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1. Introduction 

Every driver will have experienced the situation in which, as additional traffic joins a road, 

speeds fall, queues form and travel times become longer and more predictable.  Engineers 

and traffic scientists have devoted considerable effort to understanding how such 

conditions arise, and how the key parameters of traffic flow, traffic concentration (or 

density) and traffic speed are related on individual roads (links) and in networks.  This 

relationship, often referred to as the fundamental diagram of traffic, can be derived from 

first principles and from empirical evidence. 

Economists and planners are more concerned with how to avoid the onset of congestion or 

to reduce its impact.  This can be achieved in a range of ways, including enhancing capacity 

and managing the network better (both supply-side measures) and pricing, regulation and 

the provision of alternatives (which can be thought of as demand-side measures).  In 

analysing them, economists need to understand both how the costs of travel are affected by 

travel demand (the supply curve) and how the demand for travel is influenced by the costs 

of travel (the demand curve).   

Many early ĞĐŽŶŽŵŝƐƚƐ ƵƐĞĚ ƚŚĞ ĞŶŐŝŶĞĞƌƐ͛ ĨƵŶĚĂŵĞŶƚĂů ĚŝĂŐƌĂŵ ŽĨ ƚƌĂĨĨŝĐ ĂƐ Ă ďĂƐŝƐ ĨŽƌ 
estimating the supply curve, and hence for determining the benefits of supply-side and 

demand-side solutions to traffic congestion.  In this chapter we demonstrate that the 

fundamental diagram should not be used in this way, and that to do so can lead to 

significant errors in the evaluation of remedial measures.  Instead, alternative ways are 

needed for estimating supply curves.  We illustrate these, demonstrate that supply curves 



are likely to be sensitive to temporal and spatial variations in demand, and discuss the policy 

implications. 

2. The conventional economic analysis of supply and demand 

The prediction of traffic levels on an urban network requires determination of the 

intersection between demand and supply (Fig. 1). The demand curve D-D indicates the 

number of users (i.e. point Q1 in Fig. 1) for a given cost of using the facility (C1). Here Q is a 

function of C, as shown by the arrows.  The supply curve S-S indicates how the cost of use 

(C2) increases as the number of users (Q2) increases. Here C is a function of Q, as shown by 

the arrows.  The equilibrium level of usage is given by the intersection of the two curves (A). 

This is the user optimum, in which the n
th

 user is just willing to incur the costs of travel 

which arise from there being n users. The part of the supply curve above the equilibrium is 

drawn as a dashed line to indicate that it is generally not observable, as discussed later in 

this chapter.  

 

Note that when we speak of the cost of travel we are including the cost of the time taken; 

that is to say the amount of time multiplied by the value the user places on it. Ways of 

estimating such values are discussed in chapter 9. 

  

The concept of congestion is loosely defined.  However, congested conditions can be 

thought of as those in which the costs of travel are significantly increased by the interaction 

of other vehicles.  We illustrate this further in the following section. 

 

In congested networks, it can be shown that the user-optimal level of use is sub-optimal 

for the users as a whole (e.g. Sheffi, 1985). The supply curve can be thought of as 

representing the average cost to all users at a given level of usage. But each new user 

imposes costs both on himself and on those already travelling, since their average costs are 

increased by his presence. This additional cost for an additional user is represented by the 

marginal cost curve (curve M-M in Fig. 1), and its intersection with the demand curve 

determines the system optimal level of use, in which the n
th

 user is just willing to incur the 

marginal cost of travel which he imposes (B in Fig. 1). This principle is central to the analysis 

of road pricing, as discussed more fully in Chapter 13], in which the optimum charge for the 

facility is given by BC in Figure 1. 
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Fig. 1 Standard model of supply-demand equilibrium, showing directions of causality. 

 For any such analysis, reliable estimates are needed of the shapes of both the demand and 

the supply curves. It will be clear from Fig. 1 that even small changes in their shape can have 

significant impacts on the estimate of usage and, even more so, on the estimated optimal 

road pricing charge. Both of these in turn will significantly influence the calculation of 

benefits. There is a substantial literature on the estimation of demand, as outlined in 

Chapter 10 (e.g. Bell, 1983; Ben-Akiva & Morikawa, 1990; Williams, 1977), which we take as 

given in this chapter (though we consider briefly how to define demand for a network). 

There has been much less discussion on the estimation of supply curves until recently (e.g. 

May et al, 2000; Small & Chu, 2003; Geroliminis & Levinson, 2009), and some economists 

have wrongly applied the fundamental diagram of traffic as an indication of the way in 

which costs rise as traffic levels increase.  

We start by defining and deriving the fundamental diagram of traffic, reflecting the 

relationship between flow, concentration and speed, for a single link.  We then consider 

how such relationships might be derived for networks.  These diagrams reflect the 

ĞŶŐŝŶĞĞƌ͛Ɛ ĂŶĚ ƚƌĂĨĨŝĐ ƐĐŝĞŶƚŝƐƚ͛Ɛ ƵŶĚĞƌƐƚĂŶĚŝŶŐ ŽĨ ŚŽǁ ƚƌĂĨĨŝĐ ƉĞƌĨŽƌŵs on links and in 

networks.  We then consider the ways in which some economists have attempted to use 

such relationships to derive supply curves for links (and, by implication, networks), 

demonstrate that the fundamental diagram is inappropriate as a basis for estimating supply 

curves, and present alternative ways of doing so. 

 
3. The fundamental diagram for single links 
 

Every driver will have experienced the range of traffic conditions which can be experienced 

on the same length of road, and which are illustrated in Figure 2. When traffic is light the 

road is relatively empty (Figure 2a) and drivers are free to choose their own speeds. As 

traffic increases (Figures 2b-d) drivers are more constrained by other vehicles, and less able 

to overtake; they are thus less able to choose their own speeds, and average speeds fall. As 

traffic levels increase further, traffic forms into platoons of slow moving vehicles (Figure 2e), 

which may stop and start. Finally (Figure 2f), traffic levels become so great that queues 



form, and traffic may be at a standstill for considerable periods. These six conditions are 

referred to in the Highway Capacity Manual (HCM, 2000) as levels of service A to F.  

 

There are in practice two ways in which the number of vehicles can be counted on a road. 

One is illustrated by Figure 2. One can photograph a length of road x, count the number of 

vehicles nx in one lane of the road at a point in time, and derive a rate per unit distance. This 

measure is called the concentration of traffic (sometimes referred to as density) and is 

denoted by the parameter k (veh/m). Thus 

 

k=nx/x.           (1) 

 

The second approach is to stand at the side of the road for a period of time t, count the 

number of vehicles nt passing that point in one lane in that period, and derive a rate per unit 

time. This measure is called the flow of traffic (sometimes referred to as volume) and is 

denoted by the parameter q (veh/s). Thus 

 

q=nt/t.           (2)

        

Since traffic engineers are concerned to get as many vehicles through a road as possible in a 

given time, they will wish to achieve as large a value as possible of  q (rather than k), so 

capacity is described as the maximum value of q, qm. However it is not immediately clear 

which of Figures 2a-f represents this condition. 

 

While traffic engineers are concerned to achieve flows approaching capacity, individual 

drivers will be most concerned about the quality of their journeys, measured either by the 

speed at which they can travel or their travel time.  Individual speeds (in m/s or km/h) are 

easy enough to measure, but in understanding traffic behaviour we need a measure of 

average speed.  As shown elsewhere (May, 2001), the appropriate measure of speed is the 

space mean speed, us which can be measured by averaging the speeds of individual vehicles 

recorded on a given length of road at a given instant.  

 

 

 

 



 
Figure 2 Alternative traffic conditions. 

 

 



 

 

 

 

 

 

 

 

 

Figure 3. A simple derivation of the relationship between concentration, flow, and speed. 

 

For any given stable traffic condition, the three parameters k, q and u are directly related. 

This can be seen from the simple example in Figure 3, which considers a kilometre of road, 

on which all vehicles are travelling at the same speed. The parameters K, Q and U are 

concentration in veh/km, flow in veh/h, and speed in km/h, respectively. By definition there 

are K vehicles, each with speed U, in the kilometre of road at any instant. If the flow is 

recorded at the end of the road, Q vehicles will pass per hour. The vehicle at the start of the 

kilometre will take1/U hours to reach the end at a speed of U km/h. It will then be the Kth 

vehicle to pass the end of the road, and this will happen in K/Q hours. Thus 

 

1/U = K/Q or  Q = KU.        (3) 

 

This is dimensionally correct, viz., veh/h = (veh/km)(km/h). 

The same expression using metres and seconds, is 

q = ku.           (4) 

While equation (4) is important, it is still necessary to know the values of two of the 

parameters in order to calculate the third. In practice, on a given road, a given 

concentration is likely to give rise to a certain value of flow and a certain value of speed, 

subject always to the variations in driving conditions and driver behaviour. This relationship 

can best be seen by considering the three parameters a pair at a time, as in Figure 4. In each 

of them there are two limiting conditions, which can be thought of by reference to Figures 

2a and f. 

> > > > > 
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In figure 2a flow is very low (approaching zero), and so is concentration; the speed, which is 

likely to be at its highest, is referred to as the free flow speed uf. In Figure 2 if the speed is 

zero and so, since the traffic is not moving, is the flow; however, the concentration is at its 

highest , and is referred to as the jam concentration kj. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Flow-concentration, speed-flow, and speed-concentration curves. 

Figures 4a and 4b illustrate that as speed falls from uf  to zero, and as concentration rises 

from zero to kj, flow first increases and later falls again to zero. It seems reasonable to 

expect that it only rises to one maximum, and this can be thought of as the capacity qm. As 

flow increases towards capacity it is relatively easy to understand what is happening; as 

Figures 2a-e show, vehicles increasingly disrupt one another, reducing the driver͛s ability to 

choose his/her own speed or overtake others. Speed thus falls and concentration increases. 

Beyond capacity it is less easy to explain what is happening. In practice such conditions are 

caused by queues from downstream conditions, perhaps a junction or an accident or even a 

gradient or tight curve whose capacity is slightly lower. The queue leads to increased 

concentration; speeds fall further, and vehicles which cannot flow past the point join the 

queue as it stretches upstream. This situation is characteristic of bottlenecks on individual 
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roads, and demonstrates clearly how congestion, in which concentration is high and speed 

and flow low, can be generated.   

 

Several analysts have attempted to fit relationships to observed data. This is most easily 

done with concentration and speed (Figure 4c), since the relationship is monotonic. 

However, care needs to be taken in manipulating data to fit such a relationship (Duncan, 

1979). The most common relationship, shown in Figure 4c, is a linear relationship between 

speed and concentration, as first suggested by Greenshields (1934):  

u = a + bk.          (5) 

Using the two limiting conditions, it can be shown that this becomes 

u = uf(1 - k/kj).          (6) 

 

Other analysts have noted from empirical data that the relationship is not quite linear but slightly 

concave. They have suggested logarithmic and exponential alternatives (Greenberg, 1959; 

Underwood, 1961). Each of these relationships has been supported by theoretical analysis, primarily 

based on an analogy with fluid flow (Lighthill and Whitham, 1955) and the interpretation of car-

following behaviour (Herman et al., 1959). However, it is important to stress that traffic flow is not a 

wholly scientific phenomenon, but one which depends on the vagaries of driver behaviour. Indeed, 

some authors have suggested that there is no reason why conditions above and below capacity 

should be part of the same relationship, since they arise in different ways (Edie, 1961; Hall and 

Montgomery, 1993). 

 

 

4. The fundamental diagram for networks 

 

So far we have considered an individual length of road, or link, operating on its own, and 

have implicitly assumed that its performance is not affected by the ability of traffic to leave 

the link (at the downstream end) or by queuing to enter the link (at the upstream end). In 

practice, in urban networks at least, life is not as simple as this. The downstream end of any 

link will be a junction, which will largely determine the capacity of the link.  Priority 

junctions, roundabouts and traffic signals all have differing impacts on capacity, as described 

elsewhere (Bird, 2001).  At the upstream end of the link there will also be a junction, and its 

performance may be affected by the link. If the demand to enter the link exceeds the 

downstream junction capacity, a queue will form and, in the extreme, will spread into the 

upstream junction, reducing its capacity. In such conditions control of the upstream junction 

needs to focus on reducing the adverse impact of queues (Quinn, 1992). Conversely it is 



possible that other traffic movements will have restricted the performance of the upstream 

junction, resulting in a flow much lower than capacity, and relatively high speeds. 

 

All of these considerations make the analysis of urban networks far more complicated than 

that for individual links, and there have been far fewer attempts to consider them. As a 

generality, performance will depend on 

 

(1) the shape of the network; 

(2) the type of traffic control; 

(3) the controls on individual links; 

(4) the pattern of journeys through the network (through versus terminating; short 

versus long; radial versus orbital); and 

(5) the overall level of demand. 

 

Similar relationships to those of Greenshields and Greenberg have been shown, from 

empirical observations, to be present at the network level in traffic flows which are regularly 

interrupted by junction controls in urban networks. Thomson (1967) developed a linear 

speed-flow relationship from data collected from the streets in central London over many 

years. Godfrey (1969) found a parabolic relationship between average journey speed and 

network vehicle km travelled in the network in central London, and showed that the speeds 

are inversely proportional to the concentration (defined as the number of vehicles in the 

network in central London at a given time).  Examining data from urban networks in England 

and the US, Zahavi (1972) found that the average speed is inversely proportional to flow.  

 

Theories of such area-wide relationships have also been proposed, e.g. in the seminal work 

of Smeed (1966) and by Wardrop (1968) who proposed a monotonically decreasing 

relationship between average speed and flow in a network. Later, Herman and Prigogine 

(1979) and Herman and Ardekani (1984) proposed a two-fluid model that allows for a more 

realistic representation of the congested part of the diagram. Mahmassani et al. (1987) 

presented a theoretical framework for the generation of network-level fundamental 

diagrams from simulation models.  

 

More recently, significant developments have been made by Daganzo and colleagues with a 

series of theoretical developments and empirical verifications. They presented a theoretical 

ĨƌĂŵĞǁŽƌŬ ƌĞůĂƚŝŶŐ ƚŚĞ ͞ƚƌŝƉ ĐŽŵƉůĞƚŝŽŶ ƌĂƚĞ͟ ;ƚŚĞ ŶƵŵďĞƌ ŽĨ ǀĞŚŝĐůĞƐ ůĞĂǀŝŶŐ ĂŶ ĂƌĞĂͿ ƚŽ 

ƚŚĞ ƵŶŝƚ ͞ĂĐĐƵŵƵůĂƚŝŽŶ͟ ;ƚŚĞ ŶƵŵďĞƌ ŽĨ ǀĞŚŝĐůĞƐ ŝŶ ƚŚĞ ŶĞƚǁŽƌŬͿ ;DĂŐĂŶǌŽ͕ ϮϬϬϳ͖ 
Geroliminis and Daganzo, 2007). By analysing the empirical observations from some 500 

detectors in the City of Yokohama and a large sample of GPS-tracked taxi trips over the area, 

Geroliminis and Daganzo (2008) demonstrated the existence of an invariant network speed-

flow relationship in a complete urban network under homogeneous conditions.  
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5. SŽŵĞ ĞĐŽŶŽŵŝƐƚƐ͛ application of the fundamental diagram 

 

A typical relationship between space mean speed and traffic flow is thus as shown in Fig. 5a. 

As Small and Chu (2003) noted, Walters (1961) was the first to propose the standard way in 

which economists began to think about congestion. He transformed the fundamental 

diagram for a single link into a relationship between travel time and flow (as in Fig. 5b) and 

suggested that this represented an average cost curve for that link. the network. But the 

non-unique relationship between travel time and flow caused him and subsequent 

economists problems. As shown in Verhoef (1999), it is possible for the demand curve to 

intersect the average cost curve three times.  Walters suggested that an equilibrium point in 

ƚŚĞ ƵƉƉĞƌ ƉŽƌƚŝŽŶ ŽĨ ƚŚĞ ĐƵƌǀĞ ƌĞƉƌĞƐĞŶƚĞĚ Ă ͞ďŽƚƚůĞŶĞĐŬ ĐĂƐĞ͟ ĂŶĚ ĞĐŽŶŽŵists since have 

ƌĞĨĞƌƌĞĚ ƚŽ ƚŚŝƐ ĂƐ ͞ŚǇƉĞƌĐŽŶŐĞƐƚŝŽŶ͟ ;“ŵĂůů ĂŶĚ CŚƵ͕ ϮϬϬϯͿ͘   
 

Some economists, including Else (1981), Hau (1998), Verhoef (1999) and Ohta (2001) have 

spent some time discussing the meaning of equilibrium points in the upper part of the 

curve, even though Newbery (1990) had warned that these were unstable conditions which 

were unlikely to represent dependable equilibria. Others, including Morrison (1986) and 

Evans (1992) have suggested that this part of the curve is irrelevant, and have simply 

removed it from their analyses.  

 

More recently, economic analysis has been based on a bottleneck model, which more fully 

reflects the effects of queues in networks (Arnott et al, 1990) and it is this approach which is 

adopted by Proost in Chapter 13.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Parabolic speed-flow curve for a link (a) and its inverse (b). 

In practice, as we have argued elsewhere (May et al, 2000), the fundamental diagram is 

inappropriate as a means of determining the supply curve. It is an engineering performance 

curve, which represents how the facility performs given observable flows in a given time 

period. (In practical applications, such curves have been observed, or modelled, for periods 

of between 15 minutes and an hour, in which conditions can be expected to be reasonably 
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stable.)  However, what is needed for a supply curve (such as SS in Fig. 1) is an estimate of 

the time which would be spent by the demanded flow, at each of a given set of increasing 

levels of demand, up to the point where that demanded flow leaves the facility. At low 

levels of demand, when there is little or no congestion, the performance curve will provide a 

reasonable estimate of the time taken, since journeys can be expected to be completed in 

the time period represented by the performance curve.  However, in congested conditions 

in which journeys take some time, the travel time experienced will be influenced by the 

ĨĂĐŝůŝƚǇ͛Ɛ ƉĞƌĨŽƌŵĂŶĐĞ ĂƐ ƚŚĞ ĚƌŝǀĞƌ ƚƌĂǀĞůƐ ƚŚƌŽƵŐŚ ƐĞǀĞƌĂů ƚŝŵĞ ƉĞƌŝŽĚƐ͕ ĂŶĚ ŵŽǀĞƐ ĨƌŽŵ 
one location to another. Moreover, if it is to be used to assess equilibrium under a range of 

possible future demand levels, a supply curve has to be able to indicate the travel times 

which would occur at demand levels higher than those which currently occur on the 

network (as indicated by the dashed curve in Fig. 1), which are hence unobservable.  

 

A separate strand of exploration has concerned the meaning of demand. Neuberger (1971) 

was the first to point out that, in a single link, the flow entering a link represented demand, 

while the flow leaving it represented supply, and that in congested conditions the two 

would differ. Unfortunately his observation was largely ignored by others.  Even this 

distinction needs to be defined more carefully when dealing with an urban network. Users 

can no longer be thought of as simply demanding flow. As Hills (1993) points out, they 

demand trips, but those trips will differ in length and orientation, and some will terminate 

within the network. May et al (2000) used vehicle-km in the network as a simple 

representation of demand.  

 

Hills (2001) argued that a supply curve for a network would involve some sections which are 

congested and others which are not, and that this would lead to a monotonically increasing 

supply curve. While it is indeed true that not all roads in a given network will be congested, 

this will be ƌĞĨůĞĐƚĞĚ ŝŶ ƚŚĞ ŶĞƚǁŽƌŬ͛Ɛ fundamental diagram, and hence its performance 

curve. But as congestion increases, drivers will take longer to travel through the congested 

area, and will experience conditions outside the space-time domain for which a given 

performance curve has been drawn.  

 

This is illustrated in Fig. 6, in which each vehicle is represented by a trajectory in time and 

space, and the slope of the trajectory falls as congestion increases. A typical performance 

curve (or fundamental diagram) is derived for a rectangular space-time domain ABCD, and 

includes the impact of some drivers who start before the time period, some who complete 

their journeys within it, and some who have not completed their journeys by the time that it 

ends. It is clear from Fig. 6 that this does not represent the time incurred by those drivers 

who start their journeys in the time period AB. To do this, and hence derive a supply curve, 

we need a quadrilateral time-ƐƉĂĐĞ ĚŽŵĂŝŶ ABC͛D͕͛ ĂƐ ƐŚŽǁŶ ŝŶ FŝŐ͘ 6. This was the 

approach which we adopted in our earlier work (May et al, 2000), and which was accepted 

ďǇ “ŵĂůů ĂŶĚ CŚƵ ;ϮϬϬϯͿ ĂƐ ͞ĂŶ ĞƐƉĞĐŝĂůůǇ ĐůĞĂƌ ĞǆƉŽƐŝƚŝŽŶ͟ ŽĨ ƚŚĞ ƉƌŽďůĞŵ͘  DĞƐƉŝƚĞ ƚŚŝƐ͕ 



recent authors continue to argue that performance curves should be used in preference to 

supply curves to estimate the costs of congestion. Geroliminis and Levinson (2009) suggest 

that ͞supply curves . . . ĂƌĞ ŝŶĐŽŶƐŝƐƚĞŶƚ ǁŝƚŚ ƚŚĞ ƉŚǇƐŝĐƐ ŽĨ ƚƌĂĨĨŝĐ͟ ďĞĐĂƵƐĞ ƚŚĞǇ ĨĂŝů ƚŽ ƚĂŬĞ 
account of the time-dependent nature of congestion.  As we illustrate below, it is possible to 

develop supply curves which reflect variations in demand in both time and space. 

 

 

 

 

 

 

 

 

 

Fig. 6 Space-time domains for MFD and supply costs.  

6. An analysis of the nature of network supply curves 

In recent research, we have used a micro-simulation model (Liu et al. 2006; Liu, 2010), and 

simplified networks representing the cities of Cambridge and York in the UK, to determine 

the shapes of network performance and supply curves differences between them and, in 

particular, whether the shape of the supply curve is sensitive to the temporal and spatial 

distribution of demand.  For these purposes we have used matrices which reflect the 

current pattern of demand in each city, distributed uniformly over the morning peak period, 

and also ones which vary that demand over time and space.  Each demand matrix was 

factored to give a series of levels of demand, which represent the points in the curves 

shown in the following section, and which allow us to understand the shape of the supply 

curve at levels of demand higher than those which are currently observable.  We summarise 

the methodology here and the results in the following section.  Fuller detail is provided in 

Liu et al (2011).  

As indicated in Fig. 6, performance curves are based on measurements of vehicle-km/hour 

and vehicleʹhours/hour in a network, averaged over a given time period, and can be used to 

estimate the network equivalent of speed-flow curves or network fundamental diagrams. 

These parameters can be measured and have been used by earlier authors to describe the 

way in which costs of using the network rise as usage increases as reviewed above. Again, as 

indicated in Fig. 6, in order to calculate average costs per trip for a supply curve, individual 
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vĞŚŝĐůĞƐ ŶĞĞĚ ƚŽ ďĞ ͞ƚƌĂĐŬĞĚ͟ ƚŚƌŽƵŐŚ ƚŚĞ ŶĞƚǁŽƌŬ͕ ƌĂƚŚĞƌ ƚŚĂŶ ƐŝŵƉůǇ ŵĞĂƐƵƌŝŶŐ ĐŽŶĚŝƚŝŽŶƐ 
in the network at a given point in time. 

Moreover, in order to determine a full supply curve, estimates are needed of the unit costs 

which would be incurred across the full range of demand levels, from those consistent with 

free flow to those related to congestion approaching gridlock. Without such values, it is not 

possible to determine the intersection between the supply and demand curves if, for 

example, exogenous factors lead to an increase in demand. Since it is precisely at the points 

of intersection of the average and marginal cost curves with the demand curve that the 

economic implications of a particular policy are determined, it is particularly important that 

the supply curve is specified and estimated correctly in these conditions. But, as illustrated 

in Fig. 1, the conditions resulting from higher levels of demand cannot be observed.  This 

implies that empirical observation, even if vehicles could be tracked to determine their 

costs, would not be a sufficient way of obtaining all the data needed. It is for these reasons 

that we have employed micro-simulation to derive both performance and supply curves.  

As a simplification of the approach which we adopted in May et al, 2000, we have described 

demand in terms of vehicle trips in a given period.  As noted above, a vehicle-trip may have 

a different impact on the network, and experience different costs, depending on its length 

and orientation within the network, the route taken, the time at which it occurs and the 

overall level of demand. If this hypothesis is correct, demand in trips needs to be associated 

with a given spatial and temporal matrix shape and the results obtained will be relevant only 

for that matrix. For any matrix, the effects of increased demand can then be reflected by 

increasing the total number of trips, while maintaining the same spatial and temporal 

distribution. The impact of demand on the network is, in practice, modified by two 

particularly important behavioural responses by drivers: re-routeing and rescheduling.  In 

our research, we considered the re-routeing effect only.  

The one exception to the use of trips to measure demand is in the comparison of supply and 

performance curves (in Fig. 9 below).  There, since performance curves relate time per km 

to veh-km/h, we use the same units to measure supply, so that the curves can be directly 

compared.  In doing so, we use actual km travelled, which will be affected in part at higher 

levels of demand by re-routeing. We also use time per km in Fig. 13b, in which we compare 

different origin-destination movements of differing lengths. 

Supply costs should ideally cover time spent, operating costs, including fuel, and any other 

out-of-pocket costs such as parking and road-user charges. In practice, these other out-of-

pocket costs have been excluded. 

 



7. Empirical results 

 

Performance and supply curves 

Fig. 7 shows the speed-flow curves as simulated for the CĂŵďƌŝĚŐĞ ;͞miniCam͟Ϳ and York 

networks respectively over the one-hour generation period.  In this and in subsequent 

figures, each point represents a different level of demand over the generating period.  

  

The speed-flow curve for the Cambridge network suggests that a maximum performed flow 

is reached with a speed of around 30 km/h (Fig. 7a). That for the York network (Fig. 7b) 

shows that the performed speed decreases with increasing flow up to a flow level of around 

230 veh/h. From then on, the flow and speed both decrease as the demand increases.  

 

 

 

 

 

 

 

(a)                                                                                (b)      

                                 

Fig. 7 The speed-flow relationships for the Cambridge network (a) and the York network (b). 

 

Fig. 8 shows the network supply relationships for the Cambridge and York networks. In both 

cases the trip journey time increases monotonically with the demand, measured as 

described above as trips in a given period.  

 

As an alternative, which permits more direct comparison with the performance curves, 

these supply curves can be redrawn to show the relationship between time per km and 

vehicle-km demanded. Fig. 9 shows the relationships between time per km and the total 

vehicle-kms travelled (or demanded) for both the performance measure and the supply 

measure. For both networks, it shows a difference between the two relationships at higher 

demand levels. Whilst the performance curve, at least for the York network, is backward 

ďĞŶĚŝŶŐ͕ ďŽƚŚ ŶĞƚǁŽƌŬƐ͛ ƐƵƉƉůǇ ĐƵƌǀĞƐ ĂƌĞ ŵŽŶŽƚŽŶŝĐĂůůǇ ŝŶĐƌĞĂƐŝŶŐ͘ TŚĞƐĞ ƌĞƐƵůƚƐ ĐŽŶĨŝƌŵ 
that supply curves differ from performance curves, particularly above flow levels at which 

congestion begins to be experienced. 
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(a )                                                                                   (b)                          

Fig. 8 The simulated supply curves for the Cambridge and the York network.  

 

 

 

 

 

(a)            (b)             

Fig. 9 Comparison between the performance and supply measures for the two networks.  

Sensitivity of supply curves to temporal demand 

In this test, using the Cambridge network, two alternative assumptions are made about the 

temporal demand distributions: one uniform (flat) over the one-hour period and one 

peaked with two 15-min periods in the middle with a demand level 1.3 times the average, 

ĂŶĚ ƚǁŽ ͞ƐŚŽƵůĚĞƌƐ͟ Ăƚ Ϭ͘ϳ ƚŝŵĞƐ ƚŚĞ Ăǀerage demand.  

 

Fig.10 shows the supply curves aggregated over the one-hour demand period for the two 

demand profiles.  It is clear that the peaked demand profile has induced much higher costs 

for a given level of demand (in trips in a given period)  than those for the flat demand 

distribution.  This is an expected result, but it illustrates the need for supply curves to be 

based on the correct temporal distribution of demand. 

 

We can also see how the supply functions vary from one time period to another.  Fig.11 

shows supply curves for each of the four 15-min sub-periods with the peaked demand 

distribution, compared with that of the whole one-hour demand. It shows the cost per trip 

in a given demand sub-period as demand in that period increases. It can be seen that period 

3 has higher costs for a given level of demand (in trips in a given period) than period 2, and 

that period 4 has higher costs than period 1. This is due to extended queues being passed 

from period 2 to period 3, and from period 3 to period 4. These results suggest that the 

supply costs vary during the peak hour, with congestion costs for traffic entering during the 
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most congested periods (Periods 2 and 3) being experienced by traffic entering in a later 

period (Period 4) even though the demand in Period 4 is lower.   

 

 

 

 

 

 

Fig. 10 Supply curves for a flat- and a peak-demand profile for the miniCam network.  

                          

Fig. 11 Supply functions of the miniCam network with a peaked demand profile for each of the 

four 15min time periods and the one hour average. The data points for period 1 coincide with 

those of period 2 and 3 up to the demand level of 12000 veh, so are not clearly visible in the 

plot. 

Sensitivity of supply curves to spatial demand 

In this test, using the Cambridge network, the demand matrix was varied by increasing 

certain movements by 20% to illustrate the spatial effect on supply cost. Fig. 12 shows the 

simulated supply relationships for four different matrices (Fig. 12a), and for selected O-D 

movements under different matrices (b and c). The results suggest that at the aggregate 

level all total network-wide supply curves are similar ʹ i.e. the changes in matrix have no 

significant impact on the supply measures at an area-wide level. However, this is not always 

reflected at the level of individual O-D movements.  For three of the selected O-D pairs (the 

Inbound, External-to-urban and Outbound), the matrix variation has no significant effect on 

the supply curves.  However, for the Cross-Town O-D pair and  the Through-Traffic O-D pair, 

the travel times per trip for a given level of demand (in trips in a given period) were lower 
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when that movement within the matrix is increased (b and c). This implies that the supply 

curves, for those O-D movements at least, are dependent on the shape of the demand 

matrix. It may well be that larger changes in the demand matrix would have demonstrated 

similar results for other O-D movements.  

 

 

 

 

 

 

 

                                                                                                                                    (a) 

 

 

 

 

 

                                                                                                                                    (b) 

 

 

 

 

 

 

                                                                                                                                    (c) 

Fig. 12 The supply curves for the miniCam network: (a) for the total network under various demand 

ŵĂƚƌŝĐĞƐ͕ ;ďͿ  ĨŽƌ Ă ͞TŚƌŽƵŐŚ-TƌĂĨĨŝĐ͟ O-D pair under four different demand matrices, and  (c) and for 

a Cross-Town O-D pair under the four matrices. 
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Sensitivity of supply curves to type of movement 

Finally, Fig. 13a shows the differences in supply curves by OD movement types for the same 

base matrix as demand is increased. As might be expected, the longer Through and External 

trips have higher free-flow travel times than the other three movements. It can then be 

noted that as demand is increased, the supply relationships differ in terms of the increases 

in congestion experienced. The Through and External trips are the least readily congested. 

Conversely, the Outbound trips and Cross-town trips become congested at the lowest levels 

of demand, and unit travel costs for these movements increase most rapidly. Perhaps 

surprisingly (and somewhat counter intuitively), the Inbound trips are less readily congested 

than Outbound ones.  

Comparing different OD movements of different lengths and travel times, it is perhaps 

desirable to examine the supply measure by unit distance travelled. Fig. 13b therefore 

shows the supply curves in terms of the average travel time per km travelled against the 

demanded trips. It can be seen that all five OD movement types have similar per-km free-

flow travel times, but they all then exhibit very different supply curves as congestion sets in.  

The supply curve for the Through traffic in Fig. 13b shows a slight dip in travel time per km 

at a demand level around 70. This is due to the effect of adding a new route, a longer route 

along the ring road, to this OD pair starting at this demand level.   
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                                                                           (b) 

Fig. 13 Comparison of the supply measures for different O-D movements in the miniCam network 

under the same (base) matrix, measured in: (a) travel time per trip and (b) travel time per km 

travelled. 

8. Estimation of supply curves 

 

It must be recognised that it is not generally possible to observe costs (or travel times) for 

that part of the supply curve above the currently experienced number of trips (as indicated 

by the dashed line in Fig. 1) since, by definition, those conditions do not occur. Yet it is 

precisely these costs which need to be estimated to reflect the effects of increases in 

demand, such as those which might occur if an alternative mode became less attractive.  

We envisage two ways in which these unobserved parts of a supply curve might be 

estimated. We have used microsimulation in our approach, and have shown it to work, 

although this method is dependent on the quality of the microsimulation model.  New 

surveillance and communication technologies, such as GPS and GSM (global systems for 

mobile communication), allow the continuous tracking of the progression of vehicles. These 

technologies and new data sources allow us to obserǀĞ ƚŚĞ ͞ŽďƐĞƌǀĂďůĞ͟ ƉĂƌƚ ŽĨ ƚŚĞ ƐƵƉƉůǇ 
curve. As an alternative, it may therefore be possible to develop functional relationships 

which allow the supply curve to be extrapolated from its observable part (shown as the solid 

curve in Fig. 1) to its unobservable part (the dashed curve).  For example, in a functional 

relationship similar to that proposed by Vickrey (1969), we may formulate C = A + B(T/T0)
k
, 

where C is the travel time per trip, T the total number of trips demanded, and A, B and k are 

constants which can initially be estimated from fitting the function to the observed part of 

the curve. Indeed, it may be that a combination of the two approaches would allow the 

extrapolation to be estimated using microsimulation, while the empirical data is used to 

validate the microsimulation at lower levels of demand.    
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Given the findings above on the sensitivity of supply curves, it appears necessary to develop 

supply curves separately for different time periods and different movement types and, 

potentially, for different spatial distributions of the matrix. 

 

9. Conclusions and implications for policy 

 

Traffic conditions on a single link can be defined in terms of the flow, concentration and 

speed of traffic.  These three parameters are related, in what is often referred to as the 

fundamental diagram of traffic. Analysis from first principles and empirical evidence both 

demonstrate that conditions vary between the two extremes of very light flow, with high 

speeds, and stationary traffic.  Somewhere between these two extremes lies the condition 

in which traffic flow is maximised.  Once demand exceeds this level, congestion increases, 

speeds fall and travel times rise substantially.  Similar fundamental diagrams can be derived 

for traffic in networks, though the definition of parameters is more complicated. 

 

Many economists have used such fundamental diagrams to develop supply curves which 

relate the cost of using a link or network to the level of demand for that link or network.  

However, as Fig. 9 clearly illustrates, the fundamental diagram of a road network cannot be 

used in this way to estimate supply curves.  The application of performance curves to 

estimate levels of usage is likely, in congested conditions, to under-estimate actual usage, 

and grossly to under-estimate the costs of the resulting congestion and the benefits of user 

charges to relieve congestion.  Instead, supply curves need to be used for estimating 

demand.  They cannot be observed throughout their range (as demonstrated in Fig. 1) and 

need instead to be estimated using the methods suggested in the previous section.   

 

Performance curves do, however, have an important role in understanding how to improve 

the effectiveness of urban networks.  The use, in Singapore, of speed thresholds as a basis 

for determining when charges should be raised or lowered, is a practical example of the 

effective application of performance curves.  

The evidence that supply curves are dependent on the temporal distribution of demand 

has important implications for policy.  In equity terms, it is clear that those using the 

network at certain times impose greater costs than others, and thus potentially merit higher 

charges.  In network management terms, it is clear that congestion can be reduced more 

effectively by selective control of traffic levels in certain time periods.   

 

There is less evidence that supply curves are dependent on the spatial distribution of 

demand, and this merits further research. Even so, the supply curves for some movements 

within an area will be affected by changes in the spatial distribution of demand. To that 

extent, there may be a case for imposing differential charges, or regulations, on different 

movements within an area. The case for spatial differentiation of charges is made stronger 

by the finding that the supply curves themselves differ by type of movement. In equity 



terms, it appears appropriate to impose higher charges on those movements which are 

most readily congested.  

 

In terms of policy stability, the fact that changes in the distribution of demand in time and 

space can influence the appropriate policy response implies that policy needs to be 

reviewed regularly, rather than simply assuming that a demand management measure, once 

applied, will continue to be effective.  This has particular implications for land use policy.  A 

large development in a given location will add to certain temporal and spatial movements, 

and could significantly affect the shapes of their demand and supply curves, thus justifying 

substantial changes in the demand management measures applied. 

All the above remarks demonstrate the need for care in selecting a modelling approach 

when considering the impacts of policy on demand.  When demand exceeds capacity, the 

dynamics imply the need for some form of dynamic model.  Whilst most four stage static 

models can be used with multiple time periods and a departure time choice model, most do 

not deal adequately with the issue of queue pass-over from one period to the next.  By their 

very nature they are based on the principles of steady-state systems within each time 

period.  Instead it will be preferable to employ dynamic traffic assignment models (see a 

review in Peeta & Ziliaskopooulos, 2001), or the micro-simulation approaches as used in the 

study reported above. 

While micro-simulation models are well developed in representing supply factors, further 

work is needed to fully integrate the spatial distribution of the O-D matrix  (trip-patterns), 

the temporal distribution of the O-D matrix  (trip-profiles), rescheduling in response to cost 

changes, and re-routeing in response to cost changes. Whether dynamic traffic assignment 

models or micro-simulation approaches are used, supply curves should be generated 

separately for different time periods and movement types if the models are to be integrated 

within a full supply-demand framework.  Further work is needed to provide guidance on the 

appropriate degree of temporal and spatial differentiation for a given network and set of 

policy options.   
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