agricultural Research and Training Centre (CIFA), Cantabria
68	Government, 39600 Muriedas, Spain, email: jordidoltra@cifacantabria.org,
69	²⁴ National Institute for Agro-Environmental Sciences, Japan;
70	²⁵ CSIRO Agriculture Flagship, Dutton Park QLD 4102, Australia; email:
71	Don.Gaydon@csiro.au
72	²⁶ WESS-Water & Earth System Science Competence Cluster, University of Tübingen,
73	72074 Tübingen, Germany, email: Sebastian.gayler@uni-tuebingen.de,
74	²⁷ NASA Goddard Institute for Space Studies, New York, NY 10025, email:
75	cynthia.rosenzweig@nasa.gov, alexander.c.ruane@nasa.gov, <u>ccrag1@yahoo.com</u>
76	²⁸ Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
77	T6G 2E3, email: rgrant@ualberta.ca
78	²⁹ Dep. of Agronomy and Horticulture, University of Nebraska-Lincoln, 178 Keim
79	Hall-East Campus, Lincoln, NE 68503-0915.
80	³⁰ National Laboratory for Agriculture and Environment, Ames, IA 50011, email:
81	jerry.hatfield@ars.usda.gov,
82	³¹ IAEA, Vienna, Austria, email: <u>L.Heng@iaea.org</u> ,
83	³² Agriculture Department, University of Reading, Reading, RG66AR, UK, email:
84	j.hooker@reading.ac.uk,
85	³³ Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada,
86	N1G 2W1, email: <u>thunt@uoguelph.ca</u> ,
87	³⁴ Institute of Soil Science and Land Evaluation, Universität Hohenheim, 70599
88	Stuttgart, email: joachim.ingwersen@uni-hohenheim.de & <u>tstreck@uni-hohenheim.de</u> ,
89	³⁵ Department of Geographical Sciences, University of Maryland, College Park, MD
90	20742, USA, email: <u>cizaurra@umd.edu</u> ,
91	³⁶ Instituto Nacional de Investigación Agropecuaria (INIA). Address: Ruta 8 km 281,
92	Treinta y Tres, Uruguay, 33000. Email: <u>vpravia@inia.org.uy</u>
93	³⁷ Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape
94	Research, 15374 Müncheberg, Germany, email: <u>ckersebaum@zalf.de</u> & <u>nendel@zalf.de</u> ,
95	³⁸ School of Environmental and Forest Sciences, College of the Environment,
96	University of Washington, Seattle, WA.
97	³⁹ Dep. Producción Vegetal, Fitotecnia, Univ. Politécnica of Madrid, 28040 Madrid,
98	Spain.
99	⁴⁰ Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany, email:
100	christoph.mueller@pik-potsdam.de

⁴¹National Agriculture and Food Research Organization, Japan; 101 102 ⁴²Centre for Environment Science and Climate Resilient Agriculture, Indian 103 Agricultural Research Institute, IARI PUSA, New Delhi 110 012, India, email: 104 nareshkumar.soora@gmail.com, ⁴³Grains Innovation Park, Department of Economic Development Jobs, Transport and 105 106 Resources, Horsham 3400, Australia, email: garry.O'leary@ecodev.vic.gov.au, ⁴⁴Department of Agroecology, Aarhus University, 8830 Tjele, Denmark, email: 107 108 jeo@agro.au.dk, ⁴⁵NCAS-Climate, Walker Institute, University of Reading, RG6 6BB, UK, email: 109 t.m.osborne@reading.ac.uk, 110 ⁴⁶Department of Plant Science, The Pennsylvania State University, 247 Agricultural 111 112 Sciences and Industries Building, University Park, PA 16802. ⁴⁷UAPV, UMR1114 EMMAH, F-84914 Avignon, France. 113 ⁴⁸Dep. Biologia Vegetal, Univ. Politécnica of Madrid, 28040 Madrid, Spain. 114 ⁴⁹Computational and Systems Biology Department, Rothamsted Research, Harpenden, 115 116 Herts, AL5 2JQ, UK, email: mikhail.semenov@rothamsted.ac.uk & pierre.stratonovitch@rothamsted.ac.uk 117 ⁵⁰International Fertilizer Development Institute, Florence, Alabama, USA; 118 ⁵¹School of Environmental and Forest Sciences, College of the Environment, 119 120 University of Washington, Seattle, WA. ⁵²FAO, Rome, Italy, email: Pasquale.Steduto@fao.org, 121 ⁵³Biological Systems Engineering, Washington State University, Pullman, WA 99164-122 6120, email: stockle@wsu.edu, 123 124 ⁵⁴Plant Production Systems & Earth System Science, Wageningen University, 6700AA Wageningen, The Netherlands, email: joost.wolf@wur.nl & iwan.supit@wur.nl 125 ⁵⁵National Engineering and Technology Center for Information Agriculture, Nanjing 126 127 Agricultural University, China; ⁵⁶Natural Resources Institute Finland (Luke), , FI-00790 Helsinki, Finland, email: 128 129 reimund.rotter@luke.fi, taru.palosuo@luke.fi, fulu.tao@luke.fi ⁵⁷Sustainable Production, The New Zealand Institute for Plant & Food Research 130 Limited, Lincoln, Canterbury, New Zealand. Edmar.teixeira@plantandfood.co.nz 131 ⁵⁸, CSIRO Agriculture Flagship, Dutton Park OLD 4102, Australia, email: 132 133 peter.thorburn@csiro.au,

- ⁵⁹USDA/ARS, Crop Systems and Global Change Laboratory, 10300 Baltimore avenue,
- 135 BLDG 001 BARC-WEST, Beltsville, MD, 20705-2350.
- ⁶⁰Institute for Climate and Water, INTA-CIRN, 1712 Castelar, Argentina, email:
- 137 <u>mtravasso@cnia.inta.gov.ar</u>,
- ⁶¹INRA, UMR 1248 Agrosystèmes et développement territorial (AGIR), 31326
- 139 Castanet-Tolosan Cedex, France, email: <u>daniel.wallach@toulouse.inra.fr</u>,
- ⁶²Arid-Land Agricultural Research Center, Maricopa, AZ 85138, USA, email:
- 141 jeffrey.white@ars.usda.gov,
- ⁶³Texas AgriLife Research and Extension, Texas A&M University, USA,
- 143 jwilliams@brc.tamus.edu
- 144 ⁶⁴Centre for Crop Systems Analysis, Wageningen University, the Netherlands;
- ⁶⁵State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing
- 146 Normal University, Beijing 100875, China;
- 147 ⁶⁶ The James Hutton Institute Invergowrie Dundee DD2 5DA Scotland UK. Email:
- 148 <u>Davide.Cammarano@hutton.ac.uk</u>
- ⁶⁷ CSIRO Agriculture, 306 Carmody Road, 4067 St.Lucia QLD, Australia
- 150 <u>katharina.waha@csiro.au</u>
- ⁶⁸ European Commission Joint Research Center, via Enrico Fermi, 2749 Ispra, 21027,
- 152 Italy, email: giacomo.de-sanctis@jrc.ec.europa.eu
- 153
- 154 # Dr. Nadine Brisson passed away in 2011 while this work was being carried out.
- 155

157 Abstract

158 Ensembles of process-based crop models are increasingly used to simulate crop 159 growth for scenarios of temperature and/or precipitation changes corresponding to different 160 projections of atmospheric CO₂ concentrations. This approach generates large datasets with 161 thousands of simulated crop yield data. Such datasets potentially provide new information but 162 it is difficult to summarize them in a useful way due to their structural complexities. An 163 associated issue is that it is not straightforward to compare crops and to interpolate the results 164 to alternative climate scenarios not initially included in the simulation protocols. Here we 165 demonstrate that statistical models based on random-coefficient regressions are able to 166 emulate ensembles of process-based crop models. An important advantage of the proposed 167 statistical models is that they can interpolate between temperature levels and between CO₂ 168 concentration levels, and can thus be used to calculate temperature and [CO₂] thresholds 169 leading to yield loss or yield gain, without re-running the original complex crop models. Our 170 approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat 171 models, and 13 rice models. Several statistical models are fitted to these datasets, and are then 172 used to analyze the variability of the yield response to [CO₂] and temperature. Based on our 173 results, we show that, for wheat, a $[CO_2]$ increase is likely to outweigh the negative effect of a 174 temperature increase of +2°C in the considered sites. Compared to wheat, required levels of 175 [CO₂] increase are much higher for maize, and intermediate for rice. For all crops, 176 uncertainties in simulating climate change impacts increase more with temperature than with 177 elevated [CO₂].

178

179

180 Key-words: climate change, crop model, emulator, meta-model, statistical model, yield

181

183 **1. Introduction**

184 Many studies have been carried out in recent decades to assess the effects of climate 185 change on crop yield and other key crop characteristics. In these studies, one or several crop 186 models were used to simulate crop growth and development for different projections of 187 atmospheric CO₂ concentration, temperature and precipitation changes (Semenov et al., 1996; 188 Tubiello and Ewert, 2002; White et al., 2011). AgMIP, the Agricultural Model 189 Intercomparison and Improvement Project (Rosenzweig et al., 2013), builds on these studies 190 to explore the value of an ensemble of crop models for assessing effects of climate change 191 scenarios for several crops in contrasting environments.

192 The AgMIP studies generate large datasets, including thousands of simulated crop 193 yield data. They include series of yield values that are obtained by using standardized 194 protocols that combine several crop models with different climate scenarios defined by 195 several climatic variables (temperature, CO₂, precipitation, etc.). Such datasets potentially 196 provide new information on the possible effects of different climate change scenarios on crop 197 yields. However, it is difficult to summarize them in a useful way due to their structural 198 complexity; simulated yield data can differ among contrasting climate scenarios, sites, and 199 crop models. Another issue is that it is not straightforward to interpolate the results obtained 200 for the considered scenarios to alternative climate scenarios not considered in the initial 201 simulation protocols. Additional crop model simulations for new climate scenarios is an 202 option but this approach is costly, especially when a large number of crop models is used to 203 generate the simulated data.

204 Statistical models have been used to analyze responses of measured yield data to 205 climate variables in past studies (Lobell et al., 2011). They were also recently used in meta-206 analyses on the effect of climate change on crop yields (Wilcox and Makowski, 2014; 207 Challinor et al., 2014). However, the use of a statistical model to analyze the variability of 208 crop model responses to climate change factors is a rather new idea. We demonstrate herewith 209 that statistical methods can play an important role in analyzing simulated yield datasets 210 obtained with ensembles of process-based crop models using standardized protocols. Formal 211 statistical analysis is helpful to estimate the effects of different climatic variables on yield, 212 and to describe the between-model variability of these effects. Statistical methods can also be 213 used to develop meta-models, i.e., statistical models summarizing process-based crop models. 214 Such meta-models may enable scientists to explore more efficiently the effects of new climate 215 change scenarios not initially included in the simulation protocol.

216 Our approach is illustrated with three datasets of simulated yields obtained by AgMIP 217 for maize, wheat, and rice generated by ensembles of process-based crop models (Asseng et 218 al., 2013; Bassu et al., 2013; Li et al., 2015). The yield datasets were used to develop a meta-219 model that provides a simplified representation of the original ensembles of crop models. The 220 proposed meta-model is a statistical regression with random coefficients describing the 221 variability of the simulated yield data across the original crop models. Once fitted to the 222 simulated yield datasets, the meta-models were used to analyze the variability of the projected 223 effects of climate changes among crop models, and between alternative crops. The meta-224 models were also used to study the effects of temperature-change and CO₂-change scenarios 225 that were not initially tested with the original ensemble of crop models. Finally, the results 226 obtained with the meta-model were used to compare simulated uncertainties and to assess the 227 impact of temperature and CO₂ concentration changes on yields of maize, wheat, and rice.

- 228
- 229

2. Materials and Methods

230 **2.1. Simulated yield data**

We used the maize, wheat, and rice datasets presented by Asseng et al. (2013), Bassu et al. (2014), and Li et al. (2015). Yield data were simulated with 19 maize models, 26 wheat models, and 13 rice models. For each crop species, models were calibrated and then run for four contrasting sites located in France (Lusignan), USA (Ames), Brazil (Rio Verde), and Tanzania (Morogoro) for maize, in The Netherlands (Wageningen), Argentina (Balcarce), India (New Delhi), and Australia (Wongan Hills) for wheat, and in the Philippines (Los Baños), China (Nanjing), India (Ludhiana) and Japan (Shizukuishi) for rice.

238 The simulation protocols and climate scenarios are described in Rosenzweig et al. 239 (2013), Asseng et al. (2013), Bassu et al. (2014), and Li et al. (2015). The baseline scenario 240 corresponded to the 1980-2010 historical climates and assumed a CO₂ concentration of 241 360ppm (mean of 1995). The other climate scenarios were defined from the baseline weather 242 series by changing the daily maximum and minimum temperature and CO₂ concentration For 243 all species, four temperature changes $(+0, +3, +6, +9^{\circ}C)$ and five atmospheric CO₂ 244 concentration changes (+0, +90, +180, +270, +360 ppm) were used. Thirty years of yield data 245 were generated with each crop model for each scenario, and the simulated yield values were 246 averaged over the years. The total number of mean yield data was equal to 1,764 (441 per

247 site) for maize, to 2,592 (648 per site) for wheat, to 1,138 (282 to 286 per site) for rice. 248 Details of the maize, wheat, and rice protocols can be found in Bassu et al. (2014), Asseng et 249 al. (2013), and Li et al. (2015) respectively.

250 2.2. Statistical model

251 Simulated maize, wheat and rice yield data were analyzed using two-level statistical 252 random-effect models (Davidian and Giltinan, 1995; Pinheiro and Bates, 2000) relating mean 253 yield (averaged over 30 years) to temperature change, atmospheric CO₂ concentration change, 254 and their interaction. The following statistical model was used to analyze yield data for each 255 crop and each site separately:

256

257

Level 1, within crop model

258
$$Y_{ij} = {}_{0i} + {}_{1i} T_{ij} + {}_{2i} T_{ij}^2 + {}_{3i} C_{ij} + {}_{4i} C_{ij}^2 + {}_{5i} C_{ij} T_{ij} + {}_{ij},$$
(1)

where $_{ij} \sim N(0, ^2)$ (assumed independently and identically distributed), Y_{ij} is the mean yield 259 (averaged over 30 years) simulated with the ith crop model, i=1, ..., P, for the jth scenario; j=1, 260 ..., Q_i , T_{ij} , C_{ij} are the temperature change (compared to the baseline scenario), and 261 262 atmospheric CO₂ concentration change for model i and scenario j, Q_i is the number of scenarios tested with model i, ² is a variance describing the residual error, 263

264 265

Level 2, between crop models

266

$$_{ki} \sim N(_{k}, _{k}^{2}), k=0, ..., 5.$$
 (2)

where k_i , k=0, ..., 5, are six random regression coefficients distributed according to 267 independent Gaussian probability distributions, $_{k}$ k=0, ..., 5, are the seven mean regression 268 269 coefficient values representing the mean yield baseline $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, the mean effect of temperature, 270 the mean effect of CO₂, and the mean effect of temperature-CO₂ interaction (1, ..., 5) over the P crop models (i.e., the expected values of $_{ki}$, k=0, ..., 5). The six variances, $_{k}^{2}$ k=0, ..., 271 272 5, describe the between-model variability of the random regression coefficients (i.e., the variances of k_i , k=0, ..., 5). 273

274 This statistical model assumes that the ensemble of P crop models is a sample taken 275 within a population including all possible crop models for a given crop while flexibly 276 allowing for the incorporation of additional crop models in the future. The probability

277 distributions defined by Eq. (2) describe the between-crop model variability of the yield 278 response to climate change factors within the whole population of crop models. These 279 probability distributions cover the ranges of climate effects considered by different crop 280 models. The relationship defined by Eq. (1) is assumed to be valid for all crop models, but its parameters k_i , k=0, ..., 5, are assumed to vary among crop models. This statistical model 281 282 describes 30-year mean yield responses and is not intended to describe the year-to-year 283 variability of crop yields. Considering year-to-year variability would require extra random 284 terms and additional parameters and would overly complicate the calculated model. This 285 option was thus not considered here. The statistical model could be easily extended to deal 286 with additional variables such as rainfall or farmers' practices.

The population parameters of the statistical model $_{k}$, $_{k}^{2}$, and 2 were estimated by restricted maximum likelihood. The model-specific regression coefficients $_{ki}$, k=0, ..., 5, i=1, ..., P, were estimated by Best Linear Unbiased Predictor using the R software package "nlme" (Pinheiro and Bates, 2000), and the estimated values will be henceforth referred to as $_{eki}$. The model was fitted to data for each crop and each site separately, but for all crop models together. Results were analyzed site by site.

293

2.3. Assessment of the statistical model

294 The statistical model (Eqs. 1-2) was compared to other statistical models, including 295 models with fewer explanatory variables, models with fewer random coefficients, and a 296 model including no random coefficient (i.e., classical linear regression). All models were 297 compared by using the Akaïke Information Criterion (AIC, Akaïke, 1973), where a lower AIC 298 value corresponds with a better model. The AIC was calculated using the "AIC" function of 299 R. We found that the model defined by Eqs. (1-2) led to lower AICs than the simpler models. 300 The AIC of classical linear regression model was very different from the value obtained with 301 the random coefficient model (Eqs. 1-2); the values of AIC obtained with the classical linear 302 regression model were higher by 78% to 357% depending on the crop and on the site. The 303 assumption that the residual errors *ii* were independent was assessed by developing another 304 statistical model that incorporated the correlated residual errors. This model was fitted using 305 the "correlation" argument of the "lme" function of R. The AIC of this model was higher, and the estimated correlation coefficients were very close to zero (from -9.9 10^{-3} to 7.6 10^{-4} , 306 307 depending on the crop and on the site). In order to check the assumption of constant residual

308 variance, a statistical model with a non-constant residual variance was fitted to the data using 309 the "weights" argument of the "lme" function of R. This model was not selected because its 310 AIC was higher. The quality of fit of the statistical model (Eqs. 1-2) was also assessed using 311 graphical analysis and by calculating the coefficient of determination (R^2). The value of R^2 312 was 0.99 for all crops (Fig.1). Outputs of the statistical model (Eqs. 1-2) were also compared

- to the original simulated yield data in Fig. 2 for three sites and three crop models per site.
- 314 **2.4. Estimation of the effect of climate change on yield**

315 The statistical model described above was used to compute three different types of outputs:

316 - The average yield loss/gain due to climate change over the ensemble of crop models.

The yield gain/loss estimated for individual crop models due to changes in climate
variables.

319 - The probability of yield loss compared to the baseline yield.

For maize, the average yield difference obtained between a given climate change scenario (characterized by T and C) and the baseline scenario was expressed as

322

$$Y = {}_{1}T + {}_{2}T^{2} + {}_{3}C + {}_{4}C^{2} + {}_{5}CT$$
(3)

The yield difference described in Eq.(3) is averaged over all crop models; this difference corresponds to an average yield gain or to an average yield loss over the P crop models. Eq. (3) defines a meta-model that simulates the average output of the original ensemble of crop models. This meta-model enables the computation of the yield differences for any change in temperature and CO_2 , *T* and *C*, at each of the four considered sites.

328 329

 $Y_i = {}_{e1i} T + {}_{e2i} T^2 + {}_{e3i} C + {}_{e4i} C^2 + {}_{e5i} C T$

(4)

For a given crop model i, the expected yield difference was expressed as

Eq.(4) defines a meta-model simulating the output of the ith crop model. The yield difference (4) is crop model-specific, and represents an estimation of the expected yield difference resulting from changes in temperature and CO_2 concentration change equal to Tand C, calculated with the ith crop model. It corresponds to an emulation of the mean climate change effect on yield that would have been obtained with the ith crop model if this crop model was run for a climate change scenario characterized by T and C.

The statistical model defined by Eqs. (1-2) was also used to compute the probability of yield loss Prob($Y_i > 0$) that results from a change in the temperature and CO₂ concentration. 338 This probability was computed from the following Gaussian probability distribution 339 $N(_{Y}, _{Y}^{2})$ as

$$0 y = {}_{1} T + {}_{2} T^{2} + {}_{3} C + {}_{4} C^{2} + {}_{5} C T (5)$$

$${}^{2}_{Y} = {}^{2}_{1} T^{2} + {}^{2}_{2} T^{4} + {}^{2}_{3} C^{2} + {}^{2}_{4} C^{4} + {}^{2}_{5} C^{2} T^{2}$$
(6)

342 Note that the variance defined by Eq.(6) is not constant but varies as a function of the 343 climate-scenario characteristics. For illustration, the quantities defined by Eqs.(3-6) were 344 calculated for values of T and of Cranging from 0 to $+6^{\circ}$ C (with a step of 0.1°C) and 345 from 0 to +360ppm (with a step of 1ppm) respectively, i.e., $T=0, 0.1, 0.2, ..., 5.9, 6^{\circ}C, C$ 346 =0, 1, ..., 359, 360ppm. Some of the considered values of T and of C were initially 347 included in the simulation protocol (e.g., $T=+3^{\circ}$ C, C=+180ppm) but most of them were 348 $T = +2^{\circ}C.$ $T = +4^{\circ}C$, C = +100 ppm). These calculations were done to not (e.g., 349 demonstrate the capability of the meta-model to study the effects of temperature-change and 350 CO₂-change scenarios that were not initially tested with the original ensemble of crop models. 351

352 3. Results

353 **3.1. Yield response to increase in temperature**

354 Fig. 3 shows the change in yield from the baseline for one maize site (Fig.3A), one 355 wheat site (Fig.3C), and one rice site (Fig.3E) as affected by an atmospheric CO_2 356 concentration increase of 180ppm ([CO₂]=540ppm) and an increase of mean seasonal 357 temperature ranging from 0°C to 6°C (Fig.3 ACE). Each emulated model yield response is 358 calculated by using the crop model-specific coefficients (k=0, ..., 5, i=1, ..., P) and is 359 plotted with a grey line, and thus can be seen as a substitute for a given crop model, but 360 without the need for re-running the original, process-based crop models. Positive yield 361 differences can be interpreted as mean yield gain and, conversely, negative yield differences 362 can be interpreted as mean yield loss. The solid red curve indicates the mean of the emulated 363 yield responses to the given climate scenario as compared to the baseline, i.e., the effect averaged over all crop models. The red dashed curves indicate the 10th and 90th percentiles of 364 the climate-change effect. About 10% of the crop models predict yield effects lower/higher 365 366 than the values given by the lower/upper dashed curve.

367 According to Fig. 3(A, C, E), most crop models estimate that a temperature increase 368 negatively impacts yields of maize, wheat, and rice at these sites. But this effect is highly 369 variable among crop models, with some models predicting little response to temperature. For 370 maize, Fig. 3A illustrates how, on average across the ensemble of crop models, the statistical 371 model emulates a yield loss when the temperature exceeds $+1^{\circ}C$ with a CO₂ concentration 372 increase of 180ppm in Morogoro, Tanzania. In contrast, the models suggest that wheat in 373 Wageningen (The Netherlands) and rice in Shizukuishi (Japan) would require a temperature 374 increase of 3.6 °C and 5°C, respectively, before experiencing a yield loss. For a CO₂ 375 concentration increase of 180ppm, the averaged emulated projections reported in Fig. 3(ACE) 376 indicate that moderate temperature increases could lead to gains in wheat and rice productions 377 in these two locations. However, some of the considered crop models predict a stronger negative impact of temperature for wheat and rice. The 10th percentile of the emulated wheat 378 379 and rice yield response to temperature is indeed negative when the temperature increase 380 exceeds 1.5°C (Fig. 3 ACE).

Fig. 3 also reveals the large variability among crop models and displays how this 381 variability increases as a function of temperature. The differences between the 10th and 90th 382 percentiles are much larger for higher temperature increases, at a given CO₂ concentration. 383 For example, for wheat in Wageningen (The Netherlands), the difference between the 10th and 384 90th percentiles is lower than 2 t ha⁻¹ when the temperature increase is equal to $+1^{\circ}$ C, but 385 becomes higher than 4 t ha⁻¹ when the temperature increase reaches $+4^{\circ}$ C. This result 386 387 indicates that the differences among crop models and therefore the model uncertainties are 388 much larger for high than for small temperature increases.

This result is confirmed by the probability densities $N(-_{Y}, -_{Y}^{2})$ (Eqs. 3-4) shown in 389 390 Fig. 4 for each crop (maize, wheat, rice) and all sites. The distributions presented in Figure 4 391 describe the variability of simulated yield loss (or yield gain) values among crop models, for a 392 temperature increase of either +2 or +4 $^{\circ}$ C at a concurrent CO₂ concentration increase equal to 393 +180ppm. In all sites, the distributions are more peaked for a temperature increase of $+2^{\circ}C$ 394 and are flatter for a temperature increase of +4°C. This result reveals that the variability 395 among crop models is systematically greater for a large than for a low temperature increase. 396 The difference is particularly important for rice (Fig. 4EF). These plots also show which 397 regions are most affected by a + 2 or $+4^{\circ}C$ temperature increase, especially for rice, showing 398 the already warm Philippines and India as the most affected sites.

399

3.2. Yield response to increase in CO₂ concentration

400 Fig. 3 shows the effect of climate change at one site for maize (Fig.3B), wheat 401 (Fig.3D), and rice (Fig.3F) yields under increasing levels of CO₂ concentration, ranging from 402 0 to +360ppm from the simulated baseline concentration (i.e., 360 to 720ppm) and for a 403 constant temperature increase of +2°C. Fig. 3B illustrates for maize how a majority of the 404 crop models for maize in Tanzania predict a yield loss for a temperature increase of 405 temperature increase of +2°C and the full range of considered CO₂ concentration. For maize 406 in this site, the mean curve suggests that the benefits of an increased CO₂ concentration are 407 small, and do not outweigh the negative effect resulting from an increase of $+2^{\circ}$ C.

408 The fitted response curves obtained for wheat in Wageningen (The Netherlands) and 409 for rice in Shizukuishi (Japan) (Fig.3 DF) show a different pattern. Compared to maize in 410 Tanzania, the effect of a CO₂ concentration increase is stronger for wheat and rice. This result 411 was expected based on literature for crops with C-3 vs C-4 photosynthesis (Hatfield et al., 412 2011). The effect of CO_2 is highly variable among crop models; some models have strongly 413 positive slopes over the range of CO₂ concentrations, whereas others show slopes close to 414 zero. When averaged over crop models, the negative effect of the $+2^{\circ}C$ temperature increase 415 is overcome by the positive CO_2 effect (yield gain) as soon as the CO_2 concentration increase reaches 100ppm in the two considered sites (Fig. 3DF). However, the 10th percentiles are 416 417 negative for all tested CO₂ concentrations for both wheat and rice, and this result reveals that 418 more than 10% of the crop models predict a yield loss compared to the baseline, even for high 419 CO₂ concentrations (Fig. 3DF).

420 Fitted rice yield response to CO₂ concentration in Shizukuishi in Japan (Fig. 3F) is 421 similar to wheat response in Wageningen in The Netherlands (Fig. 3D). On average over crop 422 models, the climate change effect on rice yield is positive for the whole range of tested CO₂ 423 concentrations in Shizukuishi. As for wheat, the 10% percentiles of yield effects are negative 424 for all tested CO_2 concentrations, and this result reveals that more than 10% of the crop 425 models predict a yield loss compared to the baseline, even for high CO₂ concentrations (Fig. 426 3F). Fig. 3BDF shows that between-crop model variability tends to increase with CO_2 427 concentration, but this effect is much smaller than for the effect of temperature (Fig. 3ACE). 428 The level of divergence between crop model predictions does not strongly increase in 429 response to CO₂.

Figure 2 also illustrates the yield responses to CO_2 concentration increase, but for a limited number of models and for a temperature increase of $+3^{\circ}C$. This confirms that the yield response to CO_2 concentration is stronger for wheat and rice than for maize.

433

3.3. Probability of yield loss

434 Fig. 5 gives a more general picture of the results. Here, the three crops (maize, wheat, 435 rice), and two temperature changes $(+2^{\circ}C \text{ and } +4^{\circ}C)$ are considered for all the sites. The 436 curves displayed in Fig. 5 show the yield loss probability Prob(Y < 0) attributed to two 437 levels of temperature increase ($+2^{\circ}$ and $+4^{\circ}$ C) as a function of increasing increments of CO₂ 438 concentration, ranging from 0 to +360ppm. The yield loss probability represents the 439 proportion of crop models that predict a yield loss due to changes in temperature and CO₂ 440 concentration for a given crop in a given site. A probability of 0.5 indicates no evidence of 441 yield loss or yield gain.

442 The higher the CO_2 concentration, the lower the risk of yield loss (Fig.5). The yield 443 loss probability curves show different patterns between crops, sites and temperature change. 444 For maize (Fig.5AB), yield loss probabilities are almost always higher than 0.5 (with one 445 exception in Ames (USA) for a temperature increase of $+2^{\circ}$ C, and CO₂ concentrations higher 446 than 250ppm). For wheat (Fig.5CD), yield loss probabilities become lower than 0.5 in all sites 447 for at least some of the considered CO₂ concentrations. In one site (Wongan Hills in 448 Australia), these probabilities are even systematically lower than 0.5 for all tested 449 concentration when the temperature increase is equal to $+2^{\circ}C$ (Fig.5C). These results show 450 that, for wheat, a majority of crop models predict that an increase of CO₂ concentration can 451 outweigh the negative effect of a temperature increase. Results obtained for rice are highly 452 variable across sites (Fig. 5 EF). In some sites, the yield loss probability is lower than 0.5 for 453 relatively low levels of CO₂ concentration increases, whereas the probability remains higher 454 than 0.5 for all tested CO₂ concentrations in other sites (Los Baños in Philippines, and 455 Ludhiana in India).

The curves presented in Fig. 5 were used to compute the thresholds of $[CO_2]$ increase required to obtain a probability of maize, wheat, and rice yield gain higher than 0.5 (i.e., more than 50% chance of yield gain). These thresholds were computed for two values of temperature increase (+2 and +4 °C) and four sites per crop (Table 1). As expected, these thresholds are all higher than +360ppm for maize (the highest CO₂ concentration increase 461 considered in this study) with one exception (Ames in USA with a temperature increase of 462 +2°C). For wheat, the thresholds range from +0 to +117ppm and from +59ppm to +358ppm 463 for a temperature increase of +2°C and +4°C respectively. The thresholds take intermediate 464 values for rice (Table 1).

465

466

4. Discussion and conclusions

467 Our study shows how yields simulated by ensembles of process-based dynamic crop 468 models can be summarized by statistical models (meta-models) that are based on random 469 coefficient regressions. These statistical models describe the between-crop model variability 470 of the simulated yield data using probability distributions. They can be used to compute key 471 simulated quantities such as mean yield loss, percentiles of yield loss, and probabilities of 472 yield loss as functions of temperature change and CO₂ concentration change. These statistical 473 models are helpful for analyzing risk of yield loss due to climate change factors at the 474 locations where the original simulations were conducted, but for a higher number of climate 475 scenarios and without the need of re-running the original ensemble of process-based models.

476 Regression models with random parameters were previously used in a meta-analysis 477 on the effect of climate change on crop yields (Wilcox and Makowski, 2014), where yield 478 data were extracted from published papers, and random parameters were used to describe the 479 between-site variability of the yield response to climate change factors. In these simulation 480 experiments, the results varied not only due to different locations, crop management and 481 climate data, but also due to the use and parameterization of different individual crop models 482 (Wilcox and Makowski, 2014; Challinor et al., 2014). Contributing variability to model 483 uncertainty and natural variability, an important distinction for using such results for decision 484 making (Lehmann and Rillig, 2014), was not possible in the studies by Wilcox and Makowski 485 (2014) and Challinor et al. (2014) due to the non-systematic variation in models, model 486 parameters, sites, and climate scenarios considered. In our study, the use of standardized 487 protocols for each model and applied across the three crops allowed a clear separation of 488 causes of impact variability due to models, sites and climate factors. Therefore, in our study, 489 the random parameter distributions applied do not describe the between-site variability but the 490 variability among process-based crop models. The statistical models proposed in this study 491 thus correspond to meta-models emulating ensembles of complex crop models.

492 An important advantage of our meta-models is that they handle the interpolation 493 between temperature levels and between CO₂ concentration levels in a standardized manner. 494 Our meta-models can thus be used to calculate temperature and [CO₂] thresholds leading to 495 yield loss or yield gain, and these thresholds can help agricultural and climate scientists to 496 identify the climate change scenarios that are likely to lead to yield gains and yield losses. 497 The capabilities of the meta-models were illustrated using three yield datasets generated by 498 the AgMIP model intercomparison studies for maize, wheat, and rice (Asseng et al., 2013; 499 Bassu et al., 2014, Li et al., 2015). Our results show that, for wheat, climate change has a 50% 500 chance to result in a yield gain if [CO₂] increases by at least +117ppm (depending on the site) 501 (i.e., $[CO_2]=507$ ppm) and if temperature concurrently increases by $+2^{\circ}C$ (Table 1). Required 502 levels of [CO₂] increase were found to be much higher for maize, and intermediate for rice. It 503 is important to mention that the [CO₂] thresholds for yield gain/loss are related to the baseline 504 scenario considered for simulating yield data. The use of other baselines (characterized by 505 different temperature regimes) may lead to different thresholds. We do not advise using the 506 meta-models for temperature and CO₂ concentration changes beyond the intervals considered 507 in the original protocols. These intervals are already large (from 0 to +9°C for temperature 508 changes and from 0 to +360ppm) and there is thus little practical interest in considering more 509 extreme temperature and [CO₂] increases. Moreover, there is no guarantee that the meta-510 models will perform correctly for more extreme climate scenarios

511 Our meta-models can be used to quantify the effects of temperature and $[CO_2]$ on 512 yields, their interactions, and their variability between sites and between all the considered 513 crop models. They thus constitute powerful tools for exploring process-based crop model 514 responses to climate factors. Results obtained here partly confirm those obtained by Wilcox 515 and Makowski (2014) who found that the effects of high CO₂ concentrations outweighed the 516 effects of increasing temperature (up to $+2\circ C$), leading to increasing yields of wheat. 517 However, the CO₂ concentration threshold leading to a yield gain is smaller in our study 518 (from 390 to 507ppm, depending on the sites) than in Wilcox and Makowski (2014) (640 ppm 519 in average). This difference is partly due to the fact that Wilcox and Makowski (2014) 520 considered a higher number of sites located in many different countries whereas only four 521 sites were considered here per crop.

522 Our meta-models also show that the divergence among the maize, wheat, and rice crop 523 models (and therefore the uncertainty in the simulated results) increases as a function of 524 temperature (the higher the temperature change, the higher the between-crop model 525 variability) due to model uncertainties. The effect of CO_2 concentration on the variability

526 among crop models is much smaller. This is consistent with the individual crop results 527 reported by Asseng et al. (2013), Bassu et al. (2014), and Li et al. (2015). This however does 528 not necessarily mean that models capture the effects of increased CO₂ better than the effects 529 of increased temperature: rather it could indicate that models use similar approaches to 530 simulate the effect of elevated CO₂. Therefore, caution is required when models are used for 531 impact assessments with late century climate scenarios where temperature changes are 532 expected to be large. Multi-model applications (Martre et al. 2015) and model improvements 533 with field experimental data (Asseng et al. 2015) are needed to reduce model uncertainties for 534 such assessments.

535 One of the main interests of the proposed statistical model lies in its ability to describe 536 the between crop-model variability using probability distribution functions. The estimated 537 parameter values of this statistical model are linked to the chosen ensemble of process-based 538 crop models used to simulate the yield outputs. The use of a different set of crop models may 539 change the fitted responses. For example, if one uses an ensemble of crop models all showing 540 similar responses to temperature and to CO₂ concentration, the estimated variances of the 541 random coefficients will be close to zero and the fitted yield probability distribution will be 542 narrow and peaked. On the other hand, if the crop models included in the ensemble show 543 contrasting responses, the estimated variances of the random coefficients will be high, and the 544 fitted yield probability distribution will be less peaked and more flat.

545 The results presented in this paper are only valid for the locations and the range of 546 climate conditions considered for fitting the statistical model. The simulated yield responses 547 are thus site-specific. In future work, the meta-models presented here could be extended in 548 two different ways. First, they could be applied to a dataset including simulations obtained for 549 a larger number of sites. It may then possible to improve the meta-models by including 550 covariables describing site characteristics (e.g., soil type, agricultural practices) in order to 551 explain the dominant causes of the between-site variability. Second, our meta-models could 552 be extended in order to describe the between-year variability of yields for different climate 553 scenarios. This could be achieved by using a more complex statistical model in order to 554 describe yearly yield values and their distributions. Simulated yearly yields are likely to be 555 correlated across models, and more sophisticated probability distributions thus need to be 556 considered in order to provide a realistic description of the data.

558 Acknowledgements

559 G.J. O'Leary was supported by the Victorian Department of Economic Development Jobs, Transport and Resources, the Australian Department of Agriculture. S. Bassu, P. 560 561 Bertuzzi, G. De Sanctis, J-L. Durand, D. Makowski, P. Martre, D. Ripoche and D. Wallach 562 were partly supported by the INRA ACCAF meta-program. S.Gayler was supported by a 563 grant from the Ministry of Science, Research and Arts of Baden-Württemberg (AZ Zu33-564 721.3-2) and the Helmholtz Centre for Environmental Research - UFZ, Leipzig. J.E. Olesen. 565 was funded through the FACCE MACSUR project by Innovation Fund Denmark. F. Ewert 566 and C. Angulo received support from the FACCE MACSUR project (031A103B) funded 567 through the German Federal Ministry of Education and Research (2812ERA115). C. Biernath 568 was funded through the Helmholtz project 'REKLIMRegional Climate Change: Causes and 569 Effects' Topic 5: 'Chemistry-climate interactions on global to regional scales'. EI Teixeira 570 was supported by the Royal Society of New Zealand and the Climate Change Impacts and 571 Implications for New Zealand (CCII) project. R.C. Izaurralde and J.R. Williams were funded 572 by Texas AgriLife Research and Extension, Texas A&M University. C.O. Stöckle was funded 573 through USDA National Institute for Food and Agriculture award 32011-680002-30191. C. 574 Müller was funded through the FACCE MACSUR project by the German Ministry for 575 Education and Research (BMBF, 031A103B). K.C. Kersebaum and C. Nendel were 576 supported by FACE MACSUR project funded through the German Federal Office for 577 Agriculture and Food (2812ERA147). C. Nendel received support by BMBF via the 578 CARBIOCIAL research project (01LL0902M).

579

580

581 **References**

- Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle.
 In: B. N. Petrov and F. Csaki, eds.,2nd International Symposium on Information
 Theory, Akademia Kiado, Budapest, 267-281.
- Asseng, S., Ewert, F., Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane A.C., Boote K.J.,
 Thorburn P.J., Rotter R.P., Cammarano D., Brisson, N., Basso B., Martre P.,
 Aggarwal P.K., Angulo C., Bertuzzi P., Biernath C., Challinor A.J., Doltra J., Gayler
 S., Goldberg R., Grant R., Heng L., Hooker J., Hunt L.A., Ingwersen J., Izaurralde
- 589 R.C., Kersebaum K.C., Muller C., Naresh Kumar S., Nendel C., O/'Leary G., Olesen
- 590 J.E., Osborne T.M., Palosuo T., Priesack E., Ripoche D., Semenov M.A., Shcherbak

- I., Steduto P., Stockle C., Stratonovitch P., Streck T., Supit I., Tao F., Travasso M.,
 Waha K., Wallach D., White J.W., Williams J.R., Wolf, J., 2013. Uncertainty in
 simulating wheat yields under climate change. Nature Climate Change 3, 827–832
- 594 Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball, B.A., 595 Ottman, M.J., Wall, G.W., White JW, Reynolds MP, Alderman PD, Prasad PVV, 596 Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, 597 Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, 598 Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Müller C, Naresh Kumar S, 599 Nendel C, O'Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane AC, 600 Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, 601 Thorburn P, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu, Y., 2015. Rising 602 temperatures reduce global wheat production. Nature Climate Change 5, 143-147. 603 doi:10.1038/nclimate2470.
- Bassu, S., Brisson, N., Durand, J-L., Boote, K., Lizaso, J., Jones, J.W., Rosenzweig, C., Ruane, A.C.,
 Adam, M., Baron, C., Basso B, Biernath C, Boogaard H, Conijn S, Corbeels M, Deryng D, De
 Sanctis G, Gayler S, Grassini P, Hatfield J, Hoek S, Izaurralde C, Jongschaap R, Kemanian A,
 Kersebaum KC, Kumar N, Makowski D, Müller C, Nendel C, Priesack E, Pravia Maria
 Virginia, Soo Hyung K, Sau F, Shcherbak I, Tao F, Teixeira E, Timlin, D., Waha, K., 2014.
 How do various maize crop models vary in their responses to climate change factors?
 Global Change Biology 20, 2301-2320. DOI: 10.1111/gcb.12520.
- 611 Challinor, A.J., Watson, J., Lobell, D.B., Howden, S.M., Smith, D.R., Chhetri, N. 2014. A
 612 meta-analysis of crop yield under climate change and adaptation. Nature Climate
 613 Change 4, 287–291.
- 614 Davidian, M., Giltinan, D.M., 1995. Nonlinear Mixed Effects Models for Repeated
 615 Measurement Data, Chapman and Hall.
- Hatfield, J.L., Boote, K.J., Kimball, B.A., Izaurralde, R.C., Ort, D., Thomson, A., Wolfe,
 D.W., 2011. Climate impacts on agriculture: Implications for crop production.
 Agron. J. 103, 351-370.
- 619 Lehmann, J., Rillig, M., 2014. Distinguishing Variability From Uncertainty. Nature Climate
 620 Change 4, 153, doi:10.1038/nclimate2133.
- Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K.J., Adam, M., Bregaglio, S., Buis, S.,
 Confalonieri, R., Fumoto, T., Gaydon, D., Marcaida M, Nakagawa H, Oriol P, Ruane
 AC, Ruget F, Singh B, Singh U, Tang L, Tao F, Wilkens P, Yoshida, H., Zhang, Z.,
- Bouman, B., 2015. Uncertainties in predicting rice yield by current crop models under

- a wide range of climatic conditions. Global Change Biology 21, 1328-1341.DOI:
 10.1111/gcb.12758.
- 627 Lobell, D.B., Schlenker, W., Costa-Roberts, J., 2011. Climate trends and global crop
 628 production since 1980. Science 333, 616-620.
- Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane,
 A.C., Thorburn, P.J., Cammarano, D., Hatfield JL, Rosenzweig C, Aggarwal PK,
 Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson N, Challinor AJ, Doltra J, Gayler
- 632 S, Goldberg R, Grant RF, Heng L, Hooker J, Hunt LA, Ingwersen JC, Izaurralde RC,
- 633 Kersebaum KC, Müller C, Kumar SN, Nendel C, O'Leary GJ, Olesen JE, Osborne
- 634 TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle
- 635 CO, Stratonovitch P, Streck T, Supit I, Tao F, Travasso, M., Waha, K., White, J.W.,
- Wolf, J., 2015. Multimodel ensembles of wheat growth: many models are better than
 one. Global Change Biology 21, 911-925, doi:10.1111/gcb.12768.
- Pinheiro, J.C., Bates, D.M., 2000. Mixed-effects models in S and S-PLUS. Springer, NewYork
- Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J., Thorburn, P., Antle, JM., Nelson, G.C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach,
 D., Baigorria, G., Winter, J.M., 2013. The Agricultural Model Intercomparison and
 Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 170,
 166-182
- 645 Semenov, M.A., Wolf, J., Evans, L.G., Eckersten, H., Iglesias, A., 1996. Comparison of
 646 wheat simulation models under climate change. 2. Application of climate change
 647 scenarios. Clim. Res. 7, 271-281
- Tubiello, F., Ewert, F., 2002. Simulating the effects of elevated CO2 on crops: approachesand applications for climate change. European Journal of Agronomy 18, 57-74
- White, J.W., Hoogenboom, G., Kimball, B.A., Wall, G.W., 2011. Methodologies for
 simulating impacts of climate change on crop production. Field Crop Research 124,
 357-368.
- Wilcox, J., Makowski, D. 2014. A meta-analysis of the predicted effects of climate change on
 wheat yields using simulation studies. Field Crop Research 156, 180–190.
- 655
- 656
- 657