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and mechanics on the wear and creep
of metal-on-polyethylene bearings
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Abstract
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and
test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to
assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene.
In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear
and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the
study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear.
Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the
pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in
wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence
of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute
wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear
path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or
three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely repli-
cate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for
preclinical testing.
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Introduction

Preclinical testing of hip joint replacements is essential
for determining their safety and efficacy before being
implanted into patients. The tribological performance
of hip prostheses can be determined under different
physiological kinetic and kinematic conditions using
hip joint simulators.1,2 The development of tribological
simulations has been based on the average patient per-
forming a walking gait activity,3–5 initially undertaken
to study the clinical failure of metal-on-polyethylene
bearings6,7 where polyethylene (PE) wear and osteolysis
leading to aseptic loosening and failure had been
reported.8 This was the basis of the current interna-
tional standard for preclinical hip wear simulation, ISO
14242-1:2014.9 Over the years, preclinical testing meth-
ods have been developed further to include a wider
range of physiological conditions in the efforts to

understand the reasons for increased clinical failure
rates and achieve longer lasting implants that meet the
demands of active patients. These enhanced preclinical
testing methods include adverse conditions, where the
variations in surgical implant positioning in 6 degrees
of freedom are considered, and the changes in the
implants such as damaged metal femoral heads and
oxidative degradation of PE cups, as well as patient
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variation and activities have been considered.10–13 In
order to assess the performance of hip joint replace-
ments under adverse conditions, hip joint simulators
that are capable of applying the necessary physiological
kinetics and kinematics, and that comply with the latest
international standards, are required.

The design and complexity of hip joint simulators
and test conditions have varied greatly,14–38 meaning
that comparing the results between different simulators
has been challenging.1,2 Hip simulators should be capa-
ble of generating physiological wear paths and test con-
ditions for relevant preclinical assessment.28,29

Pneumatic, hydraulic and electromechanical methods
have all been used to apply mechanical loads and
motions to the hip joint. Hip joint simulators require
multiple stations for meaningful statistical comparisons
to be carried out.

Ultra-high-molecular-weight polyethylene (UHMWPE)
is used in the majority of hip prostheses, having been
used for over 30 years with clinical success in the short-
and medium term.39–42 Wear of PE has been one of the
main factors limiting the successful long-term perfor-
mance of metal-on-UHMWPE joint replacements.7

Ingham and Fisher7 were able to explain the resulting
adverse biological response to PE wear debris, which
led to osteolysis-induced aseptic loosening. To improve
the clinical success rates of UHMWPE, there has been
a continuous effort to improve wear resistance. Hip
joint simulators using standard conditions were success-
ful at predicting the improvement in wear resistance of
cross-linked PE compared to conventional PE, which
was reflected in clinical studies.43–45 The large variation
in the wear of metal-on-UHMWPE reported clini-
cally43,46,47 has not been replicated in vitro, in studies
that have applied the standard walking cycle assuming
an average patient with a well-positioned implant.

The cross-shear effects on the wear of PE are well
understood and have been demonstrated experimentally
and computationally.48–50 Therefore, there is a need to
simulate multi-directional elliptical sliding contact paths
during the gait cycle.25 The wear rates of conventional
PE from hip simulators were reported in the literature to
be 35–50mm3/million cycles.39,51 Improved wear resis-
tance and reduction in the cross-shear effects were found
with the introduction of cross-linked PE. Wear rates
below 20mm3/million cycles were reported for moder-
ately cross-linked PE and even less for highly cross-linked
PE.51,52 Cross-linked PE has now shown over 10years of
clinical success with reduced clinical wear rates.53,54

Wear of PE occurs as a result of predominantly slid-
ing contact with the counterface during articulating
motion of the hip joint. Creep is the permanent defor-
mation of PE due to loading conditions. Both wear and
creep of PE were measured using hip joint simula-
tors,20,51,52,55 where higher penetration depths were
observed before steady-state wear rates were reached.
This explains the higher short-term linear penetration
depths measured in vivo following implantation.43

Both wear and creep are observed clinically; therefore,

assessing both simultaneously in the laboratory has
become an integral part of preclinical hip simulation.

The first-generation ProSim pneumatic hip joint
simulator has been used extensively over the past
15 years to determine wear of hip prostheses under
standard gait conditions. This simulator applies a single
axis of loading pneumatically and has two indepen-
dently controlled axes of motion, flexion/extension (F/E)
and internal/external (I/E) rotation, which are applied
electromechanically. The standard gait cycle is run with
the phase angle of the I/E rotation 90� out of phase
with the F/E motion. This configuration has been
shown to give a physiologically relevant biaxial wear
path between the articulating surfaces, producing wear
results similar to those observed in vivo.10

In order to develop enhanced preclinical wear simu-
lation methods that investigate a wider range of clinical
and patient conditions, be it surgical positioning or
higher patient activity levels, as well as meet the
requirements of international standards, it is necessary
to develop and design hip simulators to meet these
requirements. In this study, a new electromechanical
hip simulator is presented that is able to meet the
requirements of the international standard and perform
testing under adverse conditions. In the first part of this
study, wear rates of metal-on-moderately cross-linked
UHMWPE bearings tested using this newly developed
electromechanical hip joint simulator ProSim EM13
(‘EM’ stands for ‘electromechanical’ and ‘13’ stands for
the year of commissioning) were compared with those
obtained from the pre-existing ProSim pneumatic hip
joint simulator. Second, the influence of kinematics on
the wear of moderately cross-linked UHMWPE was
investigated through comparison of two axes and three
axes of rotation conditions with different phasing using
the same electromechanical hip simulator.

Materials and methods

The wear of ten 36-mm-diameter metal-on-polyethylene
(Marathon�; DePuy Synthes Joint Reconstruction,
Leeds, UK) hip replacements was determined using
ProSim EM13 (n=6) and ProSim pneumatic (n=4)
hip simulators (Simulation Solutions, Stockport, UK).
In both simulators, the acetabular cup (liner) was
placed in an anatomical position, and to avoid the com-
plexity of angled stems, the femoral head components
were secured onto tapered vertical spigots fixed onto a
holder. On the electromechanical simulator, the cup
inclination angle was set to 30� to the horizontal plane
which complies with the latest international standard
and is equivalent to 40� in vivo. To be consistent with
previous testing carried out on the pneumatic simula-
tor, the cup inclination angle was set to 35� to the hori-
zontal plane, which is equivalent to 45� in vivo.56,57 The
5� difference in cup inclination angle between the two
simulators would contribute to the different wear zone
locations; however, no effect on wear rates or
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penetrations depths was anticipated. These cup inclina-
tion angles were at or below 45� where the wear rates of
PE are expected to be the same,58 since the wear area
was well within the bearing surfaces and there was only
5� difference between the two groups. The acetabular
cups were mounted into appropriate metallic shells
cemented within a cup holder, which allowed removal
for gravimetric measurement purposes.

On the electromechanical simulator (Figure 1(a)),
the load was applied in a vertical direction (along the
superior/inferior axis) through the centre of the acetab-
ular cup through a spring by a camshaft during the gait
cycle. The cup holder was attached to an assembly with
two sets of linear track bearings to allow for passive
medial/lateral and anterior/posterior displacement;
therefore, any misalignment was corrected by allowing
the cup to self-centre. All angular displacements were
applied to the femoral head about its centre of rotation.

On the pneumatic simulator (Figure 1(b)), the load
was applied pneumatically through the centre of the
femoral head in the direction normal to the F/E rotation.
The angular displacements on the pneumatic simulator
were applied using motors. The I/E rotation was applied
to the acetabular cup and F/E rotation was applied to
the femoral head. Each station on the ProSim pneumatic
simulator had a gimbal below the femoral head holder,
which allowed the femoral head to be self-centred.

A twin-peak input load profile was applied for all
tests to obtain peak output loads of 3 kN and a swing
phase load 0.3 kN (Figure 2(a)). F/E (+30�/215�) and
I/E rotation (610�) was applied for the two axes of
rotation conditions. The phase angle of the I/E rotation

was 90� out of phase with the F/E motion, consistent
with previous studies,10,29 in order to generate a biaxial
wear path. The test ran for a total of 5million cycles
for each simulator with measurement intervals at 1, 2,
3 and 5million cycles.

For the second part of the study, three axes of rota-
tion were applied following the international standard
ISO 14242-1:2014 (Figure 2(b)),9 therefore including
adduction/abduction of +7�/24� within the standard
gait cycle. The three axes of rotation simulation were
completed on the electromechanical simulator and ran
for 3million cycles with measurement points at 1, 2 and
3million cycles.

Load soak control samples (n=2 for ProSim EM13,
n=1 for ProSim pneumatic) were used to measure the
creep deformation of the PE liners and un-loaded soak
control samples (n=3 for ProSim EM13, n=1 for
ProSim pneumatic) were used to measure the weight
change due to fluid absorption. The lubricant was 25%
new-born calf serum diluted with deionised water (v/v)
which was supplemented with 0.03% sodium azide (v/v)
to retard bacterial growth. The serum was replaced
approximately every 330,000 cycles.

At each measurement interval, the cups were
removed from the simulator component holders,
cleaned and allowed to stabilise in a humidity- and
temperature-controlled environment for at least 48 h
prior to measurement. The change in mass was deter-
mined using a microbalance (Mettler Toledo XP205
analytical balance, Greifensee, Switzerland) and subse-
quently converted into volumetric wear using a density
of 0.9343 1023 g/mm3 for UHMWPE. A coordinate

Figure 1. Test cell schematics of (a) the electromechanical hip joint simulator and (b) the pneumatic hip joint simulator.
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measurement machine (CMM; Legex 322, Mitutoyo,
Japan) was used to measure the penetration due to
wear and creep through construction of a three-
dimensional map of the acetabular liner surfaces and
analysis using Redlux software (Southampton, UK).
The worn components were compared to pre-test mea-
surements to determine the location of the wear zone
and maximum penetration depths of the test samples
and the loaded soak control samples. The mean wear
rates were calculated with 95% confidence limits. One-
way analysis of variance (ANOVA) and a paired sam-
ple t-test were carried out for statistical analysis as
appropriate. Significance levels were taken at p \ 0.05
indicating a difference statistically between groups.

Results

The overall (0–5million cycles) mean wear rates
(695% confidence limits) of the metal-on-UHMWPE
bearings tested in the electromechanical and pneumatic
simulators were 14.66 1.0 and 8.96 2.7mm3/million
cycles, respectively (Figure 3). Between 0 and 5million
cycles, the mean wear rate from EM13 was significantly
higher (p \ 0.01) compared with the pneumatic simu-
lator. The combined wear and creep penetration depth
increased at each measurement point for both electro-
mechanical and pneumatic simulators (Figure 4). The
penetration depth due to creep was determined from
the loaded soak control components, where similar
creep was observed using both simulators (Figure 5).
The maximum mean wear and creep penetration depth
from 0 to 5million cycles for each test sample and
loaded soak control sample was measured (Figure 6).
The penetration depth increased at each measurement
interval, and at 5million cycles the mean maximum
penetration depths (695% confidence limits) measured
for the electromechanical and pneumatic simulators
were significantly different at 0.246 0.01 and

0.126 0.01mm, respectively (p \ 0.01). The loaded
soak control samples with no articulation showed that
the majority of the PE creep occurred within the first
million cycles of testing.

Differences in typical output load profiles from the
electromechanical and pneumatic simulators across the
gait cycle were observed. The main differences between
the electromechanical and pneumatic simulators were
the phasing and magnitude of the peak loads during
the gait cycles and the transition rate from the second
peak load to the swing phase load (Figure 7). A similar
pneumatic output load profile was reported in a previ-
ous study by Liu et al.59 The electromechanical simula-
tor was able to more closely match the prescribed input
load because the motor was able to respond rapidly to
the variation in load compared with the pneumatic sys-
tem. The output angular displacement profiles from
both simulators closely matched the input profiles
(Figure 2a, Figure 7). Similar output F/E and I/E

Figure 2. Simulator input profiles: (a) load and angular displacements for two axes of rotation conditions and (b) load and angular
displacements for three axes of rotation conditions.

Figure 3. Mean wear rates of UHMWPE from 0 to 5 million
cycles using electromechanical and pneumatic simulators. Error
bars represent 695% confidence limits.
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rotation motions were observed from both simulators
(Figure 7).

The mean wear rates over 3million cycles of testing
under the two axes and three axes of rotation condi-
tions in the electromechanical simulator were 13.16 1.4
and 12.26 1.4mm3/million cycles, respectively
(Figure 8). There was no significant difference
(p=0.32) between the mean wear rates of the metal-
on-UHMWPE bearings using two axes and three axes
of rotation.

Discussion

This study has used two different simulator designs to
study the effects of simulator mechanics and kinematics
on the wear and creep of cross-linked PE. Different wear
rates, geometric wear and penetration depths of moder-
ately cross-linked PE liners were observed using different
hip joint simulators when applying the same kinematic
input profiles. Applying I/E rotation to the acetabular
cup and F/E to the femoral head on the pneumatic

Figure 4. Three-dimensional representation of the wear and creep of polyethylene liners from 1 to 5 million cycles, obtained using
the CMM and Redlux software, after testing on (a) the electromechanical simulator and (b) the pneumatic simulator. Positive values
indicate penetration on the liners.

Figure 5. Three-dimensional representation of the creep of the loaded soak control polyethylene liners from 1 to 5 million cycles
obtained using the CMM and Redlux software, after testing on (a) the electromechanical simulator and (b) the pneumatic simulator.
Positive values indicate penetration on the liners.
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simulator compared to both motions applied on the
femoral head on the electromechanical simulator may
have contributed to the different wear rates from the
simulators.60 Unconstrained passive medial/lateral and
anterior/posterior displacement of the acetabular cup on
the electromechanical simulator is thought to be another
contributing factor. On the pneumatic simulator, any
misalignment of the head and cup bearing centres was

corrected with a gimbal arrangement allowing two axes
of rotation of the head rather than linear displacement
of the cup. The mechanics of a moving load vector
applied to the femoral head on the pneumatic simulator
is different to a fixed load vector applied through the
acetabular cup on the electromechanical simulator. The
variations in loading profiles may also have contributed
to different wear rates between simulators.

Similar creep deformation and creep penetration
were observed between the loaded-only samples from
both simulators. These loaded soak control samples
have confirmed that under cyclic loading conditions,
the PE liners reach maximum creep deformation
between 1 and 2million cycles, as observed in previous
experimental, computational and clinical studies.43,52,59

The magnitude of penetration due to creep was found
to be similar to that estimated clinically.61

Designing a hip joint simulator with three axes of
rotation conditions can replicate clinical hip joint
motion and allow compliance with the latest ISO stan-
dards. However, the simplicity of a simulator with two
axes of rotation is still capable of applying clinically rel-
evant wear paths with the correct phasing and magni-
tude of each rotational axis as discussed by Barbour
et al.29 In this study, similar wear rates of PE under
two axes of rotation conditions compared with full
three axes of rotation conditions were obtained, further
validating Barbour et al.’s study. However, it should be
noted that this was based on standard testing condi-
tions only. The test conditions used in this study are
expected to represent conforming hip bearing contact
leading to idealised two body wear.6 The wide envelope
of conditions in vivo including the variations in surgical
positioning of the hip joint implant, prosthetic design,
patient activities and conditions62–64 may lead to a

Figure 6. Maximum penetration depth of polyethylene liners
from 0 to 5 million cycles (mean 695% confidence limits).

Figure 8. Wear rates of 36-mm metal-on-UHMWPE after
3 million cycles of testing using the electromechanical simulator
under two axes and three axes of rotation conditions (mean
695% confidence limits).

Figure 7. Typical output load and motions from the
electromechanical and pneumatic simulators.
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wider variation in wear scars to those produced by the
standard conditions used in the simulators in this
study.

This study has confirmed the importance of designing
simulators with load control stations to determine the creep
deformation of PE for geometric assessments. This does
not fully replicate dynamic creep of articulating surfaces;
however, it is a practical way of monitoring the creep defor-
mation while avoiding sliding contact between the femoral
head and acetabular cup. Wear rates of conventional PE
have been significantly reduced with the introduction of
moderately and highly cross-linked PE. Therefore, it is nec-
essary to use soak samples to monitor the level of fluid
absorption during a test55,65,66 and to correct gravimetric
measurements masked by fluid absorption.

Although comparison of wear rates between simula-
tors can offer an initial form of validation for newly
designed simulators, direct comparison of wear rates
should be avoided. It is crucial to understand the design
and mechanics of the simulators used for in vitro testing
and ensure clinically relevant hip joint motion is repli-
cated. Two-axis simulators have been used in previous
studies because of their simplicity compared with three-
axis simulators; however, the need for advanced precli-
nical testing methods62–64 has led to the design of more
complex simulators. The application and control of hip
joint load and motion using motors provided consistent
and highly conforming output to input profiles; there-
fore, it is a recommended solution for the future design
of hip simulators. Higher accuracy and precision of out-
put loads from the electromechanical simulator com-
pared with the pneumatic simulator and the inclusion
of adduction/abduction rotation for full three axes of
rotation are important considerations for simulators
used for future preclinical testing.

Future studies will consider the effects of kinematics
under two axes and three axes of rotation conditions
with adverse microseparation conditions.67,68 Testing
hip replacements under these conditions is one example
stated in the stratified approach for enhanced reliability
(SAFER) to meet the current and future demands of
safer and more reliable hip joint replacements.62–64

These approaches justify the importance of designing
and understanding current and future in vitro testing
methods for preclinical testing.
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