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Abstract: 

We argue that arbitrageurs will strategically limit their initial investment in an arbitrage 
opportunity in anticipation of further mispricing caused by the deepening of noise 
traders’ misperceptions.  Such ‘noise momentum’ is an important determinant of the 
overall arbitrage process.  We design an empirical strategy to capture noise momentum in 
a two-period generalized error correction model (GECM). Applying it to a wide range of 
international spot-futures market pairs, we document pervasive evidence of noise 
momentum around the world.  
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1. Introduction  

Existing empirical study of the limits to arbitrage focus on the initial mispricing error correction 

coefficient in a one-period framework designed to measure the level of arbitrage activity. In 

contrast, the theoretical work of Shleifer and Vishny (SV 1997) models the arbitrage process in a 

multi-period setup.  In their paper, over and above the error correction component, we identify a 

theoretical concept (hitherto ignored in the literature) that forms a potentially important part of 

the determinants of the arbitrage process.  Specifically, in SV’s model one of the critical 

considerations for the arbitrageur in deciding how much effort to apply to correcting initial 

mispricing, is the probability of persistence in mispricing. We label this persistence of the 

uncorrected pricing errors (after the next period of trading) as “noise momentum”. Further, we 

design an empirical strategy to capture noise momentum in a two-period generalized error 

correction model (GECM).  We execute an empirical application to test the importance of noise 

momentum across global markets. In so doing, we extend the existing body of knowledge by 

showing that noise momentum together with the initial unarbitraged pricing error affects price 

movements and the path to equilibrium.  In short, we document empirical evidence consistent 

with the existence of noise momentum around the world. 

The uncertainty regarding the level of noise trading and the uncertainty of other 

arbitrageurs’ actions poses a nontrivial risk to rational arbitrageurs’ activities (see, e.g., Abreu 

and Brunnermeier (2002), Kondor (2004), and Stein (2009)).  These models suggest that 

knowing the aggregate level of the arbitrage activity present in the market is important to 

participants.  In contrast to the rich insights offered in existing theoretical models on the limits of 
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arbitrage (see Gromb and Vayanos (2010) for a survey of the theoretical studies), the short-term 

dynamics in these models is under-researched empirically.  Our study seeks to redress this 

situation.      

To test our hypotheses, we examine the impact of limited arbitrage and noise momentum 

in the index futures market, motivated by the ongoing interest in spot and futures price dynamics 

(e.g., Kurov and Lasser (2004)).  Derived from the theory of no-arbitrage, we use a cost of carry 

framework which predicts that spot and futures prices are cointegrated.  Market equilibrium is 

achieved by active trading of arbitrageurs in both markets (e.g., Garbade and Silber (1983), Stoll 

and Whaley (1990)).  Similar to other equilibrium models, the cause of any disequilibrium and 

the path followed to reach an equilibrium state are not explicitly described in theory.  Our 

modeling approach provides an ideal tool to unlock this “black box”.1  Using daily index futures 

and spot data from 29 international markets over the maximum period 1984 – 2012, we find 

pervasive evidence of limited arbitrage linked to noise momentum.     

Our core hypothesis concerning the two-period adjustment process is strongly supported 

by the empirical analysis.  In particular, we document a continuation of unarbitraged pricing 

error i.e. that there is ‘noise momentum’ in the price adjustment. Including the potential for noise 

momentum as an extra dimension in the short-term adjustment process enhances our 

understanding of the price discovery process.  Previous empirical literature and the standard one-

period arbitrage models show that the effect of arbitrage is limited when arbitrageurs face 

                                                           
1 While the long-run spot and futures price relationship is governed by the cost of carry theory; in the short-run, 
price synchronization is less than perfect due to the uncertainty in inputs (i.e., interest rates and dividend yields) to 
the cost of carry model.  The heterogeneity in futures market pricing is mainly driven by the difference in market 
participants’ expectations with respect to these input variables.  
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various types of risk, financial constraints, and transaction costs.2  We further demonstrate that 

the trading behavior conditional on the initial level of arbitrage also plays a significant role in 

determining the speed of adjustment or the duration of the pricing errors.  In particular, we find 

that the overall speed of adjustment depends not only on the initial error correction coefficient 

but also on the noise momentum coefficient which captures the market response to the prior 

period’s unarbitraged error.  Overall, our results highlight the importance of taking into 

consideration partial correction when modeling the short-term dynamics of the price-

fundamentals relationship.  

Our study contributes to the literature in three fundamental ways.  First, we revisit SV’s 

analysis and demonstrate the importance of a two-period model for investigating the full effects 

arbitrage behavior.  Specifically, the concept of noise momentum delivers an extra, rich 

dimension into understanding the price discovery process.  It is an important determinant of the 

overall mispricing duration.  Second, our empirical application illustrates that the generalized 

error correction model we develop for the purpose, provides a powerful tool for analyzing the 

dynamics of the price-fundamentals relationship.  Finally, our empirical study makes a direct 

contribution to the spot-futures literature by documenting new insights into the price dynamics 

evident between these two markets.   

The remainder of our paper is organized as follows.  In Section 2, extending the 

foundation provided by Shleifer and Vishny (1997), our hypotheses are outlined.  In Section 3 

we develop a general empirical setup designed to best test our hypotheses.  In Section 4 we 

                                                           
2 Indeed, previous literature predominantly argues that transaction costs cause the slow adjustment to a small 
mispricing (e.g., Sercu et al. (1995), Panos et al. (1997),  Roll et al. (2007),  and Oehmke (2009)).  
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outline a specific empirical application based on the linkage between index futures and spot 

markets.  In Section 5 we present and discuss our empirical results, focusing on a large 

international dataset.  A conclusion is offered in the final section. 

2. Hypothesis Development 

The limits of arbitrage and its consequences in financial markets have been highlighted in prior 

empirical analysis and incorporated in a growing body of theoretical work (see, for example, 

DeLong et al. (1990a, b), Shleifer and Vishny (1997), Abreu and Brunnermeier (2002, 2003), 

Liu and Longstaff (2004), Kondor (2004, 2009), Stein (2009), Hombert and Thesmar (2009), and 

Oehmke (2009), Moreira (2012), Makarov and Plantiny (2012), Buraschi et al. (2013), 

Ljungqvist and Qian (2014), Edmans et al. (2014)).  See also Gromb and Vayanos (2010) for an 

excellent survey.  These theoretical studies provide important and useful models regarding the 

equilibrium price-fundamentals relationship and the dynamic interactions between rational and, 

sometimes, ‘behaviorally-biased’ agents.  However, in general the models are characterized as a 

one-step correction to equilibrium and arbitrageurs are either unable to learn about market-wide 

arbitrage capacity or the poor timing of this knowledge renders it a useless input into their 

decision making.   

Shleifer and Vishny (1997), however, study the impact of equity constraints on the limits 

of arbitrage in a fully dynamic two-period setting (with three-dates/times: “time 1”; “time 2” and 

“time 3”).  In a nutshell, SV’s model suggests two alternative paths to market equilibrium – the 

two scenarios depend on whether arbitrageurs engage in a fully-invested or a partially-invested 
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strategy.  A critical determinant of the investment strategy and the associated price adjustment 

path is the probability (denoted by ‘q’) that noise traders’ misperceptions deepen at time 2.  We 

refer to the deepening of noise traders’ misperceptions as ‘noise momentum’.  In the SV model 

there is another key parameter, a threshold point for q, denoted q*.  When q <  q*, i.e., when the 

probability that noise traders misperceptions deepen is relatively low, arbitrageurs will be more 

likely to fully invest at time 1.  Alternatively, when q >  q* (i.e. the probability of deepening 

misperceptions is ‘critically’ high), arbitrageurs will defer some of their investment, expecting 

that the time 2 price (p2) will be further away from fundamentals.  

Arbitrageurs care about the deepening of time 2 mispricing because their funding is 

constrained by their initial arbitrage performance.  SV describe this structure as performance-

based-arbitrage (PBA).  Essentially, investors in the arbitrage fund would withdraw/augment 

funds conditional on the performance of the fund between time 1 and time 2.  Alternatively, this 

structure can be interpreted as the funding allocation strategy of a large arbitrage fund among its 

different fund managers.  Such a PBA approach can also be applied to an arbitrage fund in which 

leverage is used, thus magnifying the predicted effects, and in this case changes in the market 

price affect margin requirements.  When mispricing deepens, the arbitrageurs’ initial investment 

would require higher margins and, therefore, they would have to liquidate part of their holdings 

and realize losses to generate sufficient cash to meet the margin calls.  The overall effect 

predicted by this model is a reduction of arbitrage-focused funds in the market.  On the other 

hand, if market conditions improve by time 2, leveraged arbitrageurs can release some funds 

from their margins and reinvest further into the market.   
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The SV model focuses on analyzing the effect of funding constraints on the overall 

efficiency of the price.  A key focus of our enhancement to the SV model is to analyze the 

realized mispricing correction/persistence in time 1 and time 2. In so doing, we are able to 

characterize the arbitrageurs’ impact on the subsequent price movements and the duration of 

pricing errors.     

To lay the foundations of our analysis, we define a range of basic concepts (and 

associated symbolic representations) which, as much as possible, accord with the SV model 

setup. Let ܸ be the fundamental value of the asset at time 3, which is known to the arbitrageurs 

but not to the fund investors or noise traders.  ܵଵ and ܵଶ are the noise traders’ shocks at time 1 

and 2, respectively – that is, these “shocks” represent the extent to which noise traders in 

aggregate under-value the asset relative to its fundamental value ܸ (a larger S indicates a greater 

undervaluation “shock”).  ܨଵ and ܨଶ are cumulative resources under management by arbitrageurs 

at time 1 and 2, respectively.  SV assume that ܨଵ  is exogenous, while ܨଶ  is determined 

endogenously within the model.  ܦଵ is the amount that arbitrageurs invest in the asset at time 1.  

Parameter ܽ captures the sensitivity of arbitrage funds under management at time 2 (i.e. ܨଶ) to its 

initial performance, suggesting that these investors would withdraw or increase funds according 

to performance-based arbitrage.3   Noise trader demand for the asset is given by:  ܳܰሺݐሻ ൌ ሺܸ െܵ௧ሻȀ௧. Arbitrageurs’ demand for the asset at time 1 is given by: ܳܣሺͳሻ ൌ  ଵ. When theଵȀܦ

                                                           
3 SV specify the supply of time 2 funding to arbitrageurs as follows:  
ଶܨ  ൌ ଵܨ  ଵሺమభܦܽ െ ͳሻ, with  ܽ  ͳ.  

The arbitrageurs’ funding is determined by the performance of their investment between time 1 and time 2. Notice 
that when ܽ ൌ ͳ, investors play no role in affecting their available funding.  Alternatively, a can be regarded as a 
parameter reflecting the degree to which an arbitrageur chooses to increase or decrease capital investment in an 
arbitrage strategy.    
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market is cleared, ܳܰሺͳሻ  ሺͳሻܣܳ ൌ ͳ and we have the price at time 1 given by ଵ ൌ ܸ െ ܵଵ ܦଵ,  while ଶ ൌ ܸ െ ܵଶ   .ଶ, derived similarlyܨ

Now define the pricing error correction activity by the ratio ȥ ൌ  ଵȀܵଵ, a metric designedܦ

to capture the proportion of mispricing correction achieved by arbitrageurs at time 1. At one 

extreme, ȥ ൌ Ͳ, implies that there is no error correction by arbitrageurs.  At the other extreme, ȥ ൌ 1, indicates that full error correction occurs.4  Our initial hypothesis (H1) relates to the basic 

action of correcting (at least partially) initial mispricing: 

Hypothesis 1 (H1): Initial Mispricing Correction.  
Arbitrageurs engage in initial mispricing correction i.e. ȥ  Ͳ and the limited arbitrage 
version of this hypothesis is captured by ȥ ൏ ͳ. 
 
After time 1 trading is complete, the quantity, ܸ െ  ଵ, measures the pricing error which

has not been arbitraged away, where ଵ is the price determined by the supply and demand at time 

1.  This pricing error is observed before the next round of trading.  The quantity, ܸ െ ଶ , 

measures the pricing error that remains after time 2 trading.  Now we introduce a new parameter, Ȧ ൌ ିమିభ ൌ ିమௌభିభ , capturing the degree of error persistence or noise momentum after time 2 

trading.5  At one extreme, when ܸ ൌ   .ଶ such that none of the error persists, we have Ȧ = 0

Conversely, if all of the time 1 pricing error persists, then ଶ ൌ  ଵ and, thus, there is 100% error

persistence, i.e., Ȧ = 1.  It is also possible that the pricing error might even become exacerbated 

in time 2, such that ଶ ൏    .ଵ, in which case Ȧ > 1

                                                           
4 In SV’s analysis, it is assumed that arbitrage resources are not sufficient to bring prices all the way to fundamental 
values, i.e. ܨଵ  ଵܵ . This implies that   ܦଵ  ଵܨ ൏ ଵܵ. 
5 Note that that ଵ ൌ ܸ െ ଵܵ  ܸ :ଵ. A simple re-arrangement producesܦ െ ଵ ൌ ଵܵ െ  ଵ, and, thus, demonstratesܦ
equivalence of the denominators in the two alternative definitions of the noise momentum parameter defined in the 
text.  
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Our setup shows an important insight in terms of overall arbitrage activity.  All existing 

empirical models are based on the one-period error correction model in which the speed of 

mispricing correction or arbitrage adjustment is determined solely by  ȥ .  In our extended 

analysis of the SV model, Ȧ is an additional key parameter that jointly with ȥ dictates the speed 

of overall arbitrage adjustment in our two-period setting.  Hence, the standard one-period error 

correction model is valid only if Ȧ is equal to zero which occurs when noise momentum is 

absent, such that ଶ ൌ ܸ.  We therefore have our core testable hypothesis (H2): 

Hypothesis 2 (H2): Noise Momentum. 
Noise momentum affects arbitrageurs’ behavior regarding the mechanism for correcting 
mispricing i.e. Ȧ > 0. 
 
Our extension of the SV model argues that the (initial) mispricing correction parameter, ȥ, and the noise momentum (or mispricing persistence) parameter after time 2 trading, Ȧ, are 

both important in characterizing the overall speed of the arbitrage adjustment process or the 

duration of pricing errors. The noise momentum coefficient is zero only if noise traders’ 

misperceptions are corrected completely in the second period.   

3. A Generalized Error Correction Model with Noise Momentum 

3.1 Basic One-period ECM Setup accommodating Mispricing Correction  

To begin the empirical side of our analysis, we setup a basic one-period error correction 

modeling (ECM) framework, consistent with the majority of the developments in the extant 

literature. Consider the long-run price-fundamentals relationship given by:6 

   ௧݂ ൌ ௧݂כ   ௧       (1)ݖ
                                                           
6 Without loss of generality we assume that the equilibrium coefficient on the fundamentals is unity.   
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where ௧݂  is the observed market price, ௧݂כ is the fundamental value of the asset, and ݖ௧  is the 

short-term deviation of observed price from its fundamental value.  Notice that ௧݂כ  is the 

martingale difference sequence such that ݖ௧ is stationary but serially correlated.  For simplicity 

we represent ݖ௧  as an AR process: 

௧ݖ    ൌ ௧ିଵݖ߶  ௧̱݅݅݀ሺͲǡߝ ,௧ߝ  ఌଶሻ    (2)ߪ

where ߝ௧ is regarded as the mispricing innovations. Taking the first difference of (1), and using οݖ௧ ൌ ௧ିଵݖߢ   :we obtain the standard ECM ,1 – ࢥ = ௧, with țߝ

߂    ௧݂ ൌ ߂ ௧݂כ  ௧ିଵݖߢ   ௧     (3)ߝ

The parameter, ߢ, measures the impact of arbitrage trading activity in correcting the pricing error 

towards the long-run equilibrium relationship, and lies between -1 and 0.  Next, we suppose that 

the reduced form data generating process for ௧݂כ is given by: 

߂    ௧݂כ ൌ ߂ߨ ௧݂ିଵ  ݁௧, ݁௧̱݅݅݀ሺͲǡ  ଶሻ    (4)ߪ

 which allows for the (possible) feedback trading pattern, where positive (negative) ߨ implies 

positive (negative) feedback trading, and ݁௧ captures the innovations from the fundamental value 

of the asset,7 after controlling for feedback trading.8  This setup is motivated by both empirical 

and theoretical evidence that market price might potentially induce fundamental changes.  It has 

                                                           
7 Consider as an example, the cost of carry model which we investigate later in the empirical section.  In this case ݁௧ 
captures the innovations related to fundamental changes in the valuation of the stocks, the discount rate and the 
dividend yield.  If these three inputs change, then the fundamental values also change, making the futures price react 
accordingly. 
8 This is the simplest specification allowing for feedback trading. Following Hasbrouck (1991), we can readily 
extend Equation (4) by adding the higher lagged terms of ߂ ௧݂ିכ  and  ߂ ௧݂ି. 
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been documented that the futures market can influence pricing of the underlying index (see, e.g., 

Chen, 1992).  

One important issue is whether or not the pricing error innovation (ߝ௧) and the innovation 

of fundamentals (݁௧) are independent of each other.  If they are not correlated, then the pricing 

error innovation is random noise.  If the pricing errors is linked to fundamental news then these 

two error innovations will be correlated.  If their contemporaneous correlation is significantly 

different from zero,  ߂ ௧݂כ is weakly endogenous with respect to  ߝ௧ in Equation (3).  To deal with 

this issue, we consider the following regression: 

௧ߝ  ൌ ߱݁௧  ௧ݑ ൌ ߱ሺ߂ ௧݂כ െ ߂ߨ ௧݂ିଵሻ  ௧ݑ ǡ ௧̱݅݅݀ሺͲǡݑ  ௨ଶሻ   (5)ߪ

where ݑ௧  is uncorrelated with ݁௧ by construction. Then, replacing ߝ௧ in Equation (3) by Equation 

(5) and rearranging, we obtain the more efficient ECM as follows: 

߂                   ௧݂ ൌ ௧ିଵݖߢ  οߛ ௧݂ିଵ  Ɂ߂ ௧݂כ  ௧ݑ     (6) 

where ߛ ൌ െ߱ߨ and ߜ ൌ ͳ  ߱.  Notice that the model (6) accommodates the dynamics of price 

overreaction or underreaction with respect to fundamental changes through the contemporaneous 

reaction coefficient, ߜ, as well as the short-run momentum effects through the coefficient, ߛ.  

Only if the market is efficient (i.e.  ߝ௧ is iid, in which case ߱ ൌ Ͳ trivially), then we expect that 

one unit (permanent) change in fundamentals should cause one unit change in the market price, 

instantaneously.  
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3.2 Two-period GECM accommodating Mispricing Correction and Noise Momentum 

The model developed so far, called the standard (one-period) ECM, is a natural starting point for 

an analysis of hypotheses relating to the limits of arbitrage.  However, the ECM suffers from a 

fundamental weakness as only limited dynamics are covered; namely, the speed of adjustment 

(or the “reciprocal” concept, duration of mispricing) in Equation (6) is measured solely by the 

error correction coefficient, ߢ.  

 SV’s model suggests that extending the analysis of arbitrage into a two-period model is 

important.   Recall, we label the continuation of unarbitraged errors the ‘noise momentum’ 

effect, and measure it by the further pricing impacts of initial unarbitraged pricing error 

components.  We can accommodate this important new dimension most simply by supposing 

that the pricing errors,  ݖ௧ follow an AR(2) process of the form:                         ݖ௧ ൌ ௧ିଵݖ߶  ௧ିଶሻݖ߶ሺߣ  ௧ǡߝ ௧̱݅݅݀ሺͲǡߝ  ఌଶሻ    (7)ߪ

where ߶ݖ௧ିଶ ൌ ሺͳ   ௧ିଶ is the unarbitraged error carried over from the previous period andݖሻߢ

the parameter, ߣ, measures the further pricing impact of these (initial) unarbitraged pricing error 

components, i.e. ‘noise momentum’ effects.  The higher is ߣ, the higher is the noise momentum 

in the price.   

Combining Equations (1), (4), (5) and (7), we finally obtain the two-period GECM given 

by:  ߂ ௧݂ ൌ ௧ିଵݖߢ  ሼሺͳߣ  ௧ିଶሽݖሻߢ  Ɂ߂ ௧݂כ  οߛ ௧݂ିଵ  ௧ݑ ǡ ௧ݑ ̱݅݅݀ሺͲǡ  ௨ଶሻ    (8)ߪ

The GECM simultaneously captures the (complex) dynamics of the two-period 

interaction between arbitrageurs and noise traders.  The distinguishing feature of the GECM is 
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that we can accommodate ‘noise momentum’ effects through the term ߣሼሺͳ   ௧ିଶሽ, with theݖሻߢ

parameter ߣ  measuring the strength of noise momentum and ሺͳ  ௧ିଶݖሻߢ   represents the 

unarbitraged component of the pricing errors from the previous period. It is easily seen that the 

standard one-period GECM will be biased in the case where the ߣ coefficient is non-zero (i.e. 

H2).   

We can transform the GECM, Equation (8), into the following autoregressive distributed 

lag (ARDL) specification:                         ௧݂ ൌ ߶ଵ ௧݂ିଵ   ߶ଶ ௧݂ିଶ  ߛ ௧݂כ  ଵߛ ௧݂ିଵכ  ଶߛ ௧݂ିଶכ   ௧  (9)ݑ

where  ߶ଵ ൌ ሺͳ  ߢ  ሻ , ߶ଶߛ ൌ ሺͳߣ  ሻߢ െ ߛ , ߛ ൌ ଵߛ ,ߜ ൌ െሺߜ  ଶߛ  ሻ, andߢ ൌ െߣሺͳ   .ሻߢ

The overall speed of convergence to equilibrium is now determined jointly by parameters, ߢ and ߣ; namely, it is captured by ߶ଵ  ߶ଶ െ ͳ ൌ ߢ  ሺͳߣ  ሻ. Since െͳߢ ൏ ߢ ൏ Ͳ, positive noise 

momentum would make the pricing errors more persistent. Notably, this is a dynamic issue (of 

potential importance) which cannot be addressed by the conventional one-period model. 

 

3.3 Decomposition of the Pricing Errors 

The GECM incorporates several important economic concepts which are most clearly identified 

and understood by decomposing the pricing error.  Specifically, the pricing error, ݖ௧, from the 

two-period GECM in Equation (8), can be represented as: 

௧ݖ  ൌ ሺͳ  ௧ିଵݖሻߢ  ሼሺͳߣ  ௧ିଶሽݖሻߢ  ߱ȟ ௧݂כ  οߛ ௧݂ିଵ  ௧ݑ ǡ ௧̱݅݅݀ሺͲǡݑ  ௨ଶሻ  (10)ߪ

where ȟ ௧݂כ captures the innovations from the fundamental value of the asset.  Equation (10) 

presents a five-part decomposition of the pricing error, which is discussed below.  
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The first and the second components provide a natural framework for testing our 

hypotheses regarding the limits to arbitrage and its impact on the further price dynamics through 

the two parameters,  ߢ and 9.ߣ As discussed in Section 2, arbitrage is limited, suggesting that  ȁߢȁ 
is below unity.  In the context of this setup, hypothesis H1 now becomes: 0 < |ț| < 1.  Hence, the 

unarbitraged pricing error component persists into the next trading period and the extent of such 

persistence is captured by the parameter ߣ.  

The third component measures the degree of the over- or under-reaction with respect to 

the contemporaneous fundamental changes.  Generally,  ߱ is likely to be non-zero unless the 

market is perfectly efficient. The sign of ߱ determines the direction of the price reaction to 

fundamental impact.  If ߱ is positive (i.e. the pricing error innovation, ߝ௧ is positively correlated 

with the fundamental valuation innovation, ݁௧ ), then the futures price overreacts to the 

fundamentals’ shock, irrespective of the sign of the innovation.  On the other hand, a negative ߱ 

implies that the futures price underreacts to the fundamentals’ shock.  The fourth term represents 

the short-run momentum effect. The sign of ߛ ߛ)  ൌ െ߱ߨ  ) is generally ambiguous since it 

                                                           
9 The parameter K (defined in Section 2 as “pricing error correction”) and parameter ߢ are closely allied, both 
relating to the level of initial error correction in the theoretical and empirical models, respectively.  Specifically, ߢ ൌ െȥ or ȁߢȁ ൌ ȥ i.e. conceptually, in absolute value they are identical.  In the theoretical model, we conceptualize 
the degree of error correction as a positive quantity.  In contrast, in the empirical model, given the basic structure of 
the specification in Equation (10) (i.e. zt =  f(zt-1, zt-2, …)), the error correction parameter ߢ, should be negative if the 
short-run price dynamics are indeed error correcting, because this parameter is devised to measure the extent to 
which the impact of the past error reduces relative to today’s error.  At one extreme, ߢ ൌ Ͳ ሺൌ  Kሻ which reflects no 
error correction by arbitrageurs at time 1, while at the other extreme ߢ ൌ െͳ ሺK ൌ ͳሻ thereby capturing the case in 
which there is 100% reduction in the impact of the past error i.e. the full error-correction case.  An intermediate 
scenario would be ߢ ൌ െͲǤͷ ሺK ൌ ͲǤͷሻ i.e.  ߶ ൌ ͲǤͷ, which captures the case of a 50% reduction in the impact of 
the past error.  As such, in our empirical discussion, we refer to the ‘magnitude of ߢ ’ to draw appropriate 
comparisons with its theoretical counterpart, ȥ.  Furthermore, the definition of  ߣ and its theoretical counterpart Ȧ, 
are perfectly matched.  Both measure the same concept of noise momentum i.e. the percentage of uncorrected error 
from time 1 which persists after the next period of trading.   
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depends on the product of the correlation coefficient, ߱, and the feedback trading coefficient, ߨ.  

As such this is an empirical issue. 

The last component, ݑ௧ is an idiosyncratic error term with zero mean and finite variance, ߪ௨ଶ.  Notice that the total variance of the mispricing innovation, ߝ௧, is obtained simply as the sum 

of the variance of fundamental innovation, ݁௧, and the variance of idiosyncratic error, ݑ௧. 

 Finally, in the context of Equation (10) we see that the magnitude and amplitude of the 

initial pricing errors are determined mainly by parameters ߱, ߛ and ߪ௨ଶ,  while the overall speed 

of convergence to equilibrium (as already outlined above) is determined jointly by ݇  and ߣ, 

namely (݇  ሺͳߣ   ሻ).  Importantly, positive noise momentum would make the pricing errorsߢ

more persistent.     

4. Empirical Application to Index Futures 

4.1 Empirical Model 

The cost of carry model is based on the exclusion of arbitrage and assumes that the risk-free rate 

and dividend yield are given.  Specifically, we expect the following relationship to hold in 

equilibrium:      

     
*
, exp[( ) ]t T t t t tF S r q          (11) 

where *
,t TF   is “fair value” of a futures contract maturing at time T; St is the current value of the 

spot index; rt is the risk-free interest rate, ( )t T t    and qt is the dividend yield on the index.  
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 Assuming that the risk-free rate and dividend yield are deterministic, *
,t TF  and 

tS  will 

share the same stochastic trend.  The futures and spot prices are cointegrated under general 

conditions (Ghosh (1993), Wahab and Lashgari (1993), Brenner and Kroner (1995)).  Significant 

deviations from the prediction of cost of carry can reflect violations of the model’s assumptions.   

The key assumption underlying the cost of carry model is that market participants take 

advantage of arbitrage opportunities as soon as they occur (Hull (2008, Ch. 3)).10  However, 

empirically, only partial adjustment is found (e.g., Stoll and Whaley (1986), MacKinlay and 

Ramaswamy (1988)).  The ECM and GECM developed above provides an ideal tool for helping 

us to understand the rich dynamics behind the pricing error generated and the associated 

convergence processes.  Their empirical counterparts, respectively, are given by: ߂ ௧݂ ൌ ߙ  Ƹ௧ିଵݖߢ  ሺͳ  ߱ሻ߂ ௧݂כ  ሺെ߱ߨሻο ௧݂ିଵ   ௧  (12)ݑ

߂ ௧݂ ൌ ߙ  Ƹ௧ିଵݖߢ  ሺͳߣ  Ƹ௧ିଶݖሻߢ  ሺͳ  ߱ሻ߂ ௧݂כ  ሺെ߱ߨሻο ௧݂ିଵ   ௧  (13)ݑ

where tf is the natural log of the futures contract price;  ௧݂כ is the natural log of the fundamental 

value implied by the cost of carry model, * ( )t t t t tf s r q    ;  ts  is the natural log of the spot 

index price; tr  is the risk-free rate; tq  is the dividend yield on the index.  The pricing error, ݖƸ௧, 

is estimated from the long-run equation: 

                                                           
10 In prior studies, transaction costs and market liquidity have been proposed to explain the temporary deviation 
from the cost of carry model.  Generally, it is documented that liquidity enhances the efficiency of the futures-cash 
pricing system (e.g. Stoll and Whaley (1986), MacKinlay and Ramaswamy (1988), Roll, et al. (2007)).  Temporary 
deviations from cost of carry also motivate several studies to employ threshold error correction models (e.g. Yadav, 
Pope and Paudyal (1994), Martens, Kofman and Vorst (1995)).   
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    ௧݂ ൌ ߤ  ߠ ௧݂כ  ௧ݖ      (14) 

Comparing Equation (14) with Equation (1), we allow for both an intercept and a non-

unity long-run coefficient for general purposes.  According to the cost of carry model, the 

theoretical value of ߠ equals 1.  

 

4.2 Data 

We collect spot and futures data from 29 international markets to illustrate the existence of noise 

momentum around the world.  We use differential time periods covering the complete lifespan of 

the daily index spot and futures contracts between January 1982 (earliest available) and 

December 2013.  The markets covered are: (a) North America – Canada and the US (3 

alternatives); (b) Asia-Pacific – Australia, China, Hong Kong, Japan, Malaysia, South Korea, 

Thailand; (c) Europe – Austria, Belgium, France, Germany, Greece, Hungary, Netherlands, 

Poland, Portugal, Russian Federation, Spain, Switzerland, Turkey and the UK.11 

These markets are summarized in the Appendix A, Table A1. Proxies for the risk-free 

interest rate are shown in Table A2.  Divided yields on the indices are also collected.  The main 

data are sourced from DataStream and where the dividend yields and interest rate data are 

missing we supplement with data from Bloomberg.  A continuous series of the nearest term 

futures contracts is constructed by DataStream.  The series switch to the next nearest contract on 

the first day of the expiry month for the nearest term contract.  We use a full set of expiry dates 
                                                           
11 The power of our empirical tests is potentially weakened by the lower liquidity evident in some of the individual 
markets included. While we clearly have a wide variation of liquidity across our sample, in unreported analysis, we 
find evidence of reasonable activity even in the emerging/developing market sub-sample. In any case, given that an 
illiquidity effect would tend to induce noise and make it harder to find the predicted relationships, the fact that our 
results are uniformly strong allays any major concerns around our research design in this regard. 
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for all the contracts to ensure correct matching of the date to maturity in the continued futures 

price series.  Table 1 reports the sample averages for all variables (measured in percentage 

terms), across the different markets in our full sample.  

As expected, the movements of the paired spot and futures prices closely mimic each 

other.  For each market, the average price changes are of the same magnitude while the 

volatilities are higher in the futures contracts. For example, in the case of the US S&P 500 (ISP), 

the average daily basis (the log difference between futures and spot prices) is 0.36 percent.  After 

applying the cost of carry model, the difference between the futures price and the fair estimate 

(݂ െ  is zero on average.12 Similar findings are documented in other country pairs.  The mean (כ݂

pricing error is zero suggesting that on average the markets are in equilibrium.  

 

5. Empirical Results 

5.1 Initial Mispricing Correction around the World: One-period ECM Results 

The detailed market-by-market estimation results for the one-period ECM in Equation (12) are 

reported in Table 2, with an accompanying summary provided in Table 3.  Our main focus in this 

baseline estimation is the role of the kappa parameter, reflecting the initial mispricing correction. 

At a general level, we observe that in all 29 cases the estimated coefficient is negative and 

significant (at the 1% level). Accordingly, there is pervasive evidence supporting the role of 

initial mispricing correction in futures-spot markets, in line with H1. That is, our analysis in the 

                                                           
12 As expected, the point estimate of long-run coefficient, ș, across all markets is very close to (and statistically 
indistinguishable from) unity.  While full details of these analyses are suppressed here to conserve space, they are 
available from the authors upon request. 
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context of this simple ECM framework supports the view that arbitrageurs engage in initial 

mispricing correction (i.e. |ț| > 0). Moreover, we see the magnitude of kappa estimates range in 

the (0,1) interval, thereby indicating that this initial correction phenomena is consistent with 

limited arbitrage (i.e. |ț| < 1). 

 Figure 1 plots the initial error correction parameters from highest to lowest (in 

magnitude) across our sample of markets. We see that the maximum (minimum) magnitude of 

this effect occurs in Canada (Italy). Other large magnitude cases are evident for the US (except 

CJD), Japan and Germany. These results are suggestive that a stronger role for initial mispricing 

correction is more likely to occur in the larger more prominent markets. However, the patterns 

are quite mixed. While the developing markets of China, Malaysia and Poland exhibit small 

magnitude estimates, relatively close to zero; so too, do the much bigger developed markets of 

France and the UK. Thus, while we do observe considerable variation across market settings and 

we are unable to draw strong conclusions regarding any trends, we do present pervasive evidence 

of the predicted initial mispricing correction effect. 

 

5.2 Noise Momentum around the World: Two-period GECM Results 

The detailed market-by-market estimation results for the two-period GECM in Equation (13) are 

reported in Table 4, with an accompanying summary provided in Table 5.  In Table 4, various 

findings are worthy of special focus – primarily, those linking to our two key hypotheses.  We 

see in the table, that the estimated initial mispricing parameters, ț, are negative and significant in 
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all 29 cases once more, mimicking the outcome of the one-period ECM. Again, this supports the 

limits to arbitrage version of the initial mispricing correction hypothesis (H1).   

 Based on the range of point estimates produced, the median value (with a magnitude of 

approximately 41%) suggests that just under half of the prior period pricing error is corrected.  It 

is noteworthy, that this is a much higher correction than the counterpart median observed in the 

one-period ECM – with a value less than 20% in magnitude. Indeed, comparing the initial 

mispricing correction coefficients between the ECM and GECM models market-by-market, in 

most cases it appears that arbitrageurs play a much bigger role in bringing the price back to its 

fundamental value than suggested by the simpler ECM setup. Only in the case of Spain does the 

magnitude of the estimate not increase. Such a contrasting result suggests that the one-period 

ECM gives a biased and unreliable view of the initial error correction forces evident in the data. 

This is most noticeable for the markets of France and the UK – while both of these in the ECM 

analysis showed statistically significant correction effects, neither seemed to differ markedly 

from zero in economic terms. Now both France and the UK show coefficient estimates 

exceeding 30%, that are much more economically meaningful. 

Our primary focus is on the estimated noise momentum coefficient ሺߣሻ, which links to the 

“noise momentum” hypothesis, H2.  Notably, in Tables 4 and 5 we find that the effect of noise 

momentum is positive and significant in all but one case (the one exception is Spain). This 

finding provides strong support for our noise momentum hypothesis which highlights that, over 

and above any correction for initial mispricing in the first period, the convergence to equilibrium 
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displays a degree of momentum in the mispricing or “noise” component.  It is noteworthy that all 

the estimated positive coefficients are less than unity. 

Looking at the country-by-country results, we see the overall maximum case of noise 

momentum occurs in the US market (CJI) with a value of 0.752, closely shadowed by Canada 

(0.694). In the Asia-Pacific region, Australia (0.637) and Japan (0.572) produce the highest 

values, while in Europe Germany (0.725) and Sweden (0.649) are prominent. At the other end of 

the spectrum, aside from Spain which exhibits the only negative noise momentum coefficient, 

we have Italy (0.206) and Poland (0.178) standing out with the lowest values. Nevertheless, no 

strong patterns emerge e.g. in terms of a developed vs. emerging market divide. For a visual 

appreciation, Figure 2 plots the Kappa and Lambda parameters produced by the GECM across 

our sample of markets. 

For completeness, we make some closing general observations regarding the remaining 

estimated parameters of the two-period model. First, regarding the intercept we see that in all 

cases it is insignificant. While not a guarantee, it is suggestive that the specification is one not 

greatly challenged by mis-specification. In other words, the empirical specification is closely 

matched with the theoretical model in which this parameter is expected to be zero. 

Second, regarding the parameter Ȧ, we observe only 3 instances of insignificance – we 

have 16 (10) significant negative (positive) cases, at the 10% level or better.  Recall, that in the 

context of Equation (10) which decomposes the pricing errors into its various parts, the ߱ 

coefficient relates to the component that measures the degree of the over- or under-reaction with 

respect to the contemporaneous fundamental changes. Our findings suggest that the futures price 
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is more likely to underreact than overreact on the fundamentals shocks from the underlying stock 

index. 

Finally, regarding parameter ʌ, there is a preponderance of (few) significant cases with a 

positive (negative) sign – namely, 15 (4) cases at the 10% level. Recall, that in the context of 

Equation (4), this coefficient relates to the short-run momentum effect. Specifically, a positive 

(negative) ʌ implies positive (negative) feedback trading. Accordingly, this GECM analysis 

suggests a high incidence of positive feedback trading. 

 

5.3 Speed of Mispricing Correction and Duration of Error Convergence 

As indicated earlier, measuring the speed of mispricing correction is a point of contrast between 

our two models: in the one-period ECM it is given by ț, whereas in the two-period GECM it is a 

function of both initial mispricing correction, ț, and noise momentum, Ȝ, – namely, ț + Ȝ(1 + ț). 

To illustrate, we can isolate a few interesting examples. In the case of the US (CRI) the ECM 

provides a value of -0.559, whereas the GECM provides an overall speed of -0.470 (= -0.652 + 

0.524(0.348)). Hence, by ignoring the noise momentum component, the ECM overstates the 

speed of mispricing correction by 9 percentage points (i.e. 55.9% vs. 47%). As another example, 

consider Japan. In this case, the ECM provides a value of -0.512, whereas the GECM provides 

an overall speed of -0.417 (= -0.629 + 0.572(0.371)). Hence, by ignoring the noise momentum 

component, the ECM overstates the speed of mispricing correction by close to 10 percentage 

points (i.e. 51% vs. 41%). As final example, consider Italy. In this case, the ECM provides a 
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value of -0.037, whereas the GECM provides an overall speed of -0.0316 (= -0.197 + 

0.206(0.803)).  

An associated question of interest is how long does it take the price change to converge to 

its long run value, implied by either of our models? In other words, what is the “duration” (in 

days) of the mispricing error convergence? The answer to this question is quite simply evaluated 

by taking the reciprocal of the (overall) adjustment coefficient. To this end, Figure 3 provides a 

comparative plot of the error duration implied by the ECM versus GECM models.  

Generally, it is true that we see somewhat similar values in several cases, but this belies 

the relative role of the underlying components (i.e. Kappa versus Lambda), as discussed above. 

Consider a few interesting examples. At the short end of the spectrum, across our sample 

markets, the US (CRI) exhibits durations of 1.8 days vs. 2.1 days for the ECM vs. GECM 

models. In contrast, for the longest durations we see Italy with values of 27 days vs. 31.6 days 

for the ECM vs. GECM models. Thus, regarding the question of the duration of error 

convergence, while it seems to matter little for the US, the choice of modeling ECM vs. GECM 

does make an appreciable difference for a market like Italy. Nevertheless, in percentage terms we 

generally see a nontrivial difference between the alternative paired duration estimates – in the 

order of 15% (measured relative to the ECM benchmark). 

6. Conclusion 

Building on Shleifer and Vishny’s (1λλ7) theoretical work, we study the dynamics of limited 

arbitrage. Shleifer and Vishny’s (1λλ7) model shows an important insight into why arbitrageurs 

might deliberately limit their initial arbitrage, given their concern about further mispricing in the 
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next period.  We show that second-period error persistence (labeled “noise momentum”) is an 

important parameter in characterizing the overall speed of adjustment process, augmenting the 

initial error correction coefficient as commonly used in the standard one-period ECM.   

To test our model predictions, we develop a two-period error correction model.  We apply 

our model to study the dynamics of limited arbitrage in the index futures market, an important 

area of ongoing research interest in its own right.  Using paired daily index futures and spot data 

from 29 international markets over the maximum period 1984 – 2012, in addition to initial 

mispricing error we document pervasive evidence of limited arbitrage linked to noise momentum 

around the world.     

Notably, the significance of this noise momentum coefficient suggests a serious 

misspecification in the standard error correction models used in the literature. Our empirical 

application illustrates that the generalized error correction model that we develop for the 

purpose, provides a powerful tool for analyzing the dynamics of the price-fundamentals 

relationship.  The potential applications of this approach go well beyond that developed in the 

current paper.  For example, our approach can be applied to explore the short-term dynamics 

associated with fundamental long-run cointegrating relationships (e.g., price-dividend 

relationship) and the pricing dynamics between segmented markets for single assets (for 

example, cross-listing and commodity contracts in different markets).  We commend these and 

other meaningful applications to future research agendas.  
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Table 1: Sample Means for Base Variables across Markets 
This table reports the sample mean for all of the variables employed across each 
market. Table A1 in Appendix A provides the full list of the markets covered.  The 
variables included are: s ( f ) is the first difference of log spot (futures) price;  

*
, ( )t T t t t tf s r q     where ln( )t ts S , 

tr  is the annualized risk-free interest 

rate on an investment for the period t =T-t;
tq is the annualized dividend yield on 

the index, while N is the sample size for each market.  All numbers are tabulated in 
percentage point terms.   
  Panel A. North America 

Country CN US 
   Futures CDD CJD CJI CRI ISP 
   ∆f 4.14 3.66 4.08 7.21 8.32 
   ∆s 4.05 3.51 4.00 7.20 8.26 
   f –s  0.05 -0.03 0.06 0.44 0.36 
    f –f* 0.00 0.00 0.00 0.00 0.00 
   r 2.47 2.41 2.34 3.79 4.25 
   q 2.00 2.24 2.24 1.19 2.50 
   N 3710 4096 4211 4007 8242 
   

 
Panel B. Asia-Pacific 

Country AU CH HK JP KO MY TA TH 

Futures AAP CIF HSI JSX KKX KLC TTX TST 
∆f 3.79 -7.44 8.95 -2.00 5.03 3.19 0.40 7.14 
∆s 3.81 -7.56 8.86 -2.01 5.00 3.16 0.47 7.08 
f –s  0.09 0.38 0.10 0.14 0.19 0.06 -0.29 -0.50 

 f –f* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r 5.07 2.75 4.39 1.48 5.85 4.20 2.28 3.03 
q 3.99 1.57 3.30 0.78 2.53 0.66 2.99 3.87 
N 3539 942 7190 6581 4582 4682 4005 1977 

 
Panel C. Europe  

Country BD BG ES FR GR HN IT NL 

Futures GDX BFX MBX FCX ASI BUX MSM ETI 
∆f 7.52 0.19 5.70 0.45 -13.34 13.00 -3.57 4.79 
∆s 7.48 0.27 5.64 0.41 -13.21 12.73 -3.27 4.77 
f –s  0.52 -0.04 -0.05 -0.05 -0.49 1.11 -0.35 0.01 

 f –f* 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 
r 3.50 2.84 4.54 2.41 2.33 10.02 1.87 3.93 
q 1.98 3.33 3.51 3.36 3.17 1.63 1.85 3.47 
N 5846 4601 5636 3882 3716 4755 2526 6544 

Country OE PO PT RS SD SW TK UK 

Futures VTX WIG PSX RTS OMF ZMI TRF LSX 
∆f 1.24 3.60 -6.14 6.25 5.89 7.36 9.88 5.78 
∆s 0.18 3.85 -5.98 6.20 5.86 7.31 11.72 5.80 
f –s  -0.29 -0.21 -0.23 -0.51 -0.14 -0.08 0.27 0.35 

 f –f* 0.02 0.00 0.02 0.00 0.00 0.00 0.03 0.00 
r 2.59 8.08 2.63 4.38 1.72 2.27 11.76 7.10 
q 2.40 2.44 3.59 1.13 2.77 1.95 2.47 3.44 
N 3730 4137 3705 2169 2290 6012 1846 7713 
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Table 2: One-period ECM Estimation Results - Initial Mispricing Correction around the World 
This table reports the estimation results for the one-period Error Correction Model (ECM) for pairs of futures contracts and 
country stock indices, around the world, as listed in Table A1 in Appendix A. The ECM is specified as follows (Equation 
߂ :((12) ௧݂ ൌ ߙ  Ƹ௧ିଵݖߢ  ሺͳ  ߱ሻ߂ ௧݂כ  ሺെ߱ߨሻο ௧݂ିଵ   ,௧ݑ
where ߂

 
is the first difference operator; ሼߙǡ ǡߢ ɘǡ -Ƹ௧ǡ of the longݖ ,௧ is the error term.  The residualݑ ሽ are the parameters andߨ

run model is obtained from the following estimation:    ௧݂ ൌ ߤ  ߠ ௧݂כ   ௧ݖ

where tf  is the natural log of the actual futures contract price;   ௧݂כ is the natural log of the fundamental value implied by the 

cost of carry model, * ( )t t t t tf s r q    ;  ts  is the natural log of the spot index price; tr  is the risk-free rate; and tq  is 

the dividend yield on the index.  ***, ** and * indicate significance at 1%, 5% and 10% levels, respectively. 
 
  Panel A. North America 

 CN US 
      Coeff. CDD CJD CJI CRI ISP 
  0.002-  0.000  0.000  0.001  0.001 ߙ      
 *** 0.394- *** 0.558- *** 0.617- *** 0.039- *** 0.714- ߢ      

     ߱ -0.035 *** -0.026 *** -0.002  0.044 *** 0.045 *** 
  0.015 *** 0.608  4.318- *** 0.923- *** 0.370- ߨ     

      N 3705   4091   4206   4002   8237               
 Panel B. Asia-Pacific 
 AU CH HK JP KO MY TA TH 

Coeff. AAP CIF HSI JSX KKX KLC TTX TST 0.998 *** 0.992 *** 0.984 *** 1.932 *** 1.006 *** 1.077- ** 0.395  0.085- ߨ *** 0.049 *** 0.077 *** 0.125 *** 0.045 *** 0.049 *** 0.028- *** 0.054- *** 0.038- ߱ *** 0.235- *** 0.180- *** 0.102- *** 0.162- *** 0.512- *** 0.268- *** 0.151- *** 0.301- ߢ  0.000  0.001  0.000  0.001  0.000  0.002  0.002-  0.001 ߙ *** 
N 3534   937   7185   6576   4577   4677   4000   1972   
 Panel C. Europe 
 BD BG ES FR GR HN IT NL 

Coeff. GDX BFX MBX FCX ASI BUX MSM ETI 0.616- *** 0.808 *** 0.330- *** 1.059-  0.057  0.002 ** 0.423- *** 0.435- ߨ *** 0.008- *** 0.035- *** 0.139- *** 0.027- *** 0.020- *** 0.727- *** 0.029- *** 0.019- ߱ *** 0.123- *** 0.037- *** 0.281- *** 0.222- *** 0.071- *** 0.132- *** 0.186- *** 0.435- ߢ  0.000  0.001  0.010  0.002-  0.000  0.017  0.005  0.001 ߙ * 
N 5841   4464   5631   3877   3711   4750   2521   6539   
 OE PO PT RS SD SW TK UK 

Coeff. VTX WIG PSX RTS OMF ZMI TRF LSX 3.062 *** 0.162- ** 3.249- ** 3.891 *** 0.959  3.584 *** 0.722-  0.679- ߨ *** 0.009 *** 0.537- ** 0.007- *** 0.012 *** 0.076  0.006 *** 0.059- * 0.010- ߱ *** 0.098- *** 0.193- *** 0.137- *** 0.094- *** 0.228- *** 0.082- *** 0.051- *** 0.148- ߢ  0.001  0.039  0.001  0.001  0.001-  0.002  0.003  0.001 ߙ *** 
N 3628   4132   3606   2164   2285   6007   1841   7708   
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Table 3: Summary of Estimation Results for One-period ECM 
This table reports the summary estimation results for the one-period Error Correction Model (ECM) applied to pairs of futures contracts and 
country stock indices, around the world, as reported in Table 2. It reports the mean, minimum (Min), first quartile (Q1), median, third 
quartile (Q3) and maximum of each parameter estimated across the 29 pairs.  It also reports the number of parameters that are insignificant 
(Insig), and significant at 1%, 5% and 10% levels with negative and positive signs, respectively.  
 

  Distribution of Estimates   Negative Sign   Positive Sign   
Parameter Mean Min Q1 Median Q3 Max 

 
Sig1% Sig5% Sig10% Insig 

 
Sig1% Sig5% Insig N 0.0385 0.0013 0.0008 0.0001 0.0023- 0.0028 ߙ 

 
. . . 6 

 
 0.0374- 0.1024- 0.1795- 0.2807- 0.7142- 0.2328- ߢ 29 23 . .

 
29 . . . 

 
. . . 29 ߱ -0.0437 -0.7269 -0.0347 -0.0103 0.0436 0.1249 

 
15 1 1 1 

 
 29 4 2 9   3 1 2 8   3.8911 0.9840 0.0016 0.6156- 4.3177- 0.1671 ߨ 29 1 . 10
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Table 4: Two-period GECM Estimation Results - Noise Momentum around the World 
This table reports the estimation results of the two-period Generalised Error Correction Model (GECM) for pairs of futures 
contracts and country stock indices, around the world, as listed in Table A1 in Appendix A.  The GECM is specified as 
follows (Equation (13)): ߂ ௧݂ ൌ ߙ  Ƹ௧ିଵݖߢ  ሺͳߣ  Ƹ௧ିଶݖሻߢ  ሺͳ  ߱ሻ߂ ௧݂כ  ሺെ߱ߨሻο ௧݂ିଵ   ௧ݑ
where ߂

 
is the first difference operator; ሼߙǡ ǡߢ ǡߣ ߱ǡ Ƹ௧ݖ ,௧ is the error term.  The residualݑ ሽ are the parameters andߨ ǡ of the 

long-run model is obtained from the following estimation:    ௧݂ ൌ ߤ  ߠ ௧݂כ   ௧ݖ
where  ௧݂  is the natural log of the actual futures contract price;   ௧݂כ is the natural log of the fundamental value implied by 

the cost of carry model, * ( )t t t t tf s r q    ;  ts  is the natural log of the spot index price; tr  is the risk-free rate; and tq  

is the dividend yield on the index.  ***, ** and * indicate significance at 1%, 5% and 10% levels, respectively. 
 

 Panel A. North America 
 CN US 

      Coeff. CDD CJD CJI CRI ISP 
  0.002-  0.001-  0.000  0.000  0.001 ߙ      
 *** 0.540- *** 0.652- *** 0.705- *** 0.188- *** 0.761- ߢ      

 *** 0.466 *** 0.523 *** 0.752 *** 0.190 *** 0.694 ߣ     
     ߱ -0.033 *** -0.023 *** 0.000  0.047 *** 0.048 *** 
 *** 0.390- *** 0.300  19.672 ** 0.573-  0.199- ߨ     

     N 3705   4091   4206   4002   8237               
 Panel B. Asia-Pacific 
 AU CH HK JP KO MY TA TH 

Coeff. AAP CIF HSI JSX KKX KLC TTX TST 0.259 *** 0.563 *** 0.401 *** 0.998 *** 0.540  0.103- *** 0.492 *** 0.467 ߨ *** 0.053 *** 0.079 *** 0.125 *** 0.050 *** 0.051 *** 0.020- *** 0.052- *** 0.033- ߱ *** 0.524 *** 0.342 *** 0.343 *** 0.328 *** 0.572 *** 0.316 *** 0.399 *** 0.636 ߣ *** 0.462- *** 0.365- *** 0.325- *** 0.349- *** 0.629- *** 0.410- *** 0.365- *** 0.518- ߢ  0.001-  0.001  0.001-  0.000  0.001  0.000  0.001-  0.001 ߙ * 

N 3534   937   7185   6576   4577   4677   4000   1972   
 Panel C. Europe 
 BD BG ES FR GR HN IT NL 

Coeff. GDX BFX MBX FCX ASI BUX MSM ETI 0.514 *** 0.858  0.004  0.357 * 0.204  0.001- ** 0.363  0.115- ߨ *** 0.008- *** 0.034- *** 0.138- *** 0.030- *** 0.020- *** 0.707- *** 0.032- *** 0.016- ߱ *** 0.536 *** 0.206 *** 0.436 *** 0.602 *** 0.404 *** 0.088- *** 0.610 *** 0.725 ߣ *** 0.404- *** 0.197- *** 0.454- *** 0.474- *** 0.324- *** 0.101- *** 0.462- *** 0.599- ߢ  0.000  0.002  0.007  0.000  0.000  0.016  0.004  0.001 ߙ  

N 5841   4464   5631   3877   3711   4750   2521   6539   
 OE PO PT RS SD SW TK UK 

Coeff. VTX WIG PSX RTS OMF ZMI TRF LSX 0.555 *** 0.171 ** 1.613- *** 1.862 *** 0.435  2.982- *** 0.563-  3.207 ߨ *** 0.014 *** 0.547- ** 0.006- *** 0.015 *** 0.082  0.005 *** 0.055-  0.009- ߱ *** 0.423 *** 0.494 *** 0.648 *** 0.450 *** 0.395 *** 0.475 *** 0.178 *** 0.636 ߣ *** 0.349- *** 0.431- *** 0.447- *** 0.357- *** 0.415- *** 0.364- *** 0.188- *** 0.450- ߢ  0.000  0.033  0.001  0.000  0.002-  0.003  0.003  0.002- ߙ ** 
N 3628   4132   3606   2164   2285   6007   1841   7708   
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Table 5: Summary of Estimation Results for Two-period GECM 
This table reports the summary estimation results for the two-period Generalised Error Correction Model (GECM) applied to pairs of futures contracts 
and country stock indices, around the world, as reported in Table 4. It reports the mean, minimum (Min), first quartile (Q1), median, third quartile (Q3) 
and maximum of each parameter estimated across the 29 pairs.  It also reports the number of parameters that are insignificant (Insig), and significant at 
1%, 5% and 10% levels with negative and positive signs respectively.  
 

  Distribution of Estimates   Negative Sign   Positive Sign       

Parameter Mean Min Q1 Median Q3 Max 
 

Sig1% Sig5% Sig10% Insig 
 

Sig1% Sig5% Sig10% Insig 
 

N 0.0331 0.0010 0.0003 0.0003- 0.0023- 0.0022 ߙ 
 

. . . 10 
 

. . . 19 
 

 0.1009- 0.3493- 0.4148- 0.4740- 0.7614- 0.4236- ߢ 29
 

29 . . . 
 

. . . . 
 

 0.7521 0.6023 0.4662 0.3432 0.0882- 0.4556 ߣ 29
 

1 . . . 
 

28 . . . 
 

29 ߱ -0.0411 -0.7071 -0.0331 -0.0088 0.0466 0.1254 
 

15 1 . 1 
 

10 . . 2 
 

 29   5 2 2 11   5 . 2 2   19.6723 0.5396 0.3571 0.1031- 2.9820- 0.8856 ߨ 29
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Figure 1. Initial Mispricing Correction implied by the One-period ECM 
This figure plots the ߢ coefficients, capturing the initial mispricing correction, in the 
ECM of Equation (12) as reported in Table 2 across 26 international markets around the 
world From the four indices used for the US, only the S&P 500 index result is reported 
here. 
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Figure 2. Initial Mispricing Correction and Noise Momentum implied by 
the Two-period GECM 
This figure plots the ߢ coefficients (capturing the initial mispricing correction) and ߣ 
(capturing noise momentum), in the GECM of Equation (13) as reported in Table 4 across 
26 international markets around the world. From the four indices used for the US, only 
the S&P 500 index result is reported here. 
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Figure 3. Duration of Mispricing in ECM and GECM models 
This figure plots the mispricing duration estimated by the ECM versus the GECM models.  
For ECM, duration is calculated as 1/ߢ, where ߢ is the ECM estimator as reported in Table 

2.  For GECM, duration is calculated as 1/ [Ɉ  ɉሺͳ  Ɉሻ], where Ɉ  and ɉ are the GECM 

estimates as reported in Table 4.  The sample covers 26 international markets around the 
world. From the four indices used for the US, only the S&P 500 index result is reported 
here. 
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Appendix A Futures and Spot Market Coverage Tables 
Table A1: Global Sample – Futures Market Coverage 
Country Country Code Futures Futures Code Start Date End Date Number of Contracts* 

Panel A. North America 
CANADA CN ME-S&P CANADA 60 INDEX CDD 16/12/1999 19/12/2013 57 
UNITED STATES US CBOT-DJ INDUSTRIALS COMP CJD 19/03/1998 20/12/2013 54 
UNITED STATES US CBT-DJ INDUSTRIAL AVG  CJI 18/12/1997 20/12/2013 65 
UNITED STATES US CME-RUSSELL 2000 INDEX   CRI 18/03/1993 18/09/2008 63 
UNITED STATES US CME-S&P 500 INDEX ISP 17/06/1982 19/12/2013 127 

Panel B. Asia-Pacific 
AUSTRALIA AU SFE-SPI 200 INDEX AAP 30/06/2000 19/12/2013 55 
CHINA CH CFFEX-CSI 300 INDEX CIF 18/06/2010 20/12/2013 15 
HONG KONG HK HKFE-HANG SENG INDEX HSI 27/06/1986 30/12/2013 107 
JAPAN JP TSE-TOPIX INDEX JSX 07/12/1988 13/12/2013 101 
MALAYSIA MY KLSE-KLCI KLC 29/12/1995 31/12/2013 73 
SOUTH KOREA KO KSE-KOSPI 200 INDEX KKX 13/06/1996 12/12/2013 71 
TAIWAN TA TAIFEX-TAIEX WEIGHTD INDEX TTX 16/09/1998 18/12/2013 62 
THAILAND TH TFEX-SET50 INDEX TST 29/06/2006 26/12/2013 31 

Panel C. Europe 
AUSTRIA OE OTOB-ATX INDEX  VTX 18/09/1992 20/12/2013 86 
BELGIUM BG BELFOX-BEL20 INDEX BFX 17/12/1993 20/12/2013 81 
FRANCE FR MONEP-CAC 40 INDEX FCX 21/12/1998 20/12/2013 61 
GERMANY BD EUREX-DAX INDEX GDX 20/12/1990 20/12/2013 93 
GREECE GR ADEX-FTSE/ASE-20 ASI 17/12/1999 20/12/2013 57 
HUNGARY HN BSE-BUX INDEX BUX 15/06/1995 20/12/2013 75 
ITALY IT IDEM-FTSE MIB MSM 17/09/2004 20/12/2013 38 
NETHERLANDS NL AEX-AEX INDEX ETI 16/06/1989 20/12/2013 99 
POLAND PO WSE-WIG 20 WIG 20/03/1998 20/12/2013 64 
PORTUGAL PT BDP-PSI 20 INDEX PSX 20/09/1996 20/12/2013 70 
RUSSIAN 
FEDERATION 

RS RTS-RTS INDEX RTS 14/09/2005 16/12/2013 34 
SPAIN ES MEFF-IBEX 35 PLUS INDEX  MBX 24/02/1992 20/12/2013 88 
SWEDEN SD OMX-OMXS30 INDEX OMF 23/03/2005 20/12/2013 36 
SWITZERLAND SW EUREX-SMI ZMI 21/12/1990 20/12/2013 93 
TURKEY TK TURKDEX-ISE 100  TRF 30/12/2005 02/08/2013 22 
UNITED KINGDOM UK LIFFE-FTSE 100 INDEX LSX 29/06/1984 20/12/2013 119 

*The number of future contracts used in constructing the continued series. 
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Table A2: Global Sample – Underlying Stock Index Coverage 
Country Country Underling Index Interest Rate Currency 

Panel A. North America 
CANADA CN S&P/TSX 60 INDEX CANADA TREASURY BILL 3 MTH. (BOC) C$ 
UNITED STATES US DOW JONES INDUSTRIALS US T-BILL SEC MARKET 3 MONTH (D) U$ 
UNITED STATES US DOW JONES INDUSTRIALS US T-BILL SEC MARKET 3 MONTH (D) U$ 
UNITED STATES US RUSSELL 2000 US T-BILL SEC MARKET 3 MONTH (D) U$ 
UNITED STATES US S&P 500 COMPOSITE US T-BILL SEC MARKET 3 MONTH (D) U$ 

Panel B. Asia-Pacific  
AUSTRALIA AU S&P/ASX 200 AUSTRALIAN $ DEPO 3 MTH (ICAP/TR)Rate A$ 
CHINA CH CHINA SECURITIES 300 CHINA REPO 3 MONTH CH 
HONG KONG HK HANG SENG TR HONG KONG DOLLAR 3M DEPOSIT K$ 
JAPAN JP TOPIX JP CD RATES FIN INS 30 - 59 D, AVG Y 
MALAYSIA MY FTSE BURSA MALAYSIA KLCI MALAYSIA INTERBANK 3 MONTH M$ 
SOUTH KOREA KO KOREA SE KOSPI 200 KOREA NCD 91 DAYS KW 
TAIWAN TA TAIWAN SE WEIGHED TAIEX TAIWAN MONEY MARKET 90 DAYS TW 
THAILAND TH BANGKOK S.E.T. 50 BANGKOK INTERBANK 3 MONTH TB 

Panel C. Europe 
AUSTRIA OE ATX - AUSTRIAN TRADED INDEX Brussels Interbank Offered Rate.  E 
BELGIUM BG BEL 20 BD EU-MARK 3M DEPOSIT (FT/TR) E 
FRANCE FR FRANCE CAC 40 EURO SHORT TERM REPO (ECB) E 
GERMANY BD DAX 30 PERFORMANCE (XETRA) EURO SHORT TERM REPO (ECB) E 
GREECE GR FTSE/ATHEX LARGE CAP EURO SHORT TERM REPO (ECB) E 
HUNGARY HN BUDAPEST (BUX) HUNGARY INTERBANK 3 MONTH HF 
ITALY IT FTSE MIB INDEX EURO SHORT TERM REPO (ECB) E 
NETHERLANDS NL AEX INDEX (AEX) NETHERLAND INTERBANK 3 MTH E 
POLAND PO WARSAW GENERAL INDEX 20 WARSAW INTERBANK 3 MONTH PZ 
PORTUGAL PT PORTUGAL PSI-20 OECD Portugal Interest Rates 3 Month VIBOR E 
RUSSIAN 
FEDERATION 

RS RUSSIA RTS INDEX RUSSIA INTERBANK 31 TO 90 DAY U$ 
SPAIN ES IBEX 35 SPAIN INTERBANK W/A 3M(DISC) E 
SWEDEN SD OMX STOCKHOLM 30 (OMXS30) SWEDEN TREASURY BILL 90 DAY SK 
SWITZERLAND SW SWISS MARKET (SMI) SWISS 3 MONTH LIBOR (SNB) SF 
TURKEY TK BIST NATIONAL 100 TURKISH INTERBANK 3 MONTH TL 
UNITED KINGDOM UK FTSE 100 UK INTERBANK 3 MONTH £ 

 


