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Abstract

Automatic timeline summarization (TLS)

generates precise, dated overviews over

(often prolonged) events, such as wars or

economic crises. One subtask of TLS se-

lects the most important dates for an event

within a certain time frame. Date selec-

tion has up to now been handled via su-

pervised machine learning approaches that

estimate the importance of each date sepa-

rately, using features such as the frequency

of date mentions in news corpora. This ap-

proach neglects interactions between dif-

ferent dates that occur due to connections

between subevents. We therefore suggest

a joint graphical model for date selection.

Even unsupervised versions of this model

perform as well as supervised state-of-the-

art approaches. With parameter tuning on

training data, it outperforms prior super-

vised models by a considerable margin.

1 Introduction

Major events (such as the Egypt revolution starting

in 2011) often last over a long period of time and

have impact for a considerable time afterwards. In

order to find out what happened when during such

an event, time-related queries to search engines are

often insufficient as traditional IR does not handle

time-related queries well (Foley and Allan, 2015).

To provide readers with comprehensive overviews

of long events, many news outlets employ time-

line summaries: a timeline summary is a list of

selected dates with a few sentences describing the

most important events on each date. An example

can be seen in Table 1. Timelines allow the reader

to gain a quick overview over a complex event and

to answer questions such as: How and when did

the event start? What were the main consequences

of the initial events? What happened to the main

protagonists in the event? In addition, timelines

are frequent means in education (such as history

teaching) so that their generation is relevant for

education as well as journalism.

(a1) 2011-01-25
Egyptians hold nationwide demonstrations against the au-
thoritarian rule of Hosni Mubarak, who has led the country
for nearly three decades.

(a2) 2011-01-26
A large security force moves into Cairo’s Tahrir Square

(a3) 2011-01-28
Protesters burn down the ruling party’s headquarters, and
the military is deployed.

(a4) 2011-02-11
Mubarak steps down and turns power over to the military.

(a5) 2011-03-19
In the first post Mubarak vote, Egyptians cast ballots on
constitutional amendments . . . , including scheduling the
first parliamentary and presidential elections

(a8) 2012-04-20
The presidential campaign officially begins.

(a10) 2012-06-24
Election officials declare Morsi the winner

(a26) 2013-07-03
Egypt’s military chief says Morsi has been replaced by Adly
Mansour, the chief justice of constitutional court.

Table 1: A timeline about the Egypt revolution published by
the Associated Press (AP). We leave out intermediate dates
due to space constraints. The whole timeline includes 30
dates between 2011-01-25 and 2013-07-07.

Though convenient for the reader, the manual

creation of a timeline can take a long time even

for experts. For example, the creator of the start-

up Timeline says that it initially took a multi-

person team a full work day to create a single

timeline.1 Therefore, automatic timeline summa-

rization (TLS) has emerged as an NLP task in the

past few years (Tran et al., 2013a; Kessler et al.,

2012; Nguyen et al., 2014; Yan et al., 2011b; Yan

et al., 2011a; Wang et al., 2012; Tran et al., 2013b;

Tran et al., 2015). TLS has been divided into two

subtasks: (i) ranking the dates between beginning

1http://www.niemanlab.org/2015/02/

timeline-is-providing-historical-

context-to-the-news-but-is-there-a-

business-model-to-support-it/.



and end of the timeline in order of importance, to

achieve date selection and (ii) generating a good

daily summary for each of the selected dates. In

this paper, we tackle the first task. Date selection

is challenging, as normally only a small set of the

available dates is chosen for inclusion in the time-

line (see Table 1). Date selection may be partially

subjective: different journalists might include dif-

ferent dates.2

Existing approaches to date selection (Kessler

et al., 2012; Tran et al., 2013a) use supervised ma-

chine learning, where each date receives a score

for ranking the dates. Features used (such as fre-

quency of date mention) are extracted from a cor-

pus of event-related newspaper articles. Though

the features are well-explored, the models score

each date independently of other dates.

In contrast, we argue that interaction between

dates should be taken into account. Timeline

summaries tend to include “substories” in which

the majority of selected dates are part of a chain

of events that share major actors or demonstrate

cause-effect. Table 1 shows at least two such

chains: the (a1-4-5) chain of protests leading to

Mubarak’s resignation and the necessity of new

elections, as well as the similar (a8-10-26) chain

on Mursi. These chains can also be observed in the

corresponding news articles. For example, some

background articles on Mubarak’s step-down will

likely explain the reasons behind it. However, ex-

tracting such causal information can be difficult,

as demonstrated by the still low results for dis-

course relation extraction (Lin et al., 2014; Braud

and Denis, 2014). Instead, we use date reference

graphs, which model which date refers to which

other date. In our example, articles published on

Mubarak’s resignation date might refer to the date

when the protest started. Although weaker than

direct causal links, these links are easy to extract

and we will show that they are very useful. In ad-

dition, references from important dates (such as

Mubarak’s resignation date) should be weighted

higher than other references. This is akin to IR

models such as PageRank, which weigh links from

popular pages higher than links from less popular

pages.

The main contributions of this work are: (i)

we leverage interaction between dates via date ref-

erence graphs as a basis for date selection in TLS

2Note that the date selection task uses dates as proxies for
important events on that date.

(ii) we provide a novel random walk model on this

graph that incorporates both topical importance of

referring sentences as well as frequency and tem-

poral distance of references. We propose both un-

supervised as well as supervised versions of this

model.

We show that the proposed date selection

approach outperforms previous approaches with

evaluations on four real-life, long-term news

events. We also discuss variations in timeline con-

struction over different events, as well as by dif-

ferent journalists.

2 Related Work

Timeline summarization is a special case of multi-

document summarization (MDS). As TLS orga-

nizes events by date, timelines can be generated

by MDS systems (such as (Radev et al., 2004b;

Radev et al., 2004a; McKeown et al., 2003; Erkan

and Radev, 2004; Metzler and Kanungo, 2008;

Hong and Nenkova, 2014) by applying their sum-

marization techniques on news articles for every

individual date to create corresponding daily sum-

maries. However, manually written timelines nor-

mally only include a small number of dates; in

addition, the temporal component imposes con-

straints on sentence selection for timeline sum-

marization, such as the preference for little over-

lap between sentences selected for different dates

(Yan et al., 2011b).

Many studies specific to timeline summariza-

tion, such as (Swan and Allan, 2000; Allan et al.,

2001; Chieu and Lee, 2004; Yan et al., 2011b;

Tran et al., 2015), focus on the extraction of salient

sentences or headlines for generating the textual

content of timelines. They assume either that the

dates are given in advance or they use simple mea-

sures such as burstiness (Chieu and Lee, 2004;

Yan et al., 2011b) for date selection, where bursti-

ness relies on the number of date mentions.

Prior approaches dedicated specifically to date

selection are Tran et al. (2013a) and Kessler et

al. (2012).3 They use supervised machine learn-

ing methods that score dates independently of

each other. Features are extracted from a cor-

pus of event-related newspaper articles, including

frequency-based features (such as how often the

date is referred to in the corpus), temporal distance

features (such as how long into the future a date

3Kessler et al. (2012) is also used in Nguyen et al. (2014)’s
system.



keeps being referred to) and topical features (such

as whether the date mention is associated with the

most significant keywords of the event). We, how-

ever, score dates jointly, making use of interac-

tions between dates in a graphical model. This

improves substantially over prior approaches. We

also propose unsupervised variations that perform

competitively to prior supervised models.

3 Problem Definition and Approach

Similar to Kessler et al. (2012) and Tran et al.

(2013a), we use the day as the timeline time unit

(so, for example, we exclude hourly timelines).

3.1 Problem Definition

Given a main event and a time window [t1, t2]
within the event duration, our task is to select the

top k dates (d1, d2, ..., dk) ∈ [t1, t2], when the

most important (sub)events occurred. Therefore,

timelines of variable length can be constructed.

Like (Kessler et al., 2012; Tran et al., 2013a), we

also assume that we have a corpus C, consisting

of news articles about the main event. This corpus

gives evidence about the dates in [t1, t2].

3.2 Proposed Approach

We build a date reference graph, which is a fully

directed graph G = (V, E), where V is the set of

dates mentioned in any text in corpus C, including

publication dates. The edges E = {e(di, dj)} in-

dicate that at least one text published on di refers

to the date dj .

We represent each such link as

a multi-value tuple e(di, dj) =
(Mij , freq(di, dj), Itemporal(di, dj), Itopical(di, dj))
to integrate different measures of date importance.

The first value, Mij = 1
N

expresses the prior

stochastic transitional probability between 2

dates where N = |V|. The others express the

strength of the connection between di and dj
modelled by the following aspects: frequency

(freq), temporal influence (Itemporal) and topical

influence (Itopical). We also suggest different

combinations of these parameters.

Then we introduce a random walk model that

uses these perspectives to rank the collection of

dates.

Frequency of References. When a date dj is re-

ferred to from either a past or future news article

(published on di), it is likely involved in the events

that are reported in that article. An example pub-

lished on Mubarak’s resignation date and referring

back to the protest start can be seen below:

(1) On January 25, an uprising of Egyptians erupted calling
for Mubaraks resignation as president. Protests contin-
ued to grow . . . (CBS Detroit, 2011-02-11)

We hypothesize that the more frequent such

references are, the stronger this involvement is.

Hence, we compute freq(di, dj) as the number

of references to dj from news articles published

on di. While prior work (Kessler et al., 2012)

uses aggregate frequency of references to dj over

the whole corpus as a feature, they do not handle

the interaction between dates and can therefore not

score dates jointly.

Topical Influence. In Example 1 above, the ref-

erence sentence mentions only major actors in the

Egypt crisis (Mubarak, Egyptians) as well as only

major subevents (uprising, protests). This makes

for a link between 2011-02-11 (publication date)

and 2011-01-25 (referred date) that is relevant to

the main event and emphasises the importance of

the referred date. In contrast, Example 2 also talks

about less salient entities in context of the Egypt

revolution and makes for a less topical link be-

tween 2011-02-02 (publication date) and 2011-01-

25 (referred date).

(2) Mr Ghonim is Google’s head of marketing for Mid-
dle East and North Africa and was in Egypt when the
protests started on Jan 25 (DailyMail, 2011-02-02).

We quantify the topical influence between dates

as follows: Let Si→j = {sij} be the set of sen-

tences that are published in di and refer to dj . We

are interested in how relevant this connection is to

the overall news event, looking at the content in

Si→j . To do so, we represent the overall content

of the news collection by a set of keywords Q =
{q1, q2, ..., qn}, which are computed via TextRank

(Mihalcea and Tarau, 2004).4 We compute a rel-

evance score for each sentence sij in Si→j by the

famous Okapi BM25 function (Robertson et al.,

1994), which ranks a sentence more topical if it

contains more as well as more of the most salient

collection keywords Q.5 We compute topical in-

fluence (Itopical) as either the maximum value or

the sum value of the relevance scores of all sij .

Imax topical(di, dj) = max
sij∈Si→j

BM25(sij , Q) (3)

Ifreq∗topical(di, dj) =
∑

sij∈Si→j

BM25(sij , Q) (4)

4We set n=20 in practice.
5We use the standard BM25 parameter settings k1 = 1.2

and b = 0.75



Intuitively, Ifreq∗topical(di, dj) is proportional

to the size of Si→j as well as to the relevance

scores of its sentences whereas Imax topical(di, dj)
does not consider reference frequency at all.

When dj is not mentioned by any articles pub-

lished on di, the value of the topical influence is

equal to zero.

Temporal Influence. The longer ago an event

happened the more likely it is to have been for-

gotten. Only very important events are referred to

over long time frames. We therefore hypothesise

that a date dj is more influential (for another date

di) if di mentions dj and the temporal distance

between the two dates is high. Overall, dj gath-

ers importance with several long-term references.

Ex. 5 showcases an example:

(5) Military generals took over power from Mubarak when
he stepped down on February 11 last year. (Daily Mail,
2012-01-25).

We define the temporal influence of an existing

edge Itemporal(di, dj) as either the absolute value

of temporal distance between the two dates or by

the product of the temporal distance with the num-

ber of references freq(di, dj). In the second com-

putation, the temporal influence between two dates

increases when di references dj more than once.

I|temporal|(di, dj) = ∆t = |di − dj | (6)

Ifreq∗temporal(di, dj) = freq(di, dj) · |di − dj | (7)

When dj is not mentioned by any articles pub-

lished on di, the temporal influence is set as zero.

Random Walk Model for Date Ranking. A

random walk on a given graph is a Markov pro-

cess, where each node represents a state and a

walk transiting from one state to another state is

based on a transition probability matrix. One well-

known random walk algorithm is PageRank (Page

et al., 1999), which models web surfer behavior to

determine the importance of web pages with the

following formula:

xt(j) = α
∑

i∈L
−
j

Mijxt−1(i) + (1− α)vj , (8)

where Mij is the stochastic transition probability

from page pi to pj , xt(j) is the importance score

of page pj at step t, α is a damping factor that

controls how often the walker jumps to an arbi-

trary node, vj is the initial probabilistic impor-

tance score (generally set to 1/N , where N is the

number of nodes in the graph), and L−
i is the set

of incoming links of page pi. When t is iterated

enough, the importance score vector reaches a sta-

tionary distribution that can be used for ranking

pages.

The traditional PageRank process in Eq. 8 cap-

tures only the observed linking characteristics of

nodes but ignores other sources of information

which can be indicators for their importance.

We extend the model by introducing an

influence-based random walk model (IRW) that

allows the random walker to take into account

multiple sources of information and perform vot-

ing more effectively. The random walk process we

propose can be defined by the following formula:

xt(j) = α
∑

i∈L
−
j

I(i, j) ·Mij · xt−1(i) + (1− α)vj (9)

where I(i, j) is the normalized influence factor

that indicates how influential the edge di → dj is

in the global context of the event. The normaliza-

tion is done by scaling the range of value from [0,

1]. M is the stochastic transitional matrix. In our

case, I(i, j) can be just the value of freq(di, dj),
Itopical(di, dj) , Itemporal(di, dj) alone or a lin-

ear combination of them. Note that, (I · M ) in

most case is not stochastic and must not be trans-

formed into a stochastic transitional matrix, as the

transformation will collapse the global context of

I. IRW is different to PageRank on weighted

graph, weighted or personalized PageRank and

their variations e.g, (Xing and Ghorbani, 2004;

Haveliwala, 2002), among others. In particu-

lar, weighted PageRank integrates influence scores

into the stochastic transitional matrix. Thus, the

random walker contributes the voting impact of a

node X to its neighbor with an influence score nor-

malized by the sum of scores on all outgoing con-

nections. That process leverages how good this

connection is in the sub-graph (G*) which consists

of X and its outgoing neighbors. In contrast, our

proposed model uses the non-normalized value of

the influence score to leverage how good this con-

nection is on the entire graph instead of G*. To

give an example, if date X1 mentions only X2 with

a raw temporal distance score of 20 and X3 men-

tions only X4 with a score of 100, then in weighted

Page Rank both would be normalized to a weight

one, losing the information that X4 is mentioned

after a much longer time period than X2. The pro-

cess for combination in our model is defined as the

following:



xt(j) = αω
∑

i∈L
−
j

W1(i, j) ·Mij · xt−1(i)

+ α(1− ω)
∑

i∈L
−
j

W2(i, j) ·Mij · xt−1(i)

+ (1− α)vj

(10)

where W1(i, j) =
Itopical(di,dj)

maxuv Itopical(du,dv)
is

the normalized value for topical influence, and

W2(i, j) =
Itemporal(di,dj)

maxuv Itemporal(du,dv)
is the normalized

value for temporal influence.6

Here, the hyper-parameter 0 ≤ ω ≤ 1 controls

the proportion of the topical influence from di to

dj . When ω = 0, no topical influence is taken

into account. No temporal influence is considered

when ω = 1. Intuitively, at every step, the random

walker can follow the outgoing nodes and either

carry topical influence (the first part) or temporal

influence (the second part) to contribute to the rank

of the outgoing nodes. Otherwise, it teleports to an

arbitrary node with probability (1− α).

Convergence Property. Starting from Eq. 10,

we now show that the IRW model converges to a

stationary distribution.

Let Λ and Λ′ be the matrix with elements

W1(i, j) and W2(ij) respectively, with any edge

(di, dj), I be the n × n identity matrix, and v be

the transpose of 1 × n uniform stochastic vector.

M denotes the transitional matrix for G.

Proposition 1. (I−α(wMTΛ+(1−ω)MTΛ′))
is invertible for all M,Λ,Λ′, α, ω.

Proof. Let P = wMTΛ+(1−ω)MTΛ′, we need to prove
that I−αP is invertible. Equivalently, we prove its transpose
I − αPT is invertible, which can be proved by showing that
(I− αPT )y = 0 only has the trivial solution y = 0.

(I − αP
T
)y = 0

y = αP
T
y

yi = α
∑

j

Pjiyj

= α
∑

j

((ωW1(i, j) + (1 − ω)W2(i, j))Mijyj).

(11)

Let u = argmaxj yj . When i == u, Eq. 11 infers,

yu ≤ α
∑

j

((ωW1(u, j) + (1 − ω)W2(u, j))Mujyu).

yu ≤ αyu

∑

j

((ωW1(u, j) + (1 − ω)W2(u, j))Muj

yu(1 − αFu) ≤ 0.

(12)

where Fu =
∑

j
((ωW1(u, j) + (1 − ω)W2(u, j))Muj .

Clearly, Fu ≤ 1 because W1(u, j) ≤ 1 and W2(u, j) ≤ 1

6In the case of linear combinations we incorporate fre-
quency into topical or temporal influence as described above.

and
∑

j
Muj = 1. Since α < 1 and Fu ≤ 1, (1−αFu) > 0.

Therefore yu ≤ 0. Similarly, let v = argminj yj we have
that yv ≥ 0. As yv ≤ yu, this implies yu = yv = 0 to satisfy
all inequalities. Consequently, yi = 0 for all i, or y = 0.
Thus, I − αPT invertible. Equivalently,(I − α(ωMTΛ +
(1− ω)MTΛ′)) is invertible.

Proposition 2. The iteration in Eq. 9 converges to

(1− α)(I− α(ωMTΛ + (1− ω)MTΛ′))−1
v.

Proof. We can re-write Eq. 9 in matrix form:

xt = αPxt−1 + (1 − α)v

= (αP)
t
x0 + (1 − α)(

t∑

i=1

(αP)
i−1

)v
(13)

We will show that lim
t→∞

xt = (1− α)(I − αP)−1v.

∑

i

(αP )
t
ij =

∑

i

∑

k

(αP )ik(αP )
t−1

kj

=
∑

k

(αP )
t−1

kj

∑

i

(αP )ik

=
∑

k

(αP )
t−1

kj α(Fk)

≤
∑

k

(αP )
t−1

kj α

≤ (α)
t

(14)

Here, Fk =
∑

i
((ωW1(k, i)+(1−ω)W2(k, i))Mki ≤ 1

(proof similarly to Proposition 1
Because α < 1, this column sum converges to zero when

t → ∞. We then derive lim
t→∞

(αP)tx0 = 0. When t → ∞,

given Proposition 1 and Neumann series, Eq. 13 becomes:

xt = (αP)tx0 + (1− α)(I − αP)−1
v

hence, lim
t→∞

xt = (1−α)(I−αP)−1v. Convergence proved.

4 Experiments

4.1 Ground Truth and Data Preprocessing

Kessler et al. (2012) use 91 timelines from AFP

as ground truth along with the AFP news corpus

for feature extraction. However, their dataset is

not publically available. In addition, although they

consider a wide spread of events, each event is

only represented by a single timeline from a sin-

gle source, making that method somewhat vul-

nerable to journalism bias (as discussed by them-

selves in their paper). The data collected by us

previously (Tran et al., 2013a) is publically avail-

able at http://l3s.de/˜gtran/timeline/ and

has since been extended by us (Tran et al., 2015).

Similar to Kessler et al. (2012), it contains ground

truth timelines as well as a corpus of news articles

covering each event. The dataset is suitable for our

purpose because of the following reasons: (1) it is

a heterogeneous dataset which contains news arti-

cles and expert timeline summaries from different

news agencies. Thus, it is more likely to avoid

the issue of bias. Also, each event is represented



by more than one timeline; (2) it covers long-term

stories that have been happening since 2011, mak-

ing the date selection problem non trivial for any

system.

Timelines. The groundtruth contains 21 time-

lines for 4 main events (Egypt Revolution, Libya

War, Syria War, Yemen Crisis), created by profes-

sional journalists. Table 2 shows statistics about

the timelines. Only a small number of all pos-

sible dates in a time range is included in at least

one timeline (for example, only 122 dates among

a possible 918 dates for the Egypt Revolution).

News Corpus. The news articles have been col-

lected from 24 well-known news outlets by query-

ing Google with the event name together with

the outlets’ sitename and time range specification.

The crawl time range starts from the first of the

month of the earliest event in any timeline (for ex-

ample, 2011-01-01 for the Egypt revolution) and

ends at crawl date. The top-ranked 300 news ar-

ticles from each news site were collected, if still

available. The article creation date is parsed from

the answers returned by Google. The corpus con-

tains 15,534 news articles. Its statistics are sum-

marised in Table 3. The overlap between time-

line date ranges and news corpus date ranges is

only partial: on the one hand, the corpora have

many articles published after the timelines end; on

the other hand, sometimes the corpus has no ar-

ticles published near the beginning of the time-

line (Syria War). The distribution of document

frequency leans towards the end date of the news

collection. The reason could be that most search

engines rank recent documents higher than those

published longer ago.

Story Time Range #News

Egypt 2011/01/11 - 2013/11/10 3869
Libya 2011/02/16 - 2013/07/18 3994
Syria 2011/11/17 - 2013/07/26 4071
Yemen 2011/01/15 - 2013/07/25 3600

Table 3: Overview of the news corpus

Preprocessing. Accurate date extraction includ-

ing both implicit (like last Friday) and explicit

(like 11 Feb ) temporal expressions is vital to

our approach as well as for competitor systems.

We use the Heideltime state-of-the art toolkit

(Strötgen and Gertz, 2010) for this task.

4.2 Experimental settings

As can be seen from Table 2, different timelines

for the same event can contain varying dates, due

to different ranges timelines might cover but also

due to selection preferences by individual writers.

Therefore, we consider the union of all timelines

for an event. The set of input dates for ranking are

all dates from the start t1 and end t2 of the union

of timelines.7 We call that input time range T Re,

depending on main event e.

We consider two evaluation settings:

relaxed setting: A date from T Re selected by

an algorithm is counted as correct if it is included

in the union of timelines, therefore in at least one

individual timeline.

strict setting: A date from T Re selected by an

algorithm is counted as correct if it is included in

at least two individual timelines.

The first setting is the one used in previous work

such as (Kessler et al., 2012; Tran et al., 2013a).

It is also the only one that can be used if only one

timeline per event is considered as in Kessler et

al. (2012). We therefore include it for compari-

son purposes. However, we think it is better to

consider several timelines as it allows us to con-

sider agreement between timeline writers. If more

than one writer agrees on a date being important

we have more evidence that a system should find

that date. Finding dates that only a single writer

includes is less important and could even be due

to bias or system overfitting. Therefore, our sec-

ond setting is preferable as it emphasizes highly

important dates selected by multiple journalists.

Each system selects the top k dates during the

input time range. We evaluate the systems by

Mean Average Precision at k (MAP@k) for k =

5, 10, 15, 20 over all four events.

4.3 Systems.

Baseline. We use three unsupervised baselines.

The baseline Document Frequency ranks dates ac-

cording to the number of news articles published

on that date. Our assumption is that on a date

where one or more important events happened,

there would be a spread of information over dif-

ferent news agencies in the world. Therefore, this

date has more news articles published. This base-

line is related to the burstiness date selection used

by Yan et al. (2011b).

The baseline MaxLength ranks dates by the

maximum article length of all articles published on

that date. Our hypothesis is that important events

7Prior work also uses start and end date of timelines for
delimiting input (Kessler et al., 2012; Tran et al., 2013a).



Story #TL #atLeastOnce #atLeastTwice avgL maxL minL Time Range #dates

Egypt 4 122 18 36 57 24 2011/01/01 - 2013/07/07 918
Libya 7 118 56 34 62 22 2011/02/14 - 2011/11/22 281
Syria 5 106 17 60 26 13 2011/03/15 - 2013/07/06 844
Yemen 5 81 26 24 42 10 2011/01/22 - 2012/02/27 401

Number of timelines (#TL), number of dates occurring in at least one timeline (#atLeastOnce), number of dates that appear
in at least 2 timelines, average (avgL), max (maxL) and min (minL) length of timelines; the Time Range of the union of
timelines and all potential dates (#dates) within the time range.

Table 2: Overview of groundtruth timelines

often receive more attention from writers, leading

to longer articles.

Date Frequency ranks a date d by the total num-

ber of sentences referring to d that are not pub-

lished on d. This is a simple measure of d’s influ-

ence without joint scoring of dates or integration

of temporal distance or topic.

Competitors. We reimplement Kessler et al.

(2012)’s model. It first detects all sentences with

date references and filters out certain types of sen-

tences according to linguistic features (such as

presence of modality as this can put the factual-

ity of the event into question). Then, the impor-

tance score of a date is determined by the prod-

uct of the Lucene score of referring sentences and

an ML-predicted score that takes into account date

reference frequencies, temporal distance of date

references and topical importance of referring sen-

tences. To use the same setting as for our systems,

we use the list of keywords extracted by TextRank

(Mihalcea and Tarau, 2004) to formulate a topic

query for the Lucene index.

We reimplement Tran et al. (2013a) who use a

supervised ML approach based on a more detailed

consideration of date reference frequencies.

Both Kessler et al. (2012) and Tran et al.

(2013a) are retrained and tested via 4-fold cross-

validation on events. In addition, we noted that

the two supervised systems could profit from the

fact that for certain dates in T Re no published

news articles exist in the news collection and that

they are therefore a priori unlikely to be relevant.

We therefore also run those systems with a stricter

input time range, which intersects T Re with the

dates that are the publication date of at least one

article in the news collection. We indicate these

systems as Kessler et al. (2012) (Pub) and Tran et

al. (2013a) (Pub).

Our Approach. Our system builds graphs with

all dates referenced in the news corpus for an event

as nodes. We select the top k highest ranked nodes

that also fall within T Re. We measure the perfor-

mance with different strategies for the Influence

factor I. We use the following five unsupervised

strategies, where we just set the damping factor α

to 0.85 as suggested by Page et al. (1999).8

IRWfreq only uses the frequency aspect. This

corresponds to a joint modelling version of the

Date Frequency baseline.

IRWmax topical uses topical influence, disre-

garding frequency aspect in its computation.

IRWfreq∗topical uses topical influence, incor-

porating the frequency aspect in its computation.

IRW|temporal| uses temporal influence, disre-

garding the frequency aspect.

IRWfreq∗temporal uses temporal influence in-

corporating the frequency aspect.

Furthermore, we are interested in combining

topical and temporal influence (with or without

frequency aspects). Here, our model is parame-

terized by ω which controls the impact of topi-

cal influence vs. temporal influence. This param-

eter is tuned on the training set via 4-fold cross-

validation and, therefore, the next two models

have a small element of supervision.

IRWmax topical+freq∗temporal combines topical

and temporal influence, integrating the frequency

aspect into temporal influence.

IRWfreq∗topical+|temporal| combines topical

and temporal influence, integrating the frequency

aspect into topical influence.

4.4 Analysis of date reference graphs

Table 4 shows an analysis of the four date refer-

ence graphs. In this Table, #sent provides the total

number of sentences from all news articles while

#hasRef shows the number of sentences that re-

fer to a date (around 15%), suggesting a sustain-

able part of data can be helpful for the interaction-

based approach. The number of nodes shows the

unique dates that are involved in a date reference

link. The number of edges is equivalent to the

number of date reference links (di, dj) that in-

dicate that there exist sentences published on di
but referring to dj . toStrict and toRelaxed is the

8We could make these models supervised by tuning the
damping factor via cross-validation. However, we found it
encouraging that we were able to achieve competitive results
without tuning — similar to links between web pages in the
traditional PageRank algorithm, links between dates seem to
embody strong relations, making the same damping factor
suitable.



#sent #hasRef(%) #nodes #Edges toStrict reachStrict toRelaxed reachRelaxed

Egypt 143,096 26,428 (18.5) 939 2784 15.55% 100.00% 35.99% 89.34%
Libya 140,753 22,166 (15.7) 971 1797 33.78% 98.21% 56.98% 99.15%
Syria 162,305 26,992 (16.6) 812 1555 7.14% 88.24% 31.00% 73.58%
Yemen 140,156 21,606 (15.4) 1106 1608 18.28% 100.00% 37.00% 100.00%

Table 4: Interaction-based analysis on experimental news collections

proportion of the edges that link to groundtruth

dates in the strict setting and relaxed setting.

Those edges cover almost all the groundtruth dates

(i.e, reachStrict and reachRelaxed), i.e almost all

groundtruth dates are indeed referenced at least

once in our corpus.

4.5 Results

Table 5 shows the average performance of differ-

ent systems over our four events. Several general

observations stand out. First, we notice that the

scores wrt. relaxed setting of all systems are higher

than those wrt. strict setting. That is expected, as

in relaxed setting, a selected date has a higher like-

lihood to be one of the milestones in the timeline

of at least one expert. Second, simple baselines

such as Document Frequency and MaxLength per-

form reasonably well in the relaxed-setting. That

confirms our assumptions that important dates of-

ten possess more published news articles and are

likely to have at least one article of substantial

length. However, these baselines are not enough

to distinguish highly important dates (which are

selected by more than one journalist) as shown by

their performance in the strict setting (around 0.3

MAP@k only).

Using Date Frequency leads to a substan-

tial performance improvement in the strict set-

ting comapred to the publication-based baselines.

Therefore, highly important dates are more likely

to be kept mentioning in the future and that sup-

ports our research direction to better leverage date

interaction for ranking date importance. This

is further confirmed by the performance of the

IRWfreq system which is the joint modelling ver-

sion of the DateFrequency baseline and outper-

foms the baseline without inclusion of any further

information such as topical salience. It can even

compete with prior supervised competitors when

their input time range is not modified.

Our supervised competitors (Kessler et al.,

2012; Tran et al., 2013a) perform overall well and

both profit from modifying their input time range

as suggested in the Pub versions. However, the un-

supervised versions of our system IRWmax topical

and IRWfreq∗topical perform very comparably to

the supervised competitors in the strict and relaxed

setting, respectively.

The last two lines of Table 5 show the re-

sults of our proposed method when using a lin-

ear combination of the different influence fac-

tors, and the hyperparameter ω having been tuned

on the training set. IRWmax topical+freq∗temporal

shows the result of our system with ω = 0.2 and

IRWfreq∗topical+|temporal| with ω = 0.1 These

systems outperform the state-of-the-art systems

clearly in the strict setting and for most measures

in the relaxed setting.

Stability. We also investigated the stability of

the performance of different systems by look-

ing into their results on each event. Table 6

presents the performance of our best system

IRWmax topical+freq∗temporal and its best super-

vised competitors Tran et al. (2013a) (Pub) and

Kessler et al. (2012) (Pub). All systems perform

worse on the Syria story although our dropoff is

less than the one of prior systems.

We speculate that the competitor systems are

more sensitive to the amount of available pub-

lished content on a target date than ours. In partic-

ular, Tran et al. (2013a) use the frequency of pub-

lished dates and sentences as one of their features,

and Kessler et al. (2012) rely on the returned re-

sults from Lucene index which tends towards sub-

stories from the publication periods. Different to

others, the time range for the Syria news collection

does not include the time range for the Syria time-

lines fully or almost fully (see Tables 2 and 3). We

therefore are not as dependent on an exact match

between timeline dates and news collection dates

and can use news articles from later dates more

effectively.

5 Conclusion and Future Work

This paper addresses the problem of date selec-

tion for timeline summarization. Our approach

leverages the interactions between dates via a joint

model based on a date reference graph, improving

on individual scoring of dates.

We capture the interactions between dates from

the number of cross-references between dates, and



System strict setting relaxed-setting

MAP@5 MAP@10 MAP@15 MAP@20 MAP@5 MAP@10 MAP@15 MAP@20

Document Frequency 0.312 0.303 0.299 0.299 0.509 0.550 0.564 0.560

MaxLength 0.349 0.335 0.311 0.287 0.647 0.594 0.566 0.533

Date Frequency 0.555 0.498 0.457 0.427 0.597 0.626 0.625 0.613

(Kessler et al., 2012) 0.567 0.546 0.519 0.491 0.790 0.740 0.723 0.704

(Kessler et al., 2012) (Pub) 0.701 0.620 0.571 0.524 0.912 0.807 0.759 0.731

(Tran et al., 2013a) 0.668 0.565 0.522 0.488 0.740 0.717 0.700 0.673

(Tran et al., 2013a) (Pub) 0.710 0.601 0.551 0.506 0.792 0.771 0.746 0.716

IRWfreq 0.646 0.535 0.471 0.431 0.861 0.770 0.711 0.687

IRWmax topical 0.763 0.647 0.564 0.510 0.887 0.794 0.724 0.685

IRWfreq∗topical 0.737 0.576 0.498 0.448 0.945 0.836 0.762 0.709

IRW|temporal| 0.724 0.587 0.522 0.484 0.699 0.597 0.570 0.564

IRWfreq∗temporal 0.724 0.588 0.527 0.486 0.712 0.622 0.581 0.559

IRWmax topical+freq∗temporal 0.879 0.760 0.658 0.587 0.897 0.842 0.775 0.730

IRWfreq∗topical+|temporal| 0.818 0.677 0.596 0.536 0.928 0.866 0.801 0.745

Table 5: Average MAP@k scores of different systems on 4 news collections

Egypt Libya Syria Yemen

IRWmax topical+freq∗temporal

MAP@5 0.960 1.000 0.713 0.843

MAP@10 0.738 0.969 0.598 0.735

MAP@15 0.600 0.854 0.503 0.676

MAP@20 0.520 0.776 0.433 0.619

Kessler et al. (2012) (Pub)

MAP@5 0.703 0.843 0.257 1.000

MAP@10 0.566 0.759 0.203 0.952

MAP@15 0.507 0.697 0.187 0.894

MAP@20 0.450 0.659 0.171 0.816

Tran et al. (2013a) (Pub)

MAP@5 0.960 0.910 0.257 0.713

MAP@10 0.803 0.836 0.224 0.541

MAP@15 0.665 0.799 0.227 0.514

MAP@20 0.569 0.758 0.212 0.484

Table 6: Stability of our systems vs. competitors

their temporal and topical influences. We present a

novel random walk model that incorporates these

perspectives into connectivity-based computation.

Experimental results on four news events that span

a long time period show that the proposed models

outperform state-of-the art approaches. Even un-

supervised versions of the model perform on a par

with previous supervised methods. We also draw

attention to the necessity to take personal bias into

account, which leads to differences between man-

ually created timelines for the same event — we

encourage future work to always consider several

timelines per event in the way that other NLP work

uses several annotators to create ground truth.

In future work, we will consider a wider range

of events and event types. This will also lead

to considering timelines where the day as unit of

granularity might not be appropriate or where the

unit of granularity might be varying across the

timeline. We will also explore in depth the effect

of size and type of news corpus on resulting time-

lines, research further into the issue of human dis-

agreement in timeline creation and explore human

evaluation of timeline summarization.
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