
©Copyright	JASSS

Daniel	Moyo,	Abdallah	K.	Ally,	Alan	Brennan,	Paul	Norman,	Robin	C.	Purshouse	and	Mark	Strong	(2015)

Agile	Development	of	an	Attitude-Behaviour	Driven	Simulation	of	Alcohol	Consumption	Dynamics

Journal	of	Artificial	Societies	and	Social	Simulation 	18	(3)	10
<http://jasss.soc.surrey.ac.uk/18/3/10.html>

Received:	15-Apr-2014				Accepted:	15-Apr-2015				Published:	30-Jun-2015

Abstract

Whilst	there	have	been	several	advocates	for	the	application	of	software	engineering	(SE)	methodologies	in	the	development	of	agent-based	models	and
simulations	in	the	social	sciences,	the	uptake	of	these	techniques	in	the	research	community	has	been	limited	–	or	if	authors	are	using	such	techniques,	their
use	is	underreported.	Software	engineering	provides	structured	processes	and	techniques	for	designing,	documenting,	implementing	and	testing	computer
software.	Software	processes	have	many	variations,	each	with	their	own	unique	advantages	and	disadvantages	depending	on	the	constraints	(such	as:
human	resources,	time,	finance,	quality)	facing	a	project	team.	This	paper	sets	out	the	methods	of	Scrum	agile	software	development,	and	discusses	the
experience	of	using	Scrum	to	organise	workflow	and	guide	the	development	of	an	agent-based	model	of	alcohol	consumption.	By	employing	Scrum	in
conjunction	with	another	software	engineering	method,	the	Unified	Modelling	Language,	this	paper	represents	a	case	study	in	SE	methods	applied	to	a	real
world	research	problem.

Keywords:
Agile,	Agent-Based,	Alcohol,	Attitudes,	Microsimulation,	Modelling

Introduction

1.1 	Agent-based	modelling	and	simulation	(ABMS)	is	a	method	of	computational	research	with	an	established	history	in	fields	as	diverse	as	economics	(Cristelli	et
al.	2011),	biology	(An	et	al.	2009),	and	social	science	(Gilbert	2007)	where	it	is	often	labelled	agent-based	social	simulation	(ABSS).	Computer	programs	that
perform	ABSS	are	examples	of	simulation	software.

1.2 	In	order	to	be	used	with	confidence	as	a	scientific	instrument,	it	is	important	that	any	software	be	engineered	with	quality	and	rigor;	however,	not	all	developers
of	simulation	software	have	the	experience	or	knowledge	of	best	practices	for	software	development,	although	some	introductory	guides	exist	outside	of	the
software	development	literature	that	are	specifically	related	to	creating	software	for	scientific	research	(Baxter	et	al.	2006;	Wilson	et	al.	2014).

1.3 	The	discipline	relating	to	the	practice	of	principled	software	creation	is	known	as	Software	Engineering	(SE).	Despite	the	wealth	of	available	literature	on	SE,
the	plethora	of	SE	techniques	have	yet	to	receive	widespread	acceptance	and	adoption	within	the	context	of	ABMS	and	ABSS	(Klügl	2003).	Principled	SE	offers
many	benefits	to	ABSS	developers.	Its	overriding	purpose	is	to	facilitate	the	development	of	software,	ensuring	that	software	can	be	used,	updated	and
extended	upon	by	individuals	other	than	those	involved	in	its	development	(Sommerville	2009).	The	term	computer	program	is	often	used	synonymously	with
the	word	software;	however,	software	is	much	more,	and	is	intended	to	represent	all	of	the	relevant	data	and	documentation	associated	with	the	operation	of	a
given	computer	program.

1.4 	In	this	paper	we	will	present	a	case	study	in	the	use	of	a	software	process	known	as	agile	development	for	the	purpose	of	developing	a	computational	model	of
alcohol	consumption.	We	will	first	introduce	software	engineering	and	explain	why	academia	has	unique	challenges	in	relation	to	the	production	and
maintenance	of	software.	We	will	then	describe	some	of	the	techniques	that	agile	methods	provide	that	may	be	of	use	to	those	developing	software	in	an
academic	environment,	with	a	particular	focus	on	a	variant	called	Scrum	(Schwaber	&	Sutherland	2013).

1.5 	After	motivating	the	use	of	complex	systems	methods	for	the	development	of	a	model	of	alcohol	consumption,	we	will	describe	our	modelling	methodology	and
explain	how	Scrum	was	used	as	a	means	of	driving	our	project	through	fostering	stakeholder	engagement	and	team	communication,	organising	work	flow,	and
increasing	developer	productivity.	We	will	then	reflect	on	the	use	of	Scrum	for	our	project.	The	use	of	established	software	engineering	practices	such	as	the
Unified	Modelling	Language	(OMG	2011)	to	document	and	design	simulation	software	will	also	be	discussed	in	the	context	of	our	alcohol	modelling	case	study.
Finally,	we	will	briefly	present	our	vision	for	the	research	theme,	building	upon	our	current	model	to	incorporate	social	dynamics	into	future	software	iterations,
whilst	adhering	to	the	agile	method.

Software	Development,	Processes,	and	Applicability	in	an	Academic	Setting

Software	development	in	academia

2.1 	In	the	academic	world	software	is	developed	for	a	wide	variety	of	purposes,	and	by	individuals	or	groups	with	a	wide	range	of	previous	expertise	in	the
production	of	software.	Researchers	often	develop	code	as	individuals,	or	in	small	teams,	and	perhaps	with	their	own	programming	styles.	These	developers
may	or	may	not	be	aware	of	the	various	methods	and	processes	that	have	been	established	for	best	practice	in	creating,	documenting	and	maintaining
software.	Documentation	is	quite	often	a	necessity	to	enable	future	staff	employed	on	the	project	to	become	familiar	with	a	pre-existing	piece	of	software,
though	planning	and	documenting	software	involves	a	significant	investment	of	time	and	resources.

2.2 	Several	issues	face	those	who	develop	software	for	academic	purposes.	The	unstable	nature	of	academic	software	projects,	with	the	uncertainty	of	funding
timescales	and	staffing	arrangements	(e.g.	via	fixed	term	contracts),	places	a	demanding	time	constraint	on	the	development	process,	and	creates	problems	for
the	future	maintenance	and	extension	of	existing	projects	and	code-bases	(Pitt-Francis	et	al.	2008).

http://jasss.soc.surrey.ac.uk/18/3/10.html 1 21/10/2015

/admin/copyright.html
../../JASSS.html
http://jasss.soc.surrey.ac.uk/18/3/10/moyo.html


2.3 	Developers	make	decisions	on	how	to	create	software	conditional	on	a	range	of	factors,	including	prior	experience	and	current	resources	(time,	human
resources,	finances).	Quite	often	developers,	regardless	of	experience,	are	often	tempted	to	code	without	a	plan	regarding	how	they	will	manage	their
resources;	writing	a	program,	its	functions	and	algorithms	on	the	fly	until	an	apparently	working	program	emerges.	Such	an	approach	has	many	critical
disadvantages.	Firstly,	without	specifying	what	the	software	is	required	to	do,	or	a	list	of	features	(distinguishing	software	characteristics	or	functionality),	it	is	not
possible	to	measure	objectively	whether	or	not	the	software	fulfils	its	purpose.	Secondly,	without	a	description	of	how	or	why	the	software	has	been	designed	or
constructed,	future	users	or	developers	of	the	software	may	struggle	to	maintain,	extend	or	test	it.	Thirdly,	without	any	consideration	for	time-management,	it
becomes	extremely	difficult	to	deliver	a	quality	software	product	with	all	of	the	desired	functionality	and	within	the	duration	of	the	project.	SE	approaches
address	these	issues	by	forcing	developers	to	either	formally	document	the	software	requirements	and	design,	or	by	encouraging	teams	to	work	closely	with
customers	and	stakeholders	to	iteratively	develop	software;	with	customer	or	user	feedback	guiding	future	software	iterations.	SE	also	often	adopts	principles
from	project	management,	providing	methods	for	structuring	the	various	aspects	of	the	development	process.

Software	processes

2.4 	A	plethora	of	software	processes	exist	that	those	developers	with	knowledge	of	SE	might	be	aware	of.	Software	processes	are	frameworks	that	contain	a	set	of
discrete	activities	that	aid	the	software	development	process	(Sommerville	2009),	and	one	of	the	more	traditional	software	process	frameworks	is	the	Waterfall
model.	The	Waterfall	model	is	a	set	of	activities	that	are	tackled	in	a	linear	fashion.	Firstly	a	specification	of	requirements	is	created,	which	are	then	translated
into	a	set	of	software	requirements	and	a	system/architectural	software	design	constructed	to	fulfil	those	requirements.	The	design	is	subsequently	programmed
into	computer	code	in	the	implementation	phase.	Finally,	some	form	of	verification	is	performed	to	ensure	the	implementation	satisfies	the	design	and
requirements.	Verification	activities	can	be	either	static	(e.g.	code	checks,	formal	verification	of	algorithms)	or	dynamic	checks	(e.g.	actively	testing	the
functionality	of	the	program	and/or	its	constituent	components)	(Dasso	&	Funes	2007).

2.5 	It	can	be	argued	that	the	basic	waterfall	model	described	above,	alongside	similar	variants,	is	particularly	inflexible	as	a	paradigm	for	developing	software	when
project	variables	are	subject	to	a	degree	of	change;	as	each	activity	in	the	waterfall	model	must	be	complete	before	moving	onto	the	next.	With	any	software
project,	there	may	be	design	errors,	or	a	change	in	requirements,	and	with	such	a	linear	approach	it	can	become	time-consuming	to	reconstruct	designs,	and
update	all	of	the	relevant	project	documents	and	outputs.	The	dynamic	nature	of	academic	research	has	additional	concerns	that	make	it	incompatible	in	some
respects	with	such	a	linear	approach	to	development.	New	insights	are	often	gleaned,	or	the	research	changes	direction	due	to	new	data	or	hypotheses.	It	then
becomes	more	difficult	to	introduce	design	changes	with	such	a	heavily	front-loaded	approach	to	requirements	specification	and	design.

2.6 	Several	alternative	software	process	models	exist,	including	but	not	limited	to:	rapid	application	development	(RAD),	incremental	development	and	spiral,	each
with	their	own	advantages	and	disadvantages	given	the	specific	context	in	which	they	will	be	used	(Sommerville	2009).	An	alternative	set	of	principles	that	takes
inspiration	from	some	of	these	processes	is	a	group	of	methods	known	as	agile	development	methods,	which	contain	several	techniques	that	can	address	many
of	the	issues	facing	those	developing	software	in	an	academic	setting.

Agile	development	methods

2.7 	The	over-riding	principles	of	agile	development	are	iteration	and	flexibility.	Agile	is	a	people-oriented	approach	that	centres	on	prioritising	the	requirements
dictated	by	the	project's	various	stakeholders	and	agreed	by	the	developers.	Iterative	in	nature,	agile	requires	a	workforce	that	is	dynamic	to	change,	which	can
be	introduced	more	rapidly	with	smaller	development	teams	such	as	those	in	an	academic	setting.	Agile	may	not	be	the	best	method	as	team	sizes	scale,	and
there	are	those	that	believe	agile	methods	are	not	suited	to	larger	development	teams	(Cohen	et	al.	2004).

2.8 	The	values	of	agile	are	documented	in	the	agile	manifesto	(Manifesto	for	Agile	Software	Development	2001),	and	one	of	those	values	relates	to	software
documentation:	agile	practitioners	believe	that	working	software	takes	priority	over	comprehensive	documentation.	Practitioners	of	agile	often	therefore	adopt	a
lean	approach	to	documentation,	and	rely	on	the	knowledge	of	experienced	team	members	to	pass	on	information	relating	to	software	design	and
implementation	to	new	developers	(Pitt-Francis	et	al.	2008).	Such	a	practice	assumes	that	there	will	always	be	someone	working	on	a	project	who	has	intimate
knowledge	of	its	details,	which	may	not	be	the	case	with	academic	projects,	which	may	suffer	from	periods	of	inactivity	or	changing	staffing	arrangements.
Therefore,	it	is	up	to	the	developers	to	decide	on	the	appropriate	level	of	documentation	required,	without	significantly	impacting	on	the	agility	of	the	team.

2.9 	There	are	several	variations	on	the	agile	themed	approach,	each	recommending	its	own	set	of	activities	to	be	performed.	A	recent	systematic	review	describes
the	body	of	agile	development	literature,	and	the	reader	is	directed	there	for	a	more	comprehensive	review	of	the	various	methods	available	(Dybå	and	Dingsøyr
2008).	In	realising	the	simulation	software	presented	later	in	this	paper,	we	took	inspiration	from	the	Scrum	development	method	(Schwaber	&	Sutherland
2013).	Scrum	inherits	many	themes	from	iterative	and	incremental	development	(Larman	&	Basili	2003),	and	the	process	actively	assumes	that	the	development
cycle	will	be	turbulent	and	changing,	and	provides	methods	that	are	adaptive	to	those	changing	project	requirements	(Schwaber	1997).

Scrum

2.10 	Scrum	comprises	three	core	components:	(1)	the	Product	Backlog;	(2)	the	Sprint	Backlog;	and	(3)	the	Working	Software	Increment	(Figure	1).	Firstly	a	Product
Backlog	is	created,	comprising	all	of	the	known	features	required	in	the	final	software	product.	Since	Scrum	is	iterative,	the	Product	Backlog	is	not	a	fixed	set	of
features	or	requirements.	The	backlog	can	be	adapted	depending	on	the	changing	requirements	of	the	relevant	stakeholders,	or	due	to	practical	or	technical
issues,	for	example	bug	fixing	(e.g.	arithmetic,	logic,	or	syntax	errors	in	the	code)	of	the	current	Working	Software	Increment,	or	implementing	previously
unplanned	yet	newly	essential	or	desirable	features.	Secondly,	a	Sprint	Backlog	is	created,	providing	a	prioritised	list	of	the	desired	software	work	items	and
features	for	the	upcoming	Sprint.	A	Sprint	is	simply	a	dedicated	cycle	of	work	with	a	planned	duration	of	time	to	implement	items	from	the	Sprint	Backlog;
typically	a	Sprint	lasts	between	1–4	weeks	in	duration.	During	each	Sprint,	the	project	team	should	ideally	have	a	Daily	Scrum,	a	short	meeting	to	plan	work
activities	for	the	day.	The	Working	Software	Increment	is	the	product	of	each	Sprint	and	should	have	useful	functionality	that	can	be	discussed	by	the	project
team	in	order	to	inform	future	iterations	of	the	software.

2.11 	Alongside	the	various	Scrum	components,	there	are	three	roles	in	any	Scrum	project.	The	Product	Owner	represents	the	customer	or	any	stakeholders	with	an
interest	in	the	final	product.	The	Development	Team	is	an	umbrella	term	for	all	individuals	involved	in	the	software	development	of	the	product.	Finally,	the
Scrum	Master	ensures	that	the	Scrum	process	is	adhered	to,	and	prioritises	features	to	be	included	in	the	next	Sprint	cycle.

2.12 	A	target	is	set	for	each	Sprint,	called	the	Sprint	Goal.	Each	Sprint	Goal	is	agreed	upon	during	a	Sprint	Planning	meeting,	which	is	an	extended	meeting	to
establish	what	will	be	implemented	in	the	next	Sprint,	and	how	the	team	will	accomplish	that	implementation	().	At	the	end	of	a	Sprint,	a	Sprint	Review	is
undertaken	to	evaluate	the	current	Working	Software	Increment,	detailing	to	the	stakeholders	what	has	been	accomplished,	and	providing	an	opportunity	for	the
wider	team	to	be	updated	on	the	current	status	of	the	project.	The	wider	team	represents	those	individuals	who	may	contribute	to	certain	aspects	of	the	project,
perhaps	having	been	called	on	for	their	expertise,	but	are	not	involved	in	the	day-to-day	running	of	the	project	or	have	ultimate	responsibility	for	delivery	of
project	aims	and	objectives.

2.13 	A	Scrum	Planning	Board	is	created	to	keep	track	of	project	tasks	at	various	stages	of	development.	The	planning	board	can	be	implemented	physically,	with	a
whiteboard	and	sticky	notes,	providing	an	excellent	focal	point	for	a	team	to	engage	in	their	Scrum	meetings.	Alternatively,	there	are	a	wide	variety	of	online
tools	and	graphical	packages	that	can	be	used	to	implement	a	Scrum	board	collaboratively	or	otherwise.	Either	the	physical	or	graphical	planning	board	method
provides	a	visual	means	of	keeping	track	of	the	project,	organised	by	Product	Backlog,	Sprint	Backlog,	in	progress	(features	of	current	Sprint)	and	completed

http://jasss.soc.surrey.ac.uk/18/3/10.html 2 21/10/2015



features.	For	a	team	or	lone	developer,	having	a	planning	board	allows	active	visualisation	of	the	flow	of	activities	day-to-day,	providing	a	positive	sense	of
accomplishment	as	tasks	move	from	the	backlog	to	completion.	Should	items	linger	in	the	backlog	for	too	long,	rather	than	become	disheartened,	developers
may	take	the	time	to	re-evaluate	the	status	of	those	items	according	to	whatever	prioritization	method	the	project	team	agrees	on,	thus	maintaining	feature	flow
and	productivity.

2.14 	Scrum	as	a	method	has	been	adopted	by	academics	within	several	different	contexts.	Specific	to	developing	software	for	research,	the	Cancer,	Heart	and	Soft
Tissue	Environment	(CHASTE)	was	developed	to	provide	a	simulation	framework	suitable	for	computational	models	within	biology	(Mirams	et	al.	2013).	The
CHASTE	project	team	recognised	the	pitfalls	of	developing	software	within	academia	and	chose	to	adhere	to	a	test-driven	agile	approach,	focusing	on	activities
such	as	pair	programming	(two	developers	coding	together	at	one	computer)	which	they	argued	helps	team	cohesion	and	promotes	collective	ownership	(Pitt-
Francis	et	al.	2009).	In	another	study,	a	novel	Scrum	approach	to	managing	a	research	group	comprising	a	cohort	of	postgraduate	research	students	was
developed	(Hicks	&	Foster	2010a).	The	approach,	known	as	Scrum	for	Research	(SCORE),	encourages	regular	(three-times-per-week)	status	updates	where
the	whole	group	is	in	attendance,	and	recommends	more	in-depth	on-demand	meetings	for	any	immediate	challenges	that	arise	for	group	members	(Hicks	&
Foster	2010b).	The	authors	report	that	SCORE	increased	group	productivity,	allowed	ideas	to	be	shared	and	elaborated	upon	rapidly,	and	helped	students	cope
with	stresses	relating	to	feeling	a	lack	of	progress	with	their	individual	works.	Within	the	field	of	pedagogy,	Scrum	has	also	been	used	to	structure	a	games
development	course	according	to	a	set	of	design	(pre-production)	and	Sprint	(game	production)	activities,	and	to	promote	teamwork	through	regular	team
interaction	(Schild	et	al	2010).	The	flexible,	iterative	Scrum	approach	suited	the	evolving	nature	of	games	development,	allowing	prototype	development	to	feed
new	requirements	for	the	Product	Backlog,	whilst	organising	the	project	workload	into	Sprints	designed	to	fit	with	the	schedule	of	the	curriculum.	The	diverse
range	of	applicable	areas	in	which	agile	can	be	applied	to	academia	makes	it	a	promising	method	for	software	development	purposes	and	more	generally,
project	management.

Figure	1.	The	Scrum	process.	Stakeholders	(including	developers)	agree	upon	the	required	features	and	functionality	of	the	final	software	product	and	these
comprise	the	Product	Backlog.	The	stakeholders	have	a	Sprint	Planning	meeting	to	determine	those	work	items	from	the	Product	Backlog	that	will	form	the	Sprint
Backlog.	Work	items	are	then	implemented	from	the	Sprint	Backlog	by	the	developers	in	time-boxed	Sprints.	Stakeholders	review	the	Working	Software	Increment

during	a	Sprint	Review	meeting,	and	this	informs	the	development	of	future	software	iterations.

Unified	Modelling	Language

2.15 	As	previously	discussed,	the	traditional	lean	approach	to	documentation	with	agile	assumes	project	members	will	remain	to	impart	their	knowledge	to	future
developers,	which	whilst	ideal	is	not	always	possible	in	academia.	In	these	instances,	documentation	is	necessary	to	ensure	the	long-term	viability	of	the	project
independent	of	specific	developers.

2.16 	One	method	of	describing	and	documenting	software	is	to	use	the	Unified	Modelling	Language	(UML)	(OMG	2011).	UML,	traditionally	used	in	the	field	of
software	engineering,	has	14	separate	diagrams	(as	of	UML	v2.4)	that	can	be	used	to	visually	model	a	system,	its	objects	and	their	relationships.	The	utility	of
each	and	every	UML	diagram	is	a	matter	of	debate,	and	their	utility	is	ultimately	down	to	the	belief	of	the	modeller	in	each	diagram's	ability	as	a	communicative
medium.	There	are	several	proponents	of	UML	who	describe	both	benefits	and	pitfalls	of	UML	notation	for	the	design	of	ABMs	of	a	variety	of	systems	(Bauer	&
Odell	2005;	Bersini	2006,	2012;	Read	et	al.	2009;	Alden	et	al.	2012).

Unit	testing

2.17 	Verification,	the	act	of	ensuring	that	software	adheres	to	its	specification,	is	an	important	activity	in	the	development	of	any	software	–	this	is	particularly
important	when	the	proposed	software	is	to	be	used	for	the	purposes	of	scientific	experimentation.	Unit	testing	is	one	method	of	software	verification,	and	is
central	to	many	software	development	methodologies	including	the	agile	approach	known	as	Extreme	Programming	(XP).	Unit	tests	can	be	written	to	determine
whether	the	various	methods	and	functions	that	comprise	the	software	operate	as	expected	and	required.	Unit	tests	also	may	provide	valuable	insight	to
developers	new	to	an	existing	software	project.	Tests	are	generally	designed	to	expose	the	software	to	both	valid	and	invalid	input	data,	and	act	in	part	as	a
form	of	documentation	for	the	software,	or	at	least	for	the	constituent	components	for	which	unit	tests	have	been	written.

Revision	control

2.18 	Another	common	practice,	essential	for	the	preservation	and	maintenance	of	code	during	the	software	project	life	cycle,	is	revision	control	(RC),	allowing	the
storage,	management	and	documentation	of	changes	to	code	(Osborne	et	al.	2014).	The	key	benefit	of	RC	is	that	it	provides	a	stable	means	of	modifying	a
project's	code	base	without	overwriting	previous	versions	of	that	code.	This	is	achieved	by	creating	new	versions	of	a	set	of	initial	files,	called	a	revision.	Each
individual	file	can	be	reverted	to,	or	merged	with,	any	previous	revision.	Should	the	developer	have	a	body	of	code	associated	with	a	working	piece	of	software,
to	avoid	breaking	the	existing	code,	a	branch	of	duplicate	code	can	be	create	from	the	existing	code	base.	Updates	are	then	applied	to	the	new	branch	and
these	changes	can	be	later	merged	into	the	original	branch,	subsequent	to	the	relevant	testing	and	verification,	or	be	kept	as	stand-alone	software	versions
called	forks.	Some	RC	tools	provide	the	ability	to	chart	the	evolution	of	a	software	product	visually,	providing	a	valuable	resource	to	current	and	future

http://jasss.soc.surrey.ac.uk/18/3/10.html 3 21/10/2015



developers,	detailing	all	of	the	software	revisions	and	forks.

2.19 	Online	source	code	repositories	are	available	for	RC,	and	several	of	these	allow	users	to	open	up	their	code	to	the	public,	lending	transparency	to	the	scientific
process	by	allowing	researchers	to	more	easily	share	their	code	and	provide	insight	into	its	development	(Prlic	&	Procter	2012),	and	also	facilitating
reproducibility	of	simulation	research	(Sandve	et	al.	2013).	Commonly	used	repositories	include	GitHub	(GitHub,	Inc.	www.github.com)	and	Bitbucket	(Atlassian
www.bitbucket.org).	Repository	providers	have	their	own	individual	pricing	strategies	and	offer	a	range	of	additional	features,	though	most	have	a	free	to	use
option	available.

Complex	Systems	Modelling	of	Alcohol	Consumption	Dynamics:	A	Case	Study	in	Scrum

3.1 	The	research	detailed	in	this	paper	represents	a	work	package	within	an	academic	research	project:	Complex	Systems	Modelling	of	Alcohol	Consumption
Dynamics	in	the	British	Population	(CSMACD),	funded	by	the	UK	Economic	and	Social	Research	Council.	The	aim	of	the	work	package	was	to	identify
empirically	validated,	causally-driven,	micro-simulations	that	bridge	the	gap	between	micro-social	(individual-level)	and	macro-social	(population-level)
knowledge	of	the	dynamics	of	drinking

3.2 	Whilst	computational	models	are	relatively	well	established	within	the	field	of	alcohol	policy	appraisal,	contemporary	models	tend	to	assume	that	consumption
change	is	purely	a	function	of	ageing	(Chisholm	2004;	Hollingworth	et	al.	2006;	Purshouse	et	al.	2014).	However	recent	age-period-cohort	analyses	have
indicated	strong	birth	cohort	and	period	effects:	i.e.	today's	45-54	year	olds	do	not	exhibit	consumption	patterns	similar	to	45–54	year	olds	in	previous	decades
(Meng	et	al.	2014	).	Furthermore,	when	considering	behaviour	change	arising	from	an	intervention,	these	contemporary	models	rely	on	neoclassical	economics
–	specifically,	they	assume	that	individual	drinkers	behave	rationally,	have	access	to	perfect	information,	and	are	able	to	maximize	their	own	utility	subject	to	a
budget	constraint.	The	validity	of	these	assumptions	as	a	credible	generating	mechanism	for	drinking	change	is	questionable	(Hedström	2005)	and	ignore	wider
theories	on	personal	and	social	factors	that	drive	alcohol	as	a	complex	system	(Holder	1998;	Room	et	al.	2009).	In	summary,	no	quantitative	model	has	been
established	that	convincingly	explains	how	individual-level	drinking	can	manifest	the	observed	population-level	trends	in	alcohol	consumption	patterns.

3.3 	We	hypothesise	that	ABMS	can	allow	us	to	provide	new	insight	into	historical	patterns	of	alcohol	consumption,	together	with	potential	predictive	capability	of
future	trends,	by	allowing	us	to	investigate	how	individual	behaviours	and	social	interactions	might	influence	the	system.	Such	an	approach	would	harness	the
benefits	of	the	agent-based	approach	within	a	social	science	context	(Bonabeau	2002;	Gilbert	2008)	via	the	emergence	of	complex	macro-level	patterns	(i.e.
alcohol	consumption	trends)	arising	from	the	drinking	behaviour	of	interacting	individuals	at	the	micro-level	(Bonabeau	2002;	Gilbert	2004;	Hedström	2005).

3.4 	ABM	represents	a	powerful	analytical	tool	to	understand	both	causality	and	emergence	within	the	social	sciences	(Hedström	2005)	and	agent-based	social
network	models	have	been	used	in	a	number	of	alcohol	related	studies	(Fowler	2009;	Ormerod	&	Wiltshire	2009;	Giabbanelli	&	Crutzen	2013).	Our	initial	goal
was	to	ensure	that	our	model	was	data-driven	and	constructed	using	evidence-based	assumptions	regarding	individuals	and	the	psychological	drivers	of	alcohol
consumption,	before	moving	towards	a	model	including	social	interaction.	The	reason	for	this	is	that	in	order	for	any	complex	systems	model	to	be	accepted
within	the	alcohol	field,	and	to	gain	acceptance	for	alcohol	policy	appraisal,	it	needs	to	have	strong	data-driven	and	evidence-based	foundations	(Katikireddi	et
al.	2014).	Once	such	foundations	are	in	place,	we	can	then	incorporate	elements	of	theory	and	hypothesis-driven	experimentation	regarding	social
connectedness,	social	establishments	and	frameworks,	to	determine	how	interactions	influence	drinking	behaviour,	as	it	is	argued	that	a	combination	of	both
social	psychology	and	social	interaction	theory	can	provide	a	greater	level	of	explanatory	power	with	regards	to	sociological	research	(Hedström	2005).

Am	agile	approach	to	complex	systems	modelling	of	alcohol	consumption	dynamics

3.5 	An	agile	approach	was	chosen	for	the	software	development	stages	of	the	project	for	two	reasons.	Firstly,	the	project	was	designed	to	use	secondary	data
(principally	from	the	UK	Data	Archive)	that	was	not	collected	for	the	specific	research	questions	to	be	addressed	by	the	study.	Consequently,	parameterisation
issues	were	anticipated	when	attempting	to	extract	model	inputs	for	theory-led	(and	typically	data	hungry)	ABMs	(Boero	&	Squazzoni	2005).	These	issues
induce	attempts	to	negotiate	or	balance	modelling	requirements	relating	to	theory	on	the	one	hand	and	empirical	validation	on	the	other:	in	other	words,
requirements	will	change.	Secondly,	the	project	had	a	short	(12	month)	time	constraint,	requiring	an	approach	that	allowed	for	rapid	prototyping	during	the
development	stages	(8	months).	We	also	wanted	to	develop	a	software	framework	that	is	extensible,	enabling	the	project	to	be	maintained	in	future	research
efforts.

The	project	team

3.6 	The	project	team	initially	consisted	of	four	members:	the	principal	investigator	and	lead	modeller	(Robin),	the	modeller	and	lead	developer	(Daniel)	and	two
domain	experts	–	Paul,	our	social	psychologist,	and	Alan,	a	specialist	in	modelling	and	decision-making	in	the	health	domain.	These	four	members	of	our
interdisciplinary	project	team	are	the	key	stakeholders	in	the	project.	Alan,	Daniel,	Robin	and	Paul	decided	the	features	for	our	Product	Backlog.	Our	primary
developer	Daniel	acted	as	the	Scrum	master	and	prioritised	features	for	the	next	Sprint.	Two	additional	researchers	(Abdallah	and	Mark)	were	called	upon	for
their	modelling	expertise	since	the	inception	of	the	project,	and	were	considered	part	of	the	wider	project	team,	and	did	not	play	an	active	role	in	the	Scrum
process,	though	were	kept	informed	as	to	the	status	of	the	project	as	it	progressed.

Prioritising	software	features

3.7 	To	prioritise	all	possible	model	features,	we	adopted	the	Must	Should	Could	Would	(MoSCoW)	method	(Clegg	&	Barker	1994).	MoSCoW	is	designed	to	ensure
that	both	developers	and	project	stakeholders	have	agreed	upon	the	importance	of	the	features	of	a	piece	of	software.	MoSCoW	priority	in	relation	to	CSMACD
model	development	is	as	follows:

3.8 	Must	have	(MH)	features	are	those	that	are	essential	for	our	alcohol	model	to	function,	and	to	be	able	to	simulate	an	output	measure	related	to	consumption.
These	features	include	those	relating	to:	loading	and	parameterisation	from	individual-level	respondent	data,	algorithms	to	impute	data	from	additional	data	sets,
functions	to	update	the	states	in	the	model,	and	methods	required	to	extract	useful	data	from	the	simulation.

3.9 	Should	have	(SH)	features	are	those	that	are	not	critical	to	the	operation	of	our	alcohol	model;	however,	they	should	eventually	be	implemented.	These	can
include,	for	example,	additional	output	metrics	(see	section	3.4);	functionality	to	perform	additional	analyses	on	the	model,	such	as	analysing	simulator
robustness	to	parameter	perturbation;	or	implementing	optimisation	algorithms	to	explore	and	optimise	system	parameterisations	(Purshouse	et	al.	2014).
Refactoring	may	also	feature	as	an	SH	activity.	Refactoring	is	the	act	of	restructuring	computer	code	without	changing	the	overall	function	of	that	code,	and	is	a
valuable	and	required	activity	for	any	developer.	Small	scale	refactoring,	perhaps	to	improve	the	readability	of	a	method	or	algorithm,	is	required	to	facilitate	re-
usability	and	extensibility	of	existing	code.	More	large	scale,	and	therefore	time	consuming,	refactoring	activities	may	be	required,	though	their	importance	may
be	lower	than	more	pressing	features,	and	would	thus	fall	into	a	lower	category	of	priority.

3.10 	Could	have	(CH)	features	are	desirable	but	can	be	omitted	if	project	resources	or	time	are	scarce.	As	highlighted	as	a	SH	feature,	refactoring	could	also	be	a
marked	as	a	CH	feature	if	the	activity	requires	substantial	effort	and	resource	to	accomplish.	Note	that	since	refactoring	is	not	the	act	of	changing	the	function	of
the	code,	it	is	up	to	the	developer	to	evaluate	the	priority	of	such	an	activity.	For	example,	if	an	algorithm	had	numerous	lines	of	duplicate	code,	a	developer
might	wish	to	refactor	to	remove	the	superfluous	code	from	the	implementation,	thus	improving	maintainability	of	the	code	and	perhaps	indirectly	the	efficiency

http://jasss.soc.surrey.ac.uk/18/3/10.html 4 21/10/2015

www.github.com
www.bitbucket.org


of	their	code	through	resource	recovery.	Depending	on	how	detrimental	the	original	implementation	is	to	the	operation	of	the	program,	such	a	refactoring	activity
might	be	more	suited	to	a	CH	activity	than	a	SH	activity,	especially	if	development	human	resources	are	scarce.

3.11 	Would	have	(WH)	features	are	those	that	might	be	useful	for	future	increments	of	the	software,	but	that	are	not	currently	scheduled	to	be	taken	forward
(Brennan	2009).	They	may	be	similar	to	CH	features,	but	that	are	identified	as	outwith	the	scope	of	the	development	process	due	to	project	constraints.

3.12 	Figure	2	provides	a	basic	example	of	a	Scrum	planning	board	incorporating	the	MoSCoW	method,	with	some	sample	features	from	our	project.	It	was
implemented	physically	with	a	whiteboard	and	sticky	notes.

Figure	2.	A	sample	Scrum	planning	board	with	MoSCoW	prioritised	work	items.	Intuitively,	one	would	assume	that	all	must	have	items	are	implemented	first;
however,	due	to	the	iterative	nature	of	agile,	and	ever	changing	product	features,	not	all	must	have	features	or	work	items	are	identified	early,	and	can	often	be

added	later	in	the	development	process	with	different	priorities.

Overview	of	the	Sprints

3.13 	Prior	to	our	first	Sprint,	we	performed	a	scoping	study,	which	involved	a	review	of	the	literature	relating	to	established	behaviour	models	from	psychology,	and
also	an	extensive	search	through	the	data	literature	to	find	data	that	could	be	used	to	parameterise	the	first	iteration	of	our	model.	This	scoping	study	and	the
construction	of	our	domain	model	took	place	over	the	first	3	months	of	the	project,	we	report	on	the	development	Sprints	for	the	remaining	9	months	of	the
project	for	which	we	produced	a	working	model	after	each	iteration.

3.14 	We	chose	to	implement	an	attitude-behaviour	model	that	takes	inspiration	from	the	Theory	of	Planned	Behaviour	(TPB)	(Azjen	1991).	TPB	presumes	that
behaviour	is	determined	by	an	intention	to	perform	that	behaviour,	in	our	case	engaging	in	a	drinking	occasion	or	drinking	to	intoxication.	Intention	itself	is
determined	by	three	core	components:	attitudes	towards	that	behaviour	based	on	the	individual's	(positive	or	negative)	evaluations	of	the	likely	outcomes	of	the
behaviour,	subjective	norms	relating	to	how	an	individual's	peer	group	(parents,	partners,	friends)	feels	about	the	individual	performing	the	behaviour,	and	lastly
perceived	behavioural	control	which	relates	to	the	perceptions	the	individual	has	regarding	their	ability	to	perform	the	behaviour,	as	well	as	constraints	relating	to
performing	that	behaviour,	such	as	income	(which	impacts	on	affordability	of	alcohol).

3.15 	In	creating	any	computational	model,	parameterisation	from	data	sources	is	vital	from	both	a	practical	and	a	validation	perspective.	In	the	context	of	our
research,	parameterisation	takes	the	form	of	using	individual-level	respondent	data	to	operationalise	a	model	of	TPB.	Upon	analysis	of	the	available	resources	in
the	UK	Data	Archive,	it	became	evident	that	we	could	not	ideally	parameterise	the	TPB.	The	only	population-wide	source	of	alcohol	related	attitudinal	variables
is	the	Offending	Crime	and	Justice	Survey	2003	(Home	Office	2008).	The	decade	between	2000	and	2010	has	seen	several	interesting	population-level
phenomena	emerge	(e.g.	a	rise	and	subsequent	fall	in	consumption	for	the	general	population)	and	so	this	period	of	time	was	deemed	a	useful	window	over
which	to	simulate.

http://jasss.soc.surrey.ac.uk/18/3/10.html 5 21/10/2015



3.16 	Analysis	of	the	OCJS	data	set	revealed	variables	detailing	the	self-reported	frequency	of	drinking	(fdrink)	and	frequency	of	drinking	to	intoxication	(fdrunk)
status.	Intoxication	is	an	important	area	of	study	as	it	is	associated	with	a	variety	of	acute	alcohol	related	harms	including:	road	traffic	accidents	(Ridolfo	&
Stevenson	2001),	both	unintentional	(English	et	al.	1995)	and	intentional	(English	et	al.	1995;	Single	et	al.	1996)	injuries,	and	also	absenteeism	from	work
(Roche	et	al.	2008).	However	fdrunk	was	deemed	of	less	priority	in	the	Sprint	as	historical	fdrunk	data	for	validation	purposes	is	not	available.

3.17 	For	the	platform	implementation	of	our	model,	subsequent	to	an	initial	scoping	study	and	domain	analysis,	we	opted	to	code	the	model	without	reliance	on
existing	agent-based	modelling	platforms	or	libraries.	Whilst	the	use	of	existing	libraries	might	offer	efficiency	benefits	in	terms	of	code	reuse,	we	preferred	the
additional	flexibility	offered	by	a	fully	bespoke	solution	and	had	the	programming	skills	in	the	team	to	make	such	an	approach	feasible.

3.18 	In	all,	we	undertook	six	development	sprints	during	the	research	effort.	The	balance	of	time	was	spent	writing	manuscripts	(including	for	this	Special	Issue	of
the	Journal	of	Artificial	Societies	and	Social	Simulation),	conference	visits	and	separate	macro-level	dynamic	modelling	for	both	the	current	project	and	an
additional	collaborative	project	with	research	partners.	We	summarize	the	six	sprints	below.

First	iteration:	an	object-oriented	agent-based	microsimulation	of	drinking	frequency

Sprint	goal

3.19 	The	OCJS	was	chosen	as	a	data	set	to	operationalise	TPB	in	our	model,	with	consumption	represented	in	the	dataset	by	an	individual's	fdrink.	The	goal	for	this
Sprint	was	to	develop	an	agent-based	model	recreating	fdrink	trends	in	England	between	2003	and	2009.

Sprint	planning	and	the	Sprint

3.20 	In	our	project,	each	Sprint	was	time	boxed	with	a	duration	of	one	month.	For	this	Sprint,	agents	within	our	ABM	represent	individual	respondents	from	the
OCJS,	and	encode	traditional	demographic	variables	(age,	gender,	education),	as	well	as	TPB-related	agent	parameters:	alcohol	related	attitudes	(individual
drinks	to:	feel	relaxed,	forget	problems,	feel	friendly/outgoing,	get	drunk);	a	proxy	for	norms	(count	of	the	types	of	groups	an	individual	drinks	with);	and	proxies
for	perceived	control	(specific	social	roles	held	by	the	individual,	the	number	of	unique	places	the	individual	normally	drinks	in,	and	income).	We	define	social
roles	as	parenthood	(dependent	child	in	household),	partnership	(cohabitation)	and	paid	labour	(holding	a	salaried	income)	–	denoted	PPP.

3.21 	During	the	Scrum	Planning	meeting,	the	team	took	advice	from	a	statistical	expert	(Abdallah)	who	identified	that	a	cumulative	logit	model	(CLM)	(Agresti	2013)
would	be	suitable	for	modelling	changes	in	the	categorical	fdrink	variable.	Based	on	this	discussion,	several	features	required	to	implement	a	CLM	were	added
to	our	Product	and	Sprint	Backlogs.

3.22 	To	introduce	dynamics	to	the	CLM,	input	parameters	must	vary.	Aging	is	an	obvious	change	that	would	occur	during	the	simulation;	however,	aging	could	only
go	so	far	in	explaining	the	dynamics	of	agent	drinking	states.	We	therefore	anticipated	the	need	for	alternative	sources	of	dynamics,	such	as	changes	in:
education,	income,	and	social	role	statuses.	These	variables	can	be	measured	empirically,	though	changes	in	them	are	driven	by	wider	social	phenomena,
therefore	predicting	variable	trajectories	is	not	a	trivial	problem.	As	a	result,	the	stakeholders	(Alan,	Daniel,	Paul	and	Robin)	agreed	on	features	designed	to
incorporate	exogenous	inputs	into	our	model	using	empirically	observed	demographic	and	social	role	trajectories.	The	trajectory	feature	was	deemed	a	SH
feature,	as	the	model	could	function	without	such	exogenous	inputs;	it	would	just	lack	face	validity	with	regards	to	individual	dynamics.

3.23 	Trajectories	were	acquired	from	a	secondary	data	set,	the	British	Household	Panel	Survey	(BHPS)	(ISER	2010).	The	BHPS	is	a	longitudinal	study	with
available	data	having	been	acquired	between	1991	and	2009.	These	data	provide	trajectories	for	education	(NFQ	levels)	(Ofqual	2011),	income,	as	well	as	the
three	social	roles.	Upon	initialisation,	the	simulation	matches	agents	(OCJS	individuals)	to	trajectories	extracted	from	the	BHPS	based	on	an	exact	set	of	criteria
(age-group,	gender,	education,	income	and	PPP	status).	Individual	matches	are	then	sampled	from	at	run-time	and	the	trajectories	extracted	from	those
matches	provide	dynamics	for	the	underlying	CLM.

3.24 	The	CLM	is	fitted	in	R	3.0.2	and	the	intercepts	and	coefficients	are	used	as	parameters	for	the	agent-based	simulation.	The	ABM	is	implemented	in	Python
v2.7.5.	For	the	case	study	outlined	in	this	paper	we	utilise	Bitbucket	as	the	company's	free	pricing	package	also	offers	a	private	repository	option	accessible	to	5
individuals,	which	was	useful	when	our	software	was	in	the	early	stages	of	development	and	not	ready	to	be	shared.	All	code	related	to	this	project	can	be
cloned	from	our	Bitbucket	repository	(https://pyabm@bitbucket.org/pyabm/pyabm.git).

Sprint	review

3.25 	The	first	iteration	was	completed	with	no	major	problems;	however,	the	matching	algorithm	had	a	performance	issue.	The	algorithm	was	a	crude
implementation	that,	for	every	individual	in	the	OCJS	data	set,	then	searched	every	individual	in	the	BHPS	data	set	to	find	a	match,	storing	matches	for	each
individual.	Such	an	approach	is	computationally	expensive	and	involves	N*M	comparisons	(length	of	BHPS	*	length	of	OCJS),	and	led	to	a	significant	increase
in	simulation	initialisation	time.	As	a	result,	we	decided	to	add	a	CH	feature	to	the	next	Sprint,	which	was	to	tune	the	matching	algorithm	to	improve	simulator
performance.

Second	iteration:	parameter	estimation	of	the	TPB	model

3.26 	A	hypothesis	we	were	interested	in	exploring	was	whether	there	existed	multiple	models	that	could	explain	historical	drinking,	but	which	could	render	very
different	future	trajectories	of	consumption	–	based	on	ideas	in	Byrne	(1998).	To	this	end,	we	conceived	a	second	sprint	to	seek	out	such	models	using
computational	intelligence	methods.

Sprint	goal

3.27 	The	goal	was	to	develop	an	evolutionary	optimizer,	incorporating	niching	(Goldberg	&	Richardson	1987),	capable	of	identifying	parameterisations	of	the	CLM
that	describe	observed	fdrink	dynamics	between	2003–2009.

Sprint	planning	and	the	Sprint

3.28 	The	research	team	–	specifically	Robin	–	has	expertize	in	evolutionary	optimization	and	has	an	existing	toolbox	developed	for	the	Matlab	environment.	Given
the	time	constraints	of	the	sprint,	we	decided	to	re-use	functionality	from	the	toolbox.	Since	the	ABM	was	written	in	python,	an	early	task	in	this	Sprint	for	Daniel
was	to	develop	a	Matlab	wrapper	for	the	ABM.	In	parallel,	Robin	developed	the	Matlab	scripts	and,	with	the	wrapper	in	place,	performed	the	analysis.

Sprint	review

3.29 	The	optimizer	was	able	to	find	a	family	of	models	that	could	recreate	historical	drinking	trends.	The	one-step-ahead	predictions	of	each	model	were	combined

http://jasss.soc.surrey.ac.uk/18/3/10.html 6 21/10/2015

https://pyabm@bitbucket.org/pyabm/pyabm.git


to	provide	an	ensemble	forecast	for	fdrink	in	2010.	The	method	and	results	have	been	published	in	Purshouse	et	al.	(2014).

Third	iteration:	modelling	drinking	to	intoxication

3.30 	Having	established	a	baseline	model	that	was	capable	of	simulating	patterns	in	fdrink	over	time,	we	were	now	interested	in	introducing	additional	fdrunk
functionality,	and	in	improving	the	performance	of	the	matching	algorithm.

Sprint	goal

3.31 	The	Sprint	Goal	was	to	introduce	fdrunk	functionality	into	the	existing	model,	and	implement	various	code	optimisations	to	improve	the	performance	of	the
simulation.

Sprint	planning	and	the	Sprint

3.32 	The	matching	algorithm	code	optimisation	was	upgraded	from	a	CH	to	a	MH	feature,	as	the	performance	degradation	of	the	original	algorithm	increased	the
time	required	to	test	and	run	the	model.	A	caching	approach	to	the	matching	criteria	was	used	to	reduce	the	complexity	of	the	algorithm.

3.33 	Implementing	the	fdrunk	functionality	involved	fitting	a	CLM	to	predict	probabilities	of	fdrunk	states	conditional	on	fdrink.	Erroneous	data	was	removed,	for
example,	respondents	who	report	an	fdrink	of	once	a	month	yet	an	fdrunk	of	most	days.	Additional	intercept	and	coefficient	parameters	were	added	to	the
simulation,	along	with	implementations	of	functions	to	calculate	fdrunk	probabilities	and	to	sample	from	them.

Sprint	review

3.34 	During	the	previous	sprint,	the	team	undertook	a	planned	research	visit	to	the	Centre	for	Addiction	and	Mental	Health	(CAMH),	Toronto,	to	engage	alcohol
epidemiological	experts	in	the	project.	A	new	MH	requirement	emerged	from	the	visit:	ensuring	that	the	model	–	amongst	its	drinking	patterns	outputs	–	included
a	measure	of	alcohol	exposure	(in	grams	of	ethanol	per	day).	Such	a	measure	would	enable	the	model	to	be	linked	to	existing	epidemiological	models	that
forecast	volumes	of	alcohol-related	harm	for	policymakers.	Whilst	this	had	been	a	CH	requirement	originally,	the	team	at	CAMH	felt	that	the	new	modelling	was
sufficiently	advanced	and	useful	for	work	on	the	epidemiological	interface	to	be	accelerated.	By	raising	the	requirement	to	MH,	the	project	would	be	well-
positioned	for	future	use	as	a	tool	for	policy	appraisal	relating	to	reducing	alcohol-related	harms.

Fourth	iteration:	introducing	measures	of	consumption

3.35 	We	had	initially	considered	incorporating	a	consumption	metric	into	our	model	during	the	original	scoping	study;	however,	we	could	not	find	a	data	set
containing	both	the	alcohol	related	attitudinal	data	and	consumption	data.	As	a	result	we	focussed	mainly	on	patterns	of	drinking	and	using	the	OCJS	as	our
primary	data	set.	After	feedback	from	CAMH	we	decided	to	revisit	the	issue	of	consumption.

Sprint	goal

3.36 	The	fourth	iteration	of	the	model	aimed	to	incorporate	an	alcohol	exposure	measure	into	the	ABM.	Average	consumption	data	is	present	in	a	variety	of	studies,
for	example	the	Health	Survey	for	England	(HSE)	(NatCen	and	UCL	2011)	and	the	General	Lifestyle	Survey	(GLF),	though	not	present	in	our	primary	data	set,
the	OCJS.	A	third	data	set	was	therefore	required	to	allow	us	to	impute	plausible	levels	of	exposure	for	individuals.	We	decided	to	change	our	primary	data	set
to	the	GLF	for	two	reasons.	Firstly,	the	survey	sample	size	is	greater	than	the	OCJS	after	ensuring	data	completeness,	giving	a	more	representative	population
sample.	Secondly,	the	GLF	contains	mean	weekly	alcohol	units	as	a	consumption	metric,	allowing	us	to	estimate	a	model	that	we	could	use	to	predict	year-on-
year	consumption.

Sprint	planning	and	the	Sprint

3.37 	Drawing	on	further	statistical	expertise	(Mark),	we	constructed	a	Box-Cox	regression	(BCR)	model	that	describes	exposure	for	GLF	individuals	based	on	their
age,	age	group,	gender,	education,	income,	parenthood,	partnership,	paid	labour,	fdrink,	and	various	interaction	terms	between	these	variables	as	covariates.
The	BCR	model	was	fitted	in	R	3.0.2.	Change	in	exposure	is	then	driven	by	changes	in	demographics	and	the	predicted	year-on-year	drinking	frequency.	As	a
SH	feature	in	the	Sprint	Backlog,	we	aimed	to	implement	the	BCR	model	in	python	so	that	consumption	levels	were	calculated	within	the	ABM	rather	than
performed	afterwards.

3.38 	With	the	GLF	now	acting	as	the	primary	data	set,	TPB-related	agent	parameters	were	imputed	from	the	OCJS	using	a	similar	matching	approach	to	that
previously	described.	Life-course	trajectories	were	imputed	from	the	BHPS	as	previously	described.

3.39 	We	previously	described	a	requirement	for	our	project	that	we	document	the	function	of	our	alcohol	model	in	order	to	ensure	the	long-term	viability	of	our
software	independent	of	developer.	Whilst	we	do	not	retrospectively	create	extensive	software	requirements	documents,	we	do	utilise	modelling	tools	to
describe	our	simulation	software,	specifically	UML.	The	class	diagram	in	Figure	3	depicts	a	simple	relationship	between	the	two	core	system	classes	(excluding
a	utility	class	for	data	input/output	etc.).	Figure	3	also	contains	two	activity	diagrams	that	concisely	depict	the	sequence	of	activities	or	events	that	drive	the
internal	initialisation	and	operation	of	both	the	simulation	and	its	multiple	agent	objects.

Sprint	review

3.40 	One	of	our	intentions	was	to	implement	the	BCR	model	in	python,	though	because	of	the	in-Sprint	improvements,	including	stepwise	model	selection	by	AIC
and	correlated	errors,	and	the	collaborative	effort	with	Mark	who	is	familiar	with	R	and	not	python,	we	decided	to	downgrade	the	priority	of	re-implementing	BCR
into	the	python	model	to	a	CH	feature.

http://jasss.soc.surrey.ac.uk/18/3/10.html 7 21/10/2015



Figure	3.	Class	and	activity	diagrams	representing	simulation	and	agent	objects	for	model	iteration	three.

Fifth	iteration:	simulating	attitude	change

3.41 	We	were	unable	to	identify	a	UK	data	source	which	tracks	attitude	variables	related	to	alcohol	consumption	over	time.	This	is	unfortunate	since,	for	alcohol,
attitudes	have	been	shown	to	be	strongly	correlated	with	behaviours	in	TPB	studies	(Cooke	et	al.	2014).	We	decided	to	revisit	the	issue	of	attitude	change	and
determine	any	alternative	means	of	modelling	attitudes.

Sprint	goal

3.42 	The	goal	of	this	sprint	was	to	adopt	two	methods	for	dynamic	individual-level	attitude	change.	Firstly,	the	aim	was	to	adopt	a	scenario	analysis	approach	using
simple	assumptions	about	attitude	responses	of	individuals	either	increasing,	decreasing,	or	varying	over	time.	Secondly,	using	the	cross-sectional	data	from	the
OCJS	in	2003,	we	constructed	Markov	models	to	identify	transition	probabilities	for	attitude	responses	conditional	on	respondent	age.

Sprint	planning	and	the	Sprint

3.43 	The	scenario	analysis	approach	to	attitude	change	was	conceptually	the	most	straightforward	of	our	two	approaches	to	implement,	though	is	evidently	not	data-
driven	in	any	respect.	The	motivation	for	exploring	this	method	of	attitude	change	was	to	determine	if	such	blanket	assumptions	regarding	attitude	change	could
more	accurately	explain	observed	fdrink	and	consumption	patterns	over	the	baseline,	and	to	also	provide	a	comparison	against	the	second	approach	using
transition	probabilities.

3.44 	The	transition	probabilities	approach	was	a	more	complex	modelling	endeavour,	and	involved	careful	consideration	of	transition	rules	(structure	of	allowed
transition	matrices)	for	the	four	attitudes	included	in	our	model,	each	with	four	point	attitude	responses	ranging	from	0	(disagree	strongly)	to	3	(agree	strongly).
A	parameter	estimation	technique	was	employed,	similar	to	the	method	described	in	Purshouse	et	al.	(2014),	to	search	over	a	range	of	transition	probabilities
that	could	explain	the	OCJS	2003	observed	attitude	responses	grouped	by	age.

http://jasss.soc.surrey.ac.uk/18/3/10.html 8 21/10/2015



Sprint	review

3.45 	We	were	able	to	find	transition	probabilities	to	explain	the	OCJS	2003	data,	however,	including	those	into	our	model	was	insufficient	for	the	model	to	accurately
explain	dynamics	in	fdrink	and	consumption	across	the	simulated	period.	The	same	was	true	for	two	of	the	three	scenarios	in	our	scenario	analysis.	The	model
which	included	decreasing	attitude	responses	(increasingly	negative	responses	regarding	alcohol	for	all	attitude	variables)	proved	the	most	able	at	capturing
trends	in	fdrink,	particularly	the	decrease	in	most	days	drinking	seen	over	the	past	decade	(the	heaviest	drinking	category).	The	cross-sectional	attitude	model
is	the	more	data-driven	of	the	approaches,	but	the	failure	of	such	a	model	to	replicate	observed	data	reveals	one	of	two	things;	that	either	the	cross-sectional
data	is	not	representative	of	attitude	change,	or	that	the	model	is	inherently	missing	certain	factors	to	allow	it	to	more	accurately	predict	history.

Sixth	iteration:	accounting	for	stochastic	variance

3.46 	Previous	research	during	our	second	Sprint	had	demonstrated	a	use	for	evolutionary	parameter	estimation	for	finding	different	candidate	operationalisations	of
our	microsimulation	model	that	help	to	explain	observed	historical	drinking	frequency	data,	however,	our	findings	did	not	account	for	stochastic	uncertainty	in
the	underlying	microsimulation,	and	also	did	not	evaluate	consumption.	Aleatory	analysis	(Alden	et	al.	2012)	later	determined	a	minimum	of	250	replicate
microsimulation	runs	in	order	to	mitigate	the	effects	of	stochastic	uncertainty	in	the	microsimulation,	and	after	performing	250	simulation	runs	we	can	generate	a
stable	median	prediction	of	frequency	of	drinking.	Therefore,	for	a	given	set	of	initial	parameters,	our	consumption	estimator	needed	to	be	able	to	process	data
from	250	simulation	runs	to	find	the	most	representative	model	outputs.

Sprint	goal

3.47 	This	Sprint	aimed	to	update	our	consumption	estimator	to	process	the	additional	volume	of	simulation	data	produced	since	our	aleatory	analysis	stipulates	a
minimum	of	250	simulation	runs	for	any	experiment.	Both	the	ABM	and	the	estimator	in	essence	form	a	hybrid	model	which	must	be	capable	of	being	invoked
using	our	evolutionary	optimizer.

http://jasss.soc.surrey.ac.uk/18/3/10.html 9 21/10/2015



Figure	4.	Parameter	estimation	and	evaluation	of	alcohol	consumption	distributions	using	a	hybrid	model	approach.

Sprint	planning	and	the	Sprint

3.48 	This	Sprint,	focused	on	the	hybrid	model	component	of	our	proposed	workflow,	was	split	into	three	key	phases.	The	first	body	of	features	were	related	to	the
creation	and	execution	of	compute	cluster	scripts	to	allow	multiple	agent-based	microsimulation	runs	to	be	run	in	parallel	using	grid	computing	facilities.	The
second	phase	was	to	modify	our	consumption	estimator	script	to	evaluate	all	of	the	resulting	agent	output,	compute	consumption	distributions	for	each	replicate
run,	and	output	the	most	representative	consumption	distribution.	The	third	phase	is	to	integrate	the	hybrid	model	with	and	updated	version	of	the	evolutionary
optimizer	created	during	our	second	Sprint.

Sprint	review	and	proposed	sixth	iteration

3.49 	Whilst	the	Sprint	was	completed,	a	review	of	the	fifth	model	iteration	has	highlighted	a	technical	challenge	that	requires	addressing	in	a	future	Sprint.	Our	initial
exploration	into	the	use	of	parameter	estimation	to	determine	candidate	model	parameters	that	best	explain	historical	trends	in	fdrink	was	successful
(Purshouse	et	al.	2014),	and	we	had	discussions	around	building	upon	that	approach	to	explain	historical	trends	in	exposure	in	addition	to	fdrink.	However,	with
the	added	execution	time	for	the	model	to	account	for	stochastic	uncertainty,	and	the	additional	time	required	by	our	estimator	(which	now	includes	stepwise
model	selection	to	determine	the	best	model	fit	for	the	data	for	each	replicate	simulation	run),	the	execution	time	of	our	model	during	parameter	estimation	will
increase	by	several	orders	of	magnitude.	The	current	optimization	approach	uses	an	evolutionary	algorithm	that	is	not	tailored	for	expensive	cost	function
evaluations,	so	a	further	sprint	will	be	required	to	design	an	algorithm	that	can	cope	with	a	more	limited	number	of	calls	to	the	ABM	(e.g.	through	use	of
surrogate	models).	Figure	4	illustrates	the	proposed	future	workflow	for	our	model,	and	will	form	the	basis	for	the	next	Sprint.

Future	Sprints

3.50 	Agent	interactions	will	be	a	key	focus	for	future	sprints.	The	OCJS	data	set	that	is	used	to	parameterise	some	components	of	our	individual	agents	contains
information	relating	to	the	preferred	drinking	locations	of	individuals,	and	with	whom	they	chose	to	drink.	Such	information	will	prove	essential	to	maintaining	a
data-driven	approach	to	our	modelling	effort,	whilst	at	the	same	time	providing	a	route	into	exploring	location	and	social	connectedness,	providing	the	capacity
of	the	ABSS	model	to	exhibit	emergent	behaviour.	The	object-oriented	agent-based	approach	we	have	adopted	means	that	such	additional	functionality	can	be
implemented	whilst	maintaining	our	existing	code	base.	The	Simulation	and	Agent	classes	(Figure	3),	containing	all	the	relevant	code	required	to	parameterise
the	model,	load	and	schedule	agents,	perform	agent	behaviour,	and	output	simulation	data,	will	be	maintained.	The	additional	spatio-temporal	and	interaction
functionality	will	be	implemented	by	introducing	concepts	such	as	an	abstract	representation	of	an	environment,	which	might	itself	comprise	of	a	number	of
locations	that	are	attributable	to	agents;	these	model	aspects	will	be	conceptualised	using	UML.

Discussion

4.1 	Our	case	study	in	using	the	Scrum	process	to	develop	an	ABM	of	the	dynamics	of	alcohol	drinking	patterns	has	proved	instrumental	in	us	maintaining	an
evidence-based	approach	to	developing	our	model.	The	compartmentalisation	of	work	into	Sprints	has	focussed	on	data	gathering	and	modelling	of	individual
behaviour	prior	to	any	consideration	of	more	traditional	benefits	of	an	agent-based	modelling	approach,	such	as	modelling	environment	and	interaction.	Whilst
our	ultimate	goal	is	to	make	use	of	the	benefits	that	ABM	can	bring,	Scrum	has	forced	us	to	strictly	adhere	to	the	scope	of	our	initial	requirements	for	our	model:
we	have	developed	microsimulations	that	validate	against	historical	dynamics	for	frequency	of	drinking.	Further	research	efforts	will	aim	to	extend	this	approach
to	social	interaction	and	possibly	co-evolution	–	thus	completing	an	adaptive	generative	account	(Hedström	2005;	Room	2011)	that	is	grounded	in	the	evidence
base.	The	latter	is	crucial	for	acceptance	of	new	methods	in	the	alcohol	policy	research	field.

Evaluation	of	Scrum

4.2 	Scientific,	empirical	evaluation	of	the	effectiveness	and	utility	of	agile	methods	for	software	development	is	rare	(Lindvall	et	al.	2002),	and	where	studies	do
exist	they	are	limited	to	industry	or	near-industry	sectors.	Salo	and	Abrahamsson	(2004)	reported	one	such	empirical	review	with	a	case	study	of	the	XP	agile
methodology;	demonstrating	how	qualitative	and	quantitative	data	can	be	generated	at	different	phases	of	XP	agile,	assisting	in	the	evaluation	of	the	process.
Other	attempts	to	compare	agile	methods	quantitatively	are	limited	to	on	paper	attributes	of	agile	processes.	An	example	is	the	evaluation	framework	described
by	Calo	et	al.	(2010),	which	the	authors	used	to	compare	Scrum	and	XP	agile	based	on	the	emphasis	each	process	places	on	attributes	such	as	individuals,
teams,	the	process,	tools,	customer	negotiation	and	documentation.	According	to	their	framework,	XP	is	a	more	favourable	agile	methodology	than	Scrum	(Calo
et	al.	2010,	Table	2.).	The	issue	is	that	no	evaluation	framework	is	considered	the	exemplar,	and	there	is	no	way	of	determining	how	applicable	each	agile
process	is	given	a	particular	customer,	their	requirements,	and	set	of	stakeholders.	Whilst	empirical	analysis	of	agile	is	needed,	the	collection	of	the	required

http://jasss.soc.surrey.ac.uk/18/3/10.html 10 21/10/2015



evaluation	data	(e.g.	stakeholder	diaries,	documented	code	defects,	process	review	documents)	is	outside	the	scope	of	the	current	project.

4.3 	Without	a	formal	evaluation	of	the	Scrum	process	compared	to	alternative	SE	methods,	we	cannot	say	categorically	that	Scrum	is	the	most	applicable	option
for	ABSS.	In	our	opinion,	however,	Scrum	has	brought	benefits	that	have	outweighed	its	costs.	For	example,	in	a	busy	academic	environment	occasions	do
arise	when	it	is	difficult	to	have	an	impromptu	gathering	of	our	interdisciplinary	project	team	in	order	to	resolve	development	problems.	If	stakeholders	are	not
immediately	available	to	sign	off	on	any	general	requirements	or	feature	changes,	development	can	be	delayed.	In	these	instances,	our	developer	had	to	adjust
his	daily	work	schedule	to	implement	lower	priority	features,	including	those	that	might	not	have	been	scheduled	for	the	current	Sprint	cycle,	or	improving
existing	code	through	refactoring.	In	such	instances,	Revision	Control	(RC)	played	an	integral	part	in	maintaining	distinctly	separate	versions	of	the	code,
ensuring	that	non-functional	changes	(refactored	code),	and	features	implemented	yet	not	stakeholder-agreed,	remained	distinct	from	the	main	Working
Software	Increment.	At	the	next	available	stakeholder	meeting,	additions	could	then	be	signed	off	retrospectively;	and	the	code	merged	into	the	Working
Software	Increment.	Alternatively,	should	stakeholders	wish	not	to	include	the	already	implemented	functionality,	the	work	item	may	remain	in	the	Product
Backlog	ready	for	the	relevant	Sprint;	with	full	or	partial	code	instantly	accessible	through	the	RC	repository.	Another	issue	with	Scrum	is	that	it	can	be	argued
that	there	is	a	time	overhead	associated	with	the	process	(Scrum	Planning/Scrum	Review	meetings,	organising	the	planning	board	etc.);	however,	we	have
found	that	this	time	is	more	than	recouped	through	the	organisational	efficiencies	of	using	the	process.

4.4 	Predominantly,	agile	methods	such	as	Scrum	are	more	suited	to	small	teams	of	developers,	thus	it	may	seem	as	if	such	methods	are	impractical	for	a	one-two
person	development	team	such	as	ours;	however,	this	is	not	the	case	as	we	argue	below.

4.5 	The	principles	that	Scrum	advocates,	for	example,	prioritisation	of	tasks,	visualising	and	managing	progress,	and	incremental	development,	are	ultimately
beneficial	as	much	to	individual	productivity	as	they	are	to	the	team's	productivity.	There	have	been	occasions	when	Robin	has	also	engaged	as	a	developer;
for	example,	in	the	second	Sprint;	however,	this	involved	close	collaboration	with	Daniel,	as	the	optimiser	had	to	directly	interface	with	the	ABM.

4.6 	Adhering	to	Scrum	forces	our	team	to	communicate	regularly,	and	to	facilitate	this	we	have	thrice	weekly	or	more	short	(15	minute)	status	meetings	between
our	developer	and	one	or	more	stakeholders	(predominantly	Daniel	and	Robin),	with	more	detailed	fortnightly	meetings	with	the	members	of	the	wider	project
team	(Abdallah,	Alan,	Mark,	and	Paul).	These	meetings	provide	an	opportunity	for	rapid	feedback	relating	to	the	items	in	our	Product	Backlog,	and	allow	our
developer	to	carefully	assess	the	priorities	for	current	and	upcoming	Sprints.	Our	developer	also	prioritises	daily	tasks	each	morning,	during	a	one-person
Scrum.	The	one-person	Scrum	provides	time	to	set	the	days	goals,	regardless	of	how	trivial,	and	helps	maximise	individual	productivity.

4.7 	Based	on	our	experience	of	using	Scrum,	we	have	a	produced	a	list	of	simple	recommendations	on	how	ABSS	developers	can	operationalise	Scrum	within	their
project	(Table	1).	We	believe	that	Scrum	could	be	extended	to	the	full	scope	of	a	research	project,	including	the	planning	and	management	of	non-development
related	academic	activities,	such	as	manuscript	preparation.

Table	1:	Practical	recommendations	for	the	adoption	of	Scrum	in	an	academic	research	project

Recommendations	when	operationalising	Scrum	for	a	research	project
1 Assign	Scrum	roles	to	the	project	team	and	familiarise	them	with	The	Scrum	Guide	(Schwaber	&	Sutherland	2013)	to	ensure
members	are	aware	of	their	responsibilities.	This	may	be	achieved	with	a	half-day	workshop	or	a	hands-on	tutorial	session.

2 Establish	a	regular	meeting	schedule	between	project	stakeholders	and	the	development	team.	The	development	team
should	also	organise	as	close	to	daily	meetings	as	is	feasible	–	this	frequency	of	meetings	should	be	adhered	to,	even	for
what	might	appear	to	be	relatively	long	research	work	packages	(e.g.	12	months).

3 Have	a	Scrum	Master	who	follows	the	process	as	closely	as	is	possible	for	your	circumstances,	despite	any	short-term
pressures	that	might	arise	during	the	project	to	relapse	to	an	unstructured	approach.

4 Establish	a	Revision	Control	workflow	and	set	up	a	source	code	repository	before	any	coding	begins.
5 Prioritise	work	items	and	functionality	according	to	a	method	such	as	MoSCoW.
6 Fiercely	adhere	to	the	scope	of	each	Sprint.	Functionality	can	be	always	implemented	in	later	Sprints;	iteration	is	the	key.

Conclusion

5.1 	This	paper	has	described	the	adoption	of	an	agile	approach	to	a	real-world	academic	research	project:	the	development	of	an	agent-based	microsimulation	of
the	dynamics	of	alcohol	consumption.	The	motivation	for	agile	was	driven	by	several	project	constraints	including,	amongst	others,	a	small	development	team,
data	issues	and	a	strict	12	month	project	duration.	Requiring	a	development	methodology	that	would	be	resistant	to	potential	changes	and	disruptions	in	the
project,	and	with	a	view	to	creating	extendible	and	reusable	software,	agile	methods	were	an	appealing	choice	for	our	situation.

5.2 	Despite	the	wealth	of	available	agile	methods,	none	were	an	ideal	fit	for	our	project	team;	however,	we	chose	to	take	inspiration	from	principles	of	Scrum.
Scrum	has	much	in	common	with	change-driven	project	life	cycles	in	project	management	(PMI	2013)	which	setting	software	aside,	provides	methods	to
promote	stakeholder	engagement	and	deliver	projects	on	time	given	a	set	of	resources	and	constraints.	Given	that	we	anticipated	changing	software
requirements,	the	Scrum	process	allowed	us	to	organise	our	project,	and	alongside	the	MoSCoW	method	helped	us	prioritise	work	items	to	ensure	incremental
development	of	an	early	working	prototype,	adding	features	and	fixing	code	bugs	in	a	principled	manner.

5.3 	Purists	might	argue	that	the	methods	adopted	by	our	small	one-two	person	development	team	might	fall	under	the	umbrella	of	other	agile	approaches	such	as
personal	kanban	rather	than	Scrum.	Personal	kanban	is	another	agile	process	by	which	to	both	visualise	and	prioritise	a	body	of	required	work	(Benson	&	Barry
2011)	although	it	does	not	directly	include	guidelines	for	stakeholder	involvement	since	it	is	a	methodology	for	individuals.	Whilst	it	is	true	we	are	not	adhering
to	the	letter	of	Scrum	regarding	roles,	which	is	not	possible	given	the	size	of	our	development	team,	the	way	we	structure	our	work	cycle,	prioritise	software
features,	and	communicate	as	a	team,	is	most	definitely	in	line	with	the	Scrum	ethos.	Ultimately,	a	team	or	individual	should	take	inspiration	from	whatever	agile
methods	suit	them	and	the	needs	of	the	project,	with	a	goal	to	delivering	high	quality	scientific	software	through	iterative	and	incremental	change.

5.4 	Agile	methods	generally	promote	a	lean	approach	to	software	documentation;	however,	for	our	study	we	chose	to	use	UML	to	describe	the	function	of	our
model.	For	our	relatively	straightforward	implementation	the	UML	is	more	than	sufficient	to	convey	the	inner	workings	of	the	software	to	future	developers.	As
model	complexity	increases,	this	approach	may	need	re-evaluating,	as	the	time	overhead	involved	with	updating	software	documentation	to	account	for	an
evolving	project	may	not	be	feasible.

5.5 	In	conclusion,	we	argue	that	more	ABSS	researchers	should	adopt	SE	methods	in	future,	choosing	whichever	specific	practices	and	variants	they	feel	are	of
best	use	to	them.	More	case	studies	in	agile	software	development	will	provide	the	ABSS	and	wider	academic	software	development	fields	with	further
qualitative	and	possibly	quantitative	evidence	on	the	utility	of	those	agile	methods.

http://jasss.soc.surrey.ac.uk/18/3/10.html 11 21/10/2015



Acknowledgements

	This	work	was	funded	by	the	UK	Economic	and	Social	Research	Council	under	grant	number	ES/K001760/1.	We	would	also	like	to	thank	researchers	from	the
Centre	for	Research	in	Social	Simulation	(CRESS)	at	the	University	of	Surrey	and	Jürgen	Rehm	and	his	team	at	the	Centre	for	Addiction	and	Mental	Health
(CAMH)	at	the	University	of	Toronto	for	helpful	discussions,	as	well	as	the	JASSS	reviewers	for	their	useful	comments.	The	BHPS,	GLF,	HSE,	and	OCJS	are
Crown	Copyright.	The	original	data	creators,	depositors,	or	copyright	holders,	the	funders	of	the	data	collections	(when	different),	and	the	UK	Data	Archive	bear
no	responsibility	for	analyses	or	interpretation	of	the	data	described	in	this	report.

References

	AGRESTI,	A.	(2013).	Categorical	Data	Analysis.	Wiley,	New	Jersey,	3rd	edition.

AJZEN,	I.	(1991).	The	theory	of	planned	behavior.	Organizational	behavior	and	human	decision	processes,	50(2),	179–211.	[doi:10.1016/0749-5978(91)90020-
T]

ALDEN,	K.,	Timmis,	J.,	Andrews,	P.	S.,	Veiga-Fernandes,	H.,	&	Coles,	M.	C.	(2012).	Pairing	experimentation	and	computational	modeling	to	understand	the	role
of	tissue	inducer	cells	in	the	development	of	lymphoid	organs.	Frontiers	in	immunology,	3.	[doi:10.3389/fimmu.2012.00172]

AN,	G.,	Mi,	Q.,	Dutta-Moscato,	J.,	&	Vodovotz,	Y.	(2009).	Agent-based	models	in	translational	systems	biology.	Wiley	Interdisciplinary	Reviews:	Systems
Biology	and	Medicine,	1(2),	159–171.	[doi:10.1002/wsbm.45]

BAUER,	B.,	&	Odell,	J.	(2005).	UML	2.0	and	agents:	how	to	build	agent-based	systems	with	the	new	UML	standard.	Engineering	applications	of	artificial
intelligence,	18(2),	141–157.

BAXTER,	S.	M.,	Day,	S.	W.,	Fetrow,	J.	S.,	&	Reisinger,	S.	J.	(2006).	Scientific	software	development	is	not	an	oxymoron.	PLoS	Computational	Biology,	2(9),
e87.	[doi:10.1371/journal.pcbi.0020087]

BENSON,	J.,	&	Barry,	T.	D.	(2011).	Personal	Kanban:	Mapping	Work,	Navigating	Life.	Modus	Cooperandi	Press.

BERSINI,	H.	(2006).	'Immune	system	modeling:	The	OO	way.'	In	Artificial	Immune	Systems	(pp.	150-163).	Springer	Berlin	Heidelberg.
[doi:10.1007/11823940_12]

BERSINI,	H.	(2012).	UML	for	ABM.	Journal	of	Artificial	Societies	and	Social	Simulation,	15(1)	9:	http://jasss.soc.surrey.ac.uk/15/1/9.html

BOERO,	R.	&	Squazzoni,	F.	(2005).	Does	Empirical	Embeddedness	Matter?	Methodological	Issues	on	Agent-Based	Models	for	Analytical	Social	Science.
Journal	of	Artificial	Societies	and	Social	Simulation,	8(4)	6:	http://jasss.soc.surrey.ac.uk/8/4/6.html

BONABEAU,	E.	(2002).	Agent-based	modeling:	Methods	and	techniques	for	simulating	human	systems.	Proceedings	of	the	National	Academy	of	Sciences	of
the	United	States	of	America,	99(Suppl	3),	7280–7287.	[doi:10.1073/pnas.082080899]

BRENNAN,	K.	(Ed.).	(2009).	A	Guide	to	the	Business	Analysis	Body	of	Knowledge.	IIBA.

BYRNE,	D.	S.	(1998).	Complexity	Theory	and	the	Social	Sciences:	An	Introduction.	Routledge,	Abingdon.

CALO,	K.	M.,	Estevez,	E.,	&	Fillottrani,	P.	(2010).	A	Quantitative	Framework	for	the	Evaluation	of	Agile	Methodologies.	Journal	of	Computer	Science	&
Technology	(JCS&T),	10(2).

CHISHOLM	D,	Rehm	J,	Van	Ommeren	M,	Monteiro	M.	(2004)	Reducing	the	global	burden	of	hazardous	alcohol	use:	A	comparative	cost-effectiveness	analysis.
Journal	of	Studies	on	Alcohol,	65(6):782–793.	[doi:10.15288/jsa.2004.65.782]

CLEGG,	D.,	&	Barker,	R.	(1994).	Case	method	fast-track:	a	RAD	approach.	Addison-Wesley	Longman	Publishing	Co.,	Inc.

COHEN,	D.,	Lindvall,	M.,	&	Costa,	P.	(2004).	An	introduction	to	agile	methods.	Advances	in	computers,	62,	1–66.	[doi:10.1016/S0065-2458(03)62001-2]

CRISTELLI,	M.,	Pietronero,	L.,	&	Zaccaria,	A.	(2011).	Critical	overview	of	agent-based	models	for	economics.	arXiv	preprint	arXiv:1101.1847.

COOKE,	R.,	Dahdah,	M.,	Norman,	P.,	&	French,	D.	P.	(2014).	How	well	does	the	theory	of	planned	behaviour	predict	alcohol	consumption?	A	systematic	review
and	meta-analysis.	Health	psychology	review,	1–53.	[doi:10.1080/17437199.2014.947547]

DASSO,	A.,	&	Funes,	A.	(Eds.).	(2007).	Verification,	validation	and	testing	in	software	engineering.	IGI	Global.	[doi:10.4018/978-1-59140-851-2]

DYBÅ,	T.,	&	Dingsøyr,	T.	(2008).	Empirical	studies	of	agile	software	development:	A	systematic	review.	Information	and	software	technology,	50(9),	833–859.
[doi:10.1016/j.infsof.2008.01.006]

ENGLISH,	D.	R.,	Holman,	C.	D.	J.,	Milne,	E.,	Winter,	M.,	Hulse,	G.	K.	et	al.	(1995).	The	quantification	of	drug	caused	morbidity	and	mortality	in	Australia.
Commonwealth	Department	of	Human	Services	and	Health,	Canberra.

FOWLER,	F.	J.	(2009).	Survey	research	methods	(4th	ed.).	Sage.

GIABBANELLI,	P.,	&	Crutzen,	R.	(2013).	An	Agent-Based	Social	Network	Model	of	Binge	Drinking	Among	Dutch	Adults.	Journal	of	Artificial	Societies	&	Social
Simulation,	16(2)	10	:	http://jasss.soc.surrey.ac.uk/16/2/10.html

GILBERT,	N.	(2004).	Agent-based	social	simulation:	dealing	with	complexity.	The	Complex	Systems	Network	of	Excellence,	9(25),	1–14.

GILBERT,	N.	(2007).	'Computational	social	science:	Agent-based	social	simulation.'	Agent-based	Modelling	and	Simulation.	Bardwell,	Oxford,	pp.	115-134

GILBERT,	N.	(2008).	Agent-based	models	(No.	153).	Sage,	London.

GOLDBERG,	D.	E.	and	Richardson,	J.	(1987).	Genetic	algorithms	with	sharing	for	multimodal	function	optimization.	In	Proceedings	of	the	Second	International
Conference	on	Genetic	Algorithms,	pages	41–49.

HEDSTRÖM,	P.	(2005).	Dissecting	the	social:	On	the	principles	of	analytical	sociology.	Cambridge:	Cambridge	University	Press.
[doi:10.1017/CBO9780511488801]

HICKS,	M.,	&	Foster,	J.	S.	(2010a).	Score:	Agile	research	group	management.	Communications	of	the	ACM,	53(10),	30–31.

http://jasss.soc.surrey.ac.uk/18/3/10.html 12 21/10/2015

http://dx.doi.org/10.1016/0749-5978(91)90020-T
http://dx.doi.org/10.3389/fimmu.2012.00172
http://dx.doi.org/10.1002/wsbm.45
http://dx.doi.org/10.1371/journal.pcbi.0020087
http://dx.doi.org/10.1007/11823940_12
http://jasss.soc.surrey.ac.uk/8/4/6.html
http://jasss.soc.surrey.ac.uk/8/4/6.html
http://dx.doi.org/10.1073/pnas.082080899
http://dx.doi.org/10.15288/jsa.2004.65.782
http://dx.doi.org/10.1016/S0065-2458(03)62001-2
http://dx.doi.org/10.1080/17437199.2014.947547
http://dx.doi.org/10.4018/978-1-59140-851-2
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://jasss.soc.surrey.ac.uk/8/4/6.html
http://dx.doi.org/10.1017/CBO9780511488801


HICKS,	M.,	&	Foster,	J.	S.	(2010b).	Adapting	Scrum	to	Managing	a	Research	Group.	Technical	Report,	Department	of	Computer	Science,	University	of
Maryland.

HOLDER,	H.	D.	(1998).	Planning	for	alcohol-problem	prevention	through	complex	systems	modeling:	Results	from	SimCom.	Substance	use	&	misuse,	33(3),
669Communications	of	the	ACM692.	[doi:10.3109/10826089809115890]

HOLLINGWORTH,	W.,	Ebel,	B.	E.,	McCarty,	C.	A.,	Garrison,	M.	M.,	Christakis,	D.	A.	&	Rivara,	F.	P.	(2006).	Prevention	of	deaths	from	harmful	drinking	in	the
United	States:	the	potential	effects	of	tax	increases	and	advertising	bans	on	young	drinkers.	Journal	of	Studies	on	Alcohol,	67(2):	300-308.

HOME	OFFICE.	Research,	Development	and	Statistics.	Directorate.	Offending	Surveys	and	Research,	National	Centre	for	Social	Research	and	BMRB.	Social
Research.	Offending,	Crime	and	Justice	Survey,	2003	[computer	file].	3rd	Edition.	Colchester,	Essex:	UK	Data	Archive	[distributor],	August	2008.	SN:	5248.

ISER	(Institute	for	Social	and	Economic	Research,	University	of	Essex)	(2010).	British	Household	Panel	Survey:	Waves	1-18,	1991-2009	[computer	file].	7th
Edition.	Colchester,	Essex:	UK	Data	Archive	[distributor],	July	2010.	SN:	5151.

KATIKIREDDI	SV,	Hilton	S,	Bonell	C,	Bond	L.	(2014)	Understanding	the	development	of	minimum	unit	pricing	of	alcohol	in	Scotland:	A	qualitative	study	of	the
policy	process.	PLoS	ONE,	9(3):e91185.	[doi:10.1371/journal.pone.0091185]

KLÜGL,	F.	(2013).	"Engineering"	Agent-Based	Simulation	Models?.	In	Agent-Oriented	Software	Engineering	XIII	(pp.	179-196).	Springer	Berlin	Heidelberg.
[doi:10.1007/978-3-642-39866-7_11]

LARMAN,	C.,	&	Basili,	V.	R.	(2003).	Iterative	and	incremental	development:	A	brief	history.	IEEE	Computer	Society.	[doi:10.1109/MC.2003.1204375]

LINDVALL,	M.,	Basili,	V.,	Boehm,	B.,	Costa,	P.,	Dangle,	K.,	Shull,	F.,	...	&	Zelkowitz,	M.	(2002).	'Empirical	findings	in	agile	methods.'	In	Extreme	Programming
and	Agile	Methods—XP/Agile	Universe	2002	(pp.	197–207).	Springer	Berlin	Heidelberg.	[doi:10.1007/3-540-45672-4_19]

MANIFESTO	for	Agile	Software	Development.	(2001)	http://www.agilemanifesto.org/.	Archived	at:	http://www.webcitation.org/6Or4vOCBA

MAY	N.	R.	(2011).	Implementing	eResearch	Projects	using	Agile	Development.	In	Proceeding	of	eResearch	Australasia.

MENG,	Y.,	Holmes,	J.,	Hill-McManus,	D.,	Brennan,	A.,	&	Meier,	P.	S.	(2014).	Trend	analysis	and	modelling	of	gender-specific	age,	period	and	birth	cohort
effects	on	alcohol	abstention	and	consumption	level	for	drinkers	in	Great	Britain	using	the	General	Lifestyle	Survey	1984–2009.	Addiction,	109(2):	205-215.

MIRAMS,	G.	R.,	Arthurs,	C.	J.,	Bernabeu,	M.	O.,	Bordas,	R.,	Cooper,	J.,	Corrias,	A.,	...	&	Gavaghan,	D.	J.	(2013).	Chaste:	an	open	source	C++	library	for
computational	physiology	and	biology.	PLoS	computational	biology,	9(3),	e1002970.	[doi:10.1371/journal.pcbi.1002970]

NATIONAL	Centre	for	Social	Research	and	University	College	London.	Department	of	Epidemiology	and	Public	Health.	Health	Survey	for	England,	2009
[computer	file].	2nd	Edition.	Colchester,	Essex:	UK	Data	Archive	[distributor],	July	2011.	SN:	6732.

OFFICE	of	the	Qualifications	and	Examinations	Regulator	(Ofqual).	Qualifications	can	cross	boundaries	–	a	rough	guide	to	comparing	qualifications	in	the	UK
and	Ireland.	3rd	edition,	2011.

OMG.	(2011).	Object	Management	Group	Unified	Modeling	LanguageTM	(OMG	UML),	Infrastructure	V2.4.1.

ORMEROD	P.	&	Wiltshire,	G.	(2009).	'Binge'	drinking	in	the	UK:	a	social	network	phenomenon.	Mind	&	Society,	8(2):	135-152.

OSBORNE	JM,	Bernabeu	MO,	Bruna	M,	Calderhead	B,	Cooper	J,	et	al.	(2014).	Ten	Simple	Rules	for	Effective	Computational	Research.	PLoS	Comput	Biol,
10(3),	e1003506.	[doi:10.1371/journal.pcbi.1003506]

PITT-FRANCIS,	J.,	Bernabeu,	M.	O.,	Cooper,	J.,	Garny,	A.,	Momtahan,	L.,	Osborne,	J.,	...	&	Gavaghan,	D.	J.	(2008).	Chaste:	using	agile	programming
techniques	to	develop	computational	biology	software.	Philosophical	Transactions	of	the	Royal	Society	A:	Mathematical,	Physical	and	Engineering	Sciences,
366(1878),	3111–3136.

PITT-FRANCIS,	J.,	Pathmanathan,	P.,	Bernabeu,	M.	O.,	Bordas,	R.,	Cooper,	J.,	Fletcher,	A.	G.,	...	&	Gavaghan,	D.	J.	(2009).	Chaste:	a	test-driven	approach	to
software	development	for	biological	modelling.	Computer	Physics	Communications,	180(12),	2452–2471.	[doi:10.1016/j.cpc.2009.07.019]

PMI.	(2013).	A	Guide	to	the	Project	Management	Body	of	Knowledge,	5th	Ed,	PMI.

PRLIC,	A.,	&	Procter,	J.	B.	(2012).	Ten	simple	rules	for	the	open	development	of	scientific	software.	PLoS	computational	biology,	8(12),	e1002802.
[doi:10.1371/journal.pcbi.1002802]

PURSHOUSE,	R.	C.,	Ally,	A.	K.,	Brennan,	A.,	Moyo,	D.,	Norman,	P.	(2014).	Evolutionary	Parameter	Estimation	for	a	Theory	of	Planned	Behaviour
Microsimulation	of	Alcohol	Consumption	Dynamics	in	an	English	Birth	Cohort	2003	to	2010.	GECCO	'14:	Proceedings	of	the	2014	Genetic	and	Evolutionary
Computation	Conference	(in	press).	ACM.

READ,	M.,	Timmis,	J.,	Andrews,	P.	S.,	&	Kumar,	V.	(2009).	Using	UML	to	model	EAE	and	its	regulatory	network.	In	Artificial	Immune	Systems	(pp.	4-6).
Springer	Berlin	Heidelberg.	[doi:10.1007/978-3-642-03246-2_2]

RIDOLFO,	B.	&	Stevenson,	C.	(2001).	The	quantification	of	drug-caused	mortality	and	morbidity	in	Australia	1998.	Drugs	Statistics	Series.	Australian	Institute	of
Health	and	Welfare	Canberra.

ROCHE,	A.	M.,	Pidd,	K.,	Berry,	J.	G.,	&	Harrison,	J.	E.	(2008).	Workers'	drinking	patterns:	the	impact	on	absenteeism	in	the	Australian	work-place.	Addiction,
103(5),	738–748.	[doi:10.1111/j.1360-0443.2008.02154.x]

ROOM,	R.,	Osterberg,	E.,	Ramstedt,	M.,	&	Rehm,	J.	(2009).	Explaining	change	and	stasis	in	alcohol	consumption.	Addiction	Research	&	Theory,	17(6),	562–
576.	[doi:10.3109/16066350802626966]

ROOM,	G.		(2011).	Complexity,	Institutions	and	Public	Policy	–	Agile	Decision-making	in	a	Turbulent	World.	Edward	Elgar,	Cheltenham.

SANDVE,	G.	K.,	Nekrutenko,	A.,	Taylor,	J.,	&	Hovig,	E.	(2013).	Ten	simple	rules	for	reproducible	computational	research.	PLoS	computational	biology,	9(10),
e1003285.	[doi:10.1371/journal.pcbi.1003285]

SALO,	O.,	&	Abrahamsson,	P.	(2004).	Empirical	evaluation	of	agile	software	development:	The	controlled	case	study	approach.	In	Product	Focused	Software
Process	Improvement	(pp.	408-423).	Springer	Berlin	Heidelberg.	[doi:10.1007/978-3-540-24659-6_29]

SCHILD,	J.,	Walter,	R.,	&	Masuch,	M.	(2010,	June).	ABC-Sprints:	adapting	Scrum	to	academic	game	development	courses.	In	Proceedings	of	the	Fifth
International	Conference	on	the	Foundations	of	Digital	Games	(pp.	187–194).	ACM.

http://jasss.soc.surrey.ac.uk/18/3/10.html 13 21/10/2015

http://dx.doi.org/10.3109/10826089809115890
http://dx.doi.org/10.1371/journal.pone.0091185
http://dx.doi.org/10.1007/978-3-642-39866-7_11
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1007/3-540-45672-4_19
http://www.agilemanifesto.org/
http://www.webcitation.org/6Or4vOCBA
http://dx.doi.org/10.1371/journal.pcbi.1002970
http://dx.doi.org/10.1371/journal.pcbi.1003506
http://dx.doi.org/10.1016/j.cpc.2009.07.019
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1007/978-3-642-03246-2_2
http://dx.doi.org/10.1111/j.1360-0443.2008.02154.x
http://dx.doi.org/10.3109/16066350802626966
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.1007/978-3-540-24659-6_29


SCHWABER,	K.	(1997).	Scrum	development	process.	In	Business	Object	Design	and	Implementation	(pp.	117–134).	Springer	London.	[doi:10.1007/978-1-
4471-0947-1_11]

SCHWABER,	K.	&	Sutherland,	J.	(2013).	The	Scrum	GuideTM.	Scrum.	Scrum.org,	July.

SINGLE,	E.,	Robson,	L.,	Xie,	X.,	&	Rehm,	J.	(1996).	The	cost	of	substance	abuse	in	Canada.	Canadian	Centre	on	Substance	Abuse,	Ottawa.

SOMMERVILLE,	I.	(2009).	Software	Engineering	(9th	Edition).	Addison	Wesley.

University	of	Essex.	Institute	for	Social	and	Economic	Research	(ISER).	British	Household	Panel	Survey:	Waves	1-18,	1991–2009	[computer	file].	7th	Edition.
Colchester,	Essex:	UK	Data	Archive	[distributor],	July	2010.	SN:	5151.

WILSON,	G.,	Aruliah,	D.	A.,	Brown,	C.	T.,	Hong,	N.	P.	C.,	Davis,	M.,	Guy,	R.	T.,	...	&	Wilson,	P.	(2014).	Best	practices	for	scientific	computing.	PLoS	biology,
12(1),	e1001745.	[doi:10.1371/journal.pbio.1001745]

http://jasss.soc.surrey.ac.uk/18/3/10.html 14 21/10/2015

http://dx.doi.org/10.1007/978-1-4471-0947-1_11
http://dx.doi.org/10.1371/journal.pbio.1001745

	Abstract
	Introduction
	Software Development, Processes, and Applicability in an Academic Setting
	Software development in academia
	Software processes
	Agile development methods
	Scrum

	Unified Modelling Language
	Unit testing
	Revision control

	Complex Systems Modelling of Alcohol Consumption Dynamics: A Case Study in Scrum
	Am agile approach to complex systems modelling of alcohol consumption dynamics
	The project team
	Prioritising software features
	Overview of the Sprints
	First iteration: an object-oriented agent-based microsimulation of drinking frequency
	Sprint goal
	Sprint planning and the Sprint
	Sprint review

	Second iteration: parameter estimation of the TPB model
	Sprint goal
	Sprint planning and the Sprint
	Sprint review

	Third iteration: modelling drinking to intoxication
	Sprint goal
	Sprint planning and the Sprint
	Sprint review

	Fourth iteration: introducing measures of consumption
	Sprint goal
	Sprint planning and the Sprint
	Sprint review

	Fifth iteration: simulating attitude change
	Sprint goal
	Sprint planning and the Sprint
	Sprint review

	Sixth iteration: accounting for stochastic variance
	Sprint goal
	Sprint planning and the Sprint
	Sprint review and proposed sixth iteration

	Future Sprints

	Discussion
	Evaluation of Scrum

	Conclusion
	Acknowledgements
	References

