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Abstract

The optimal design of asymmetric quantum well structures for generation of

entangled photons in the mid-infrared range by spontaneous parametric down-

conversion is considered, and the efficiency of this process is estimated. Calcu-

lations show that a reasonably good degree of entanglement can be obtained,

and that the optical interaction length required for optimal conversion is very

short, in the few µm range.

Keywords: optimised quantum well, SPDC, nonlinear optics, entangled twin

photons

1. Introduction

Generation of entangled photons, and of heralded single photons, is a very

important ingredient in a variety of quantum information technologies. Ex-

perimental implementation of these techniques, using optics, requires a reliable

source of correlated/entangled and single photons. This is usually implemented5

by the spontaneous parametric downconversion (SPDC) process in a nonlin-

ear optical medium with non-zero second order susceptibility, where the pump
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photon gets split into a ’signal’ and ’idler’ photon. The twin photons are usu-

ally polarisation-entangled. However, one can also use the spectral (frequency)

entanglement of the photon pair.10

In the visible or near-infrared wavelength range, the commonly used materi-

als for this purpose are nonlinear optical crystals like lithium niobate, which have

relatively large nonresonant nonlinear susceptibility. There are bulk materials

which are good in the mid-infrared range, however at these longer wavelengths

one can also take advantage of much larger resonant nonlinearities achievable15

in semiconductor heterostructures, based on intersubband transitions between

size-quantized states therein. Second-order nonlinearity is available in asymmet-

ric semiconductor quantum well structures. High nonlinearity appears in rela-

tively narrow ranges of photon energies, near the transition resonances, which

are typically in the mid-infrared range. In contrast to SPDC based on conven-20

tional nonlinear crystals, which enable different polarizations of signal and idler

photons, and hence the polarization entanglement, a specific feature of Γ-valley

intersubband transitions is that their nonlinearity exists only for light polariza-

tion perpendicular to the QW layer, hence disabling polarization entanglement.

This type of SPDC is also known as type-0 parametric process. Here we consider25

the design of high efficiency entangled photon sources by optimizing the profile

of semiconductor quantum wells so to obtain maximal second order nonlinear

susceptibility, and consider the efficiency of spectrally entangled twin photon

generation.

2. SPDC generation of twin photons in quantum wells30

The SPDC process is illustrated in Figure 1. The photon-pair generation is

a second order nonlinear process in which a pump photon with frequency ωp is

spontaneously converted into two photons with lower energy, called signal and

idler photons, with frequencies ωs and ωi respectively. The process is allowed

in materials with non-zero second order susceptibility. Generally, resonantly35

enhanced susceptibility in quantum wells is accompanied by a large absorption,
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Figure 1: Spontaneous Parametric Down Conversion Process (SPDC). (a) Geometry of SPDC,

(b) Energy-level diagram describing the SPDC process

which in its own right, unrelated to phase-matching issues, leads to a limited

useful interaction length in such structures.

Since SPDC is a second order nonlinear process, the polarization of SPDC

is defined by Eq. (1)40

P = ǫ0χ
(2)E2 . (1)

The second-order nonlinear susceptibility (χ(2)) is calculated as [1, p. 174]:

χ(2) (ωp + ωq, ωp, ωq) =
e3N

2ǫ0h̄
2

∑

lmn

(
ρ
(0)
ll − ρ(0)mm

)
dlndnmdml

{
1

[(ωnl − ωp − ωq)− iΓnl] [(ωml − ωp)− iΓml]

+
1

[(ωnl − ωp − ωq)− iΓnl] [(ωml − ωq)− iΓml]

+
1

[(ωnm + ωp + ωq) + iΓnm] [(ωml − ωp)− iΓml]

+
1

[(ωnm + ωp + ωq) + iΓnm] [(ωml − ωq)− iΓml]

}

(2)

where ωp and ωq are the input, and ωp + ωq the output photon frequencies,

and Γij are the linewidths. The total electron density is N , and Nρ
(0)
ii is the

electron density in quantised state i. The summation over lmn in Eq. (2) goes

over all states in the system. The dij in Eq. (2) is the dipole transition matrix

element, and for Γ-valley intersubband transitions it has only the z-component45
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(perpendicular to the QW layer plane), so χ(2) denotes the χ
(2)
zzz component of

the susceptibility tensor.

Dipole matrix elements are calculated from the wave functions of states in

the quantum well structure, obtained by solving the effective-mass Schrödinger

equation. We have here used the effective-mass model with nonparabolicity, and50

the Schrödinger equation was solved by linearisation of the nonlinear matrix

eigenvalue problem, as described in detail in [2]. In this case the dij cannot be

calculated from the conventional expression 〈ψi| ẑ |ψi〉, as can be easily checked

by varying the origin of the coordinate z (this changes the calculated values

of dij , because of wavefunctions’ non-orthogonality if the nonparabolicity is55

accounted for). Instead, the matrix elements of the momentum operator (Pz =

ih̄
d

dz
) are first calculated from [3]:

〈ψi| P̂ |ψj〉 =
1

2
〈ψi|Pz

m0

m(Ei, z)
+

m0

m(Ej , z)
Pz |ψj〉 (3a)

=
ih̄m0

2

[∫ ∞

0

ψi
d

dz

(
ψj

m(Ei, z)

)
dz +

∫ ∞

0

ψi
1

m(Ej , z)

dψj

dz
dz

]
(3b)

which contains the nonparabolic (energy-dependent) effective mass. This is

then recast into the conventional dipole matrix element, to be used in Eq. (2),

according to:

〈ψi| ẑ |ψj〉 =
h̄

im0

〈ψi| P̂ |ψj〉
Ei − Ej

. (4)

and this can be checked to be independent on the choice of the coordinate origin.

3. Optimization of Heterostructure for SPDC

Structural optimization for SPDC aims to find the global maximum of χ(2)
60

value, among all possible quantum well designs. These may generally include

arbitrary smooth or abrupt potentials, coming from appropriate variation of

the AlGaAs alloy composition, and in cases of susceptibilities relevant for the

second harmonic generation, third harmonic generation, or optical rectification,

has been the subject of numerous studies, based on a variety of methods. Here65

4



we restrict considerations to the (practically most interesting) case of multiple

rectangular quantum wells made of the same material (GaAs) and barriers made

from another single material composition (AlGaAs). A single rectangular (hence

symmetric) QW gives χ(2) = 0, as do all the symmetric MQWs, because the

cyclic product of matrix elements in Eq.(2) is zero therein, but unequal-width70

double QWs (DQW), or MQWs are acceptable candidates.

Since an extensive search over the parameter space is too demanding even for

the simplest, double QW structure which has the two well widths and the barrier

width describing its shape, we have used a genetic algorithm to find the global

maximum of χ(2). This starts with an arbitrary DQW (or MQW) structure, and75

varies the layer widths, one at a time, initially with a large step length (50Å), in

order to perform the initial ’scan’ of the parameter space, and keeps twenty best

structures as ’parents’. The initial width for each well and barrier is set to 2Å

and the maximum width allowed is 100Å. The step length is then halved and the

best structure between all daughter structures, coming from each parent, is kept.80

In this calculation the daughter structures were obtained by directly

mutating the parents individually, without cross-fertilization between

different parents. The search for the maximum is repeated until the step

length is 1Å, which is the smallest step that can be realistically guaranteed

experimentally. The method is computationally reasonably fast in finding the85

global maximum of χ(2). Certainly, in exceptional cases it may happen

that the method finds only a local, rather than global maximum, but

even then the result is practically useful.

Table 1 shows different quantum well structures, optimised for χ(2), found

by this method, for different nonlinear interactions: SPDC denotes the spon-90

taneous parametric downconversion, followed by a number which denotes the

idler photon energy in meV that was used in the design. Since the meaning of

signal and idler in the SPDC case is interchangable, a structure name is cho-

sen to be consistent with Figure 1. E.g., the SPDC50 structure produces 50

meV and 150 meV photons, just as SPDC150 does, but the former has the95

property that the intermediate state in it is h̄ωs ≈ 150 meV from the ground
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Table 1: The optimized structures with different number of QWs, for various SPDC cases -

either nearly degenerate or very non-degenerate. The layer widths are given in Å, with the

outermost layers being the barriers.

Double-QW Triple-QW Quad-QW

SPDC99
100/27/10/61/100

χ(2) =1.2879e-7

100/22/6/10/6/57/100

χ(2) =1.3079e-7

100/12/5/19/10/50/2/9/100

χ(2) =1.2687e-7

SPDC98
100/27/10/61/100

χ(2) =1.2758e-7

100/22/6/10/6/57/100

χ(2) =1.2709e-7

100/12/5/19/10/50/2/9/100

χ(2) =1.2332e-7

SPDC97
100/26/10/62/100

χ(2) =1.1890e-7

100/21/5/10/7/58/100

χ(2) =1.2137e-7

100/12/5/19/10/50/2/9/100

χ(2) =1.1784e-7

SPDC96
100/26/10/62/100

χ(2) =1.1279e-7

100/58/5/11/7/20/100

χ(2) =1.1438e-7

100/21/4/9/7/55/5/4/100

χ(2) =1.1251e-7

SPDC67
100/20/17/60/100

χ(2) =7.4714e-8

100/59/8/5/9/18/100

χ(2) =7.6715e-8

100/7/2/11/9/8/9/58/100

χ(2) =7.6799e-8

SPDC50
100/17/21/60/100

χ(2) =7.5064e-8

100/14/11/9/15/58/100

χ(2) =7.9230e-8

100/23/13/17/12/14/15/58/100

χ(2) =7.6047e-8

state. It is interesting to note that the optimisation procedure delivers

the SPDC50 energy configuration as globally optimal, i.e. having a

larger χ(2) than that achievable in the best – but in fact only locally

optimal – SPDC150 structure (the latter could be found by putting100

additional constraints in the optimisation procedure). So, each entry

in Table 1 corresponds to a particular nonlinear process in a particular opti-

mised structure. All structures in Table 1 are GaAs quantum wells embedded

in AlGaAs barriers with the Al concentration fixed to 48.1%. The highest χ(2)

value in most cases is obtained for triple QW structures, so only these are used105

in further discussion of SPDC entangled photon generation.

Resonantly enhanced nonlinearities are always accompanied with increased

absorption, which has to be taken into account when considering the efficiency

of optical processes. The absorption coefficient α, is found from the imaginary
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part of the linear susceptibility (χ(1)”) [1, p. 167], and is calculated from:110

α = χ(1)”ω/c , (5)

with ω is the photon angular frequency, c is the speed of light and

χ(1)” =
∑

n

e2Nd2ij
3h̄ε0

[
Γij

Γ2
ij + (ωij − ω)

2 − Γij

Γ2
ij + (ω + ωij)

2

]
. (6)

For resonant structures the absorption also peaks at pump and signal / idler

photon energies.

4. Twin Photon Generation

The quantitative analysis of twin-photon generation in media which have

optical losses have been presented in [4]. For non-degenerate twin-photon gen-

eration, the expression for the correlated twin (ω1, ω2) photon flow is [4]:

PTwin =
c|κ|2P3L

|n1 − n2|
e−2α3L − e−2(α1+α2)L

2(α1 + α2 − α3)L
. (7)

and in the degenerate case, where the signal and idler frequencies are (almost)

the same, the corresponding expression is [4]:

PTwin =
4|κ|2P3L

3/2

3
√
2π|g|

3e−|α11−3|L

2|α11−3L|3/2

×
∫ √

|α11−3L|

0

sinh(|α11−3L| − x2) dx .

(8)

where α11−3 = α1 + α2 − α3 (the absorption difference) and g = [∂2β/∂ω2],

with β = 2πnp/2/λp/2.115

The ni and αi in Equation (7) and (8) are the refractive index and absorption

coefficient at photon frequency ωi, L is the length of the device, P3 is the pump

power, and κ is related to χ(2) via

|κ|2P3 =

√
4ω2

1ω
2
2d

2
eff|A3|2

k1k2c4
. (9)

where deff = 0.5χ(2), and ki is the wavenumber for photon i. A3 is related to

the intensity of the pump (a value of I3=1 kW/cm2 was used in calculations),
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with A3 =
√
2I3/(ǫ0cn3). The refractive indices ni in eq. (7) depend on the

photon wavelengths. These are calculated using Sellmeyer’s equation for GaAs

and AlGaAs [5], using the weighted average of the refractive indices for the120

constituent binary compounds in the structure (this is justified because the

wavelengths involved are far larger than any layer thickness in the structure).

The refractive index also depends on the temperature of the heterostructure [6],

and in these calculations room temperature was assumed.

The structures were designed / optimised for the largest χ(2) at the spec-125

ified values of ωs and ωi, but from (7) or (8) it is clear that the actual twin

photon generation rate also depends on the structure length, and on the ab-

sorption at all the involved frequencies, and the transition linewidth will

thus also indirectly influence the conversion efficiency. All this im-

plies that the best performance may not even be necessarily obtained130

”at resonance”. The optimal (in χ(2) alone) structure profile itself is

not affected by the choice of linewidth (we have checked that, and

only the actual value of χ(2) at resonance is affected). An alternative

approach to the structure design would be to optimise for efficiency,

considering the linewidth, interaction length and signal / idler fre-135

quencies as additional optimisation parameters. However, to reduce

the number of parameters, in this work we have used the optimisation

of χ(2), and have subsequently varied the signal / idler frequencies,

linewidth, and the interaction length in order to find the best perfor-

mance achievable under realistic conditions.140

4.1. Non-degenerate case

Fig. 2 and 3 show the pump to twin-photon conversion efficiency for non-

degenerate cases, using two different optimized structures (designed to split

pump photons into two photons with the ratio of their frequencies either 2:1

or 3:1). The actual values of pump or signal photon energies were then varied145

around the design values, and the transition linewidth was also varied, and in

each case the length which produces the largest conversion rate is found and

8



recorded. This (optimal) conversion length should be well below the

coherence length of the nonlinear process, otherwise a serious reduc-

tion of ”effective” χ(2) would take place (or some reduction if quasi-150

phase-matching is employed). For the pump frequency and splitting

ratios considered here, using the Sellmeyer’s equation again gives the

coherence lengths of ∼1000–1500 µm, and the conversion length was

required to be below 100 µm, but the actual values found in non-

degenerate cases were much smaller than that. The results in Fig. 2155

show that a larger linewidth requires a larger interaction length for the maximum

efficiency, and even then this efficiency is smaller than for narrow linewidths.

Furthermore, as shown in Fig. 3, for realistic values of the linewidth (mid-range

in Fig. 2) a structure may not perform best under the exact resonance condi-

tions for which it is designed, i.e. some detuning from it may actually improve160

the conversion, on account of the reduced absorption, despite the simultaneous

decrease of the χ(2) value.

4.2. Degenerate Case

Fig. 4 shows the nearly-degenerate twin-photon conversion efficiency, Eq.

(8), as it depends on the signal/idler frequency in the SPDC99 structure, cal-165

culated for a couple of different linewidths. The optimal interaction length, re-

quired for this conversion, is shown in Fig. 4(b), but is limited to 100µm, both

in order to keep phase-mismatching negligible and to have a very short SPDC

converter. Fig. 4(c) shows the frequency dependence of χ(2) of this structure for

different linewidths, this is clearly very different from the conversion efficiency,170

due to the influence of absorption.

5. Schmidt Number

The SPDC-generated twin-photon state can be written as [7],

|Ψ〉 = A

∫∫
dv+dv−α(v+)φ(v−) |2−1/2(v+ + v−)〉s |2−1/2(v+ − v−)〉i , (10)
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where A is the normalization constant, and |...〉µ (with µ = s, i) represent the

single photon Fock states in signal and idler modes. α(v+)φ(v−) in Eq. (10)

is the joint amplitude of pump envelope function (PEF) α(v+) and ’phase-175

matching function’ (PMF) φ(v−), where in SPDC processes in bulk nonlinear

materials the latter comes from the phase mismatch of the three waves and the

presence of any quasi-phase-matching scheme applied. In the QW structures

considered here the conversion lengths are very short for any significant phase

mismatch to appear, but the nonlinearity is strongly resonant, i.e. dispersive.180

The amount of quantum entanglement (including polarization, spatial and

spectral degree of freedom) between two-photon states generated in SPDC pro-

cess can be quantified by the cooperativity parameter known as Schmidt Number

K. The minimum allowed value of K is 1, which corresponds to no entangle-

ment. Based on Eq. (10), if α(v+) and φ(v−) can be approximated as Gaussian

functions, with the full width at half maximum (FWHM) of σ+ (for the pump

power) and σ− (for the twin-photon power) respectively, and if σ+ ≪ σ−, the

K value can be obtained from a simple analytical expression in Eq. (11) [7]:

K =
1

21/2
σ−
σ+

. (11)

The pump at these, mid-IR wavelengths is likely to be a quantum cascade

laser, and typical bandwidths then are in the 550 kHz to 1.5 MHz range, e.g. [8].

By varying the signal and idler frequencies we find that φ(v−) indeed has an

approximately Gaussian shape, and its K value is given Table 2 (using a PEF

bandwith of 1 MHz, i.e. σ+ = 4.239 × 10−6 meV), which would imply a good185

degree of twin-photon entanglement, although not as high as predicted for SPDC

process in transparent nonlinear bulk materials [7].

6. Conclusion

Optimization of quantum well structures to deliver large second-order non-

linear susceptibility χ(2), useful for the frequency-entangled twin-photon genera-190

tion by spontaneous parametric down-conversion, was performed using a genetic

13



Table 2: Schmidt number for different structures and different linewidths (Γ). Empty fields

correspond to cases where the simple expression in Eq. (11) could not be used.

Γ (meV) OPT67 OPT50 OPT99

1 7411 5901 8248

2 7716 5962

5 12317

10

algorithm. Calculations show that, for structures operating in the mid-infrared

range, a reasonably good degree of entanglement can be obtained, and the re-

quired optimal conversion length is very short. Furthermore, the structures

which have a large spacing between the lower two subbands are advantageous195

over structures where this spacing is small.
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Appendix A. General χ(2) Expansion Equation

χ(2) (ω2, ω1, ω0) =
e3N

2ǫ0h̄
2

[(
ρ
(0)
11 − ρ

(0)
22

)
d13d32d21

×
{
([(ω31 − ω0 − ω1)− iΓ31] [(ω21 − ω0)− iΓ21])

−1
(A.1a)

+ ([(ω31 − ω0 − ω1)− iΓ31] [(ω21 − ω1)− iΓ21])
−1

(A.1b)

+ ([(ω32 + ω0 + ω1) + iΓ32] [(ω21 − ω0)− iΓ21])
−1

(A.1c)

+ ([(ω32 + ω0 + ω1) + iΓ32] [(ω21 − ω1)− iΓ21])
−1

}
(A.1d)

+
(
ρ
(0)
11 − ρ

(0)
33

)
d12d23d31

×
{
([(ω21 − ω0 − ω1)− iΓ21] [(ω31 − ω0)− iΓ31])

−1
(A.1e)

+ ([(ω21 − ω0 − ω1)− iΓ21] [(ω31 − ω1)− iΓ31])
−1

(A.1f)

+ ([(ω23 + ω0 + ω1) + iΓ23] [(ω31 − ω0)− iΓ31])
−1

(A.1g)

+ ([(ω23 + ω0 + ω1) + iΓ23] [(ω31 − ω1)− iΓ31])
−1

}
(A.1h)

+
(
ρ
(0)
22 − ρ

(0)
11

)
d23d31d12

×
{
([(ω32 − ω0 − ω1)− iΓ32] [(ω12 − ω0)− iΓ12])

−1
(A.1i)

+ ([(ω32 − ω0 − ω1)− iΓ32] [(ω12 − ω1)− iΓ12])
−1

(A.1j)

+ ([(ω31 + ω0 + ω1) + iΓ31] [(ω12 − ω0)− iΓ12])
−1

(A.1k)

+ ([(ω31 + ω0 + ω1) + iΓ31] [(ω12 − ω1)− iΓ12])
−1

}
(A.1l)

+
(
ρ
(0)
22 − ρ

(0)
33

)
d21d13d32

×
{
([(ω12 − ω0 − ω1)− iΓ12] [(ω32 − ω0)− iΓ32])

−1

(A.1m)

+ ([(ω12 − ω0 − ω1)− iΓ12] [(ω32 − ω1)− iΓ32])
−1

(A.1n)

+ ([(ω13 + ω0 + ω1) + iΓ13] [(ω32 − ω0)− iΓ32])
−1

(A.1o)

+ ([(ω13 + ω0 + ω1) + iΓ13] [(ω32 − ω1)− iΓ32])
−1

}
(A.1p)

+
(
ρ
(0)
33 − ρ

(0)
11

)
d32d21d13

×
{
([(ω23 − ω0 − ω1)− iΓ23] [(ω13 − ω0)− iΓ13])

−1
(A.1q)
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+ ([(ω23 − ω0 − ω1)− iΓ23] [(ω13 − ω1)− iΓ13])
−1

(A.1r)

+ ([(ω21 + ω0 + ω1) + iΓ21] [(ω13 − ω0)− iΓ13])
−1

(A.1s)

+ ([(ω21 + ω0 + ω1) + iΓ21] [(ω13 − ω1)− iΓ13])
−1

}
(A.1t)

+
(
ρ
(0)
33 − ρ

(0)
22

)
d31d12d23

×
{
([(ω13 − ω0 − ω1)− iΓ13] [(ω23 − ω0)− iΓ23])

−1
(A.1u)

+ ([(ω13 − ω0 − ω1)− iΓ13] [(ω23 − ω1)− iΓ23])
−1

(A.1v)

+ ([(ω12 + ω0 + ω1) + iΓ12] [(ω23 − ω0)− iΓ23])
−1

(A.1w)

+ ([(ω12 + ω0 + ω1) + iΓ12] [(ω23 − ω1)− iΓ23])
−1

}]
.

(A.1x)
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Appendix B. Sellmeyer’s Equation for AlGaAs and GaAs

Eq. (B.1) and Eq. (B.2) shows the Sellmeyer’s Equation for GaAs and

AlGaAs respectively.

n(λGaAs) =

√
A+

B

1− C2/λ2
. (B.1)

with λGaAs is the wavelength in µm, A=8.950, B=2.054, and C2=0.390.

n(λAlGaAs) =

√√√√A0

[
f(x) +

f(xs0)

2

(
E0

E0 +∆0

) 3

2

]
+B0 (B.2)

with,

f(x) =
2−

√
1 + x−

√
1− x

x2
,

x =
hc

λE0
,

xs0 =
hc

λ(E0 +∆0)
.

A0(x) = 6.3 + 19.0x ,

B0(x) = 9.4− 10.2x ,

E0(x) = 1.425 + 1.155x+ 0.37x2 eV,

E0(x) + ∆0(x) = 1.765 + 1.115x+ 0.37x2 eV.

In Eq. (B.2), λAlGaAs is in SI units, hc/λ in electron volt, and x is the Al

fraction in AlxGa1−xAs.
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