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Abstract This paper presents a new half-plane Michell
structure that transmits a uniformly distributed load of infi-
nite horizontal extent to a series of equally-spaced pinned
supports. A full kinematic description of the structure is
obtained for the case when the maximum allowable tensile
stress is greater than or equal to the allowable compressive
stress. Although formal proof of optimality of the solu-
tion presented is not yet available, the proposed analytical
solution is supported by substantial numerical evidence,
involving the solution of problems with in excess of 10
billion potential members. Furthermore, numerical solu-
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tions for various combinations of unequal allowable stresses
suggest the existence of a family of related, simple, and
practically relevant structures, which range in form from a
Hemp-type arch with vertical hangers to a structure which
strongly resembles a cable-stayed bridge.

Keywords Plastic design · Truss optimization · Michell
structure · Uniformly distributed load

1 Introduction

In his groundbreaking contribution to the field of structural
optimization, Michell (1904) formulated the sufficient con-
ditions for a truss with equal tensile and compressive yield
stresses to have the least volume. Hemp (1973) showed that
these conditions are also necessary, and generalised them to
the case of unequal allowable stresses; see the re-evaluation
and clarification of these results by Rozvany (1996). In
trusses satisfying the Michell-Hemp criteria, the magnitudes
of the tensile and/or compressive stresses in load-carrying
members must everywhere be at maximum allowable val-
ues, and the virtual strains in such members must not exceed
these limiting values. The corresponding displacement field
must remain continuous throughout the design domain and
satisfy the kinematic restrictions imposed on the solution.

The Michell-Hemp criteria can be satisfied in several
different ways, implying that every domain containing an
optimal structure can be split into one or more regions, dis-
tinguished by values of the member force components f ′
and f ′′ and associated principal strains ε′ and ε′′:

T : f ′ < 0, f ′′ > 0, ε′ = −�σ/σC, ε′′ = �σ/σT ; (1)

SC : f ′ < 0, f ′′ < 0, ε′ = −�σ/σC, ε′′ = −�σ/σC ; (2)
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ST : f ′ > 0, f ′′ > 0, ε′ = �σ/σT , ε′′ = �σ/σT ; (3)

RC : f ′ = 0, f ′′ < 0,

−�σ/σC ≤ ε′ ≤ �σ/σT , ε′′ = −�σ/σC ; (4)

RT : f ′ > 0, f ′′ = 0,

ε′ = �σ/σT , −�σ/σC ≤ ε′′ ≤ �σ/σT . (5)

Within (1)–(5), σT and σC denote the maximum allow-
able tensile and compressive stresses, σ = (σT + σC)/2
and � is a positive infinitesimal. Optimal trusses may also
contain regions of uniform tension and/or compression, see
Rozvany et al. (1995). All trusses constructed by Michell
(1904), as well as the majority of optimal trusses iden-
tified in the early literature, only feature one or several
regions of type T ; thus, the term ‘Michell structure’ is
sometimes considered to be synonymous with definition (1).
In our paper we use this term in a more general way, to
describe any structure that satisfies the Michell-Hemp crite-
ria, which implies that any number of regions (1)–(5) can be
present.

The deceptive simplicity of the specified criteria should
not obscure the fact that there is no known procedure for ver-
ifying whether a Michell structure exists for a given problem
specification, or for determining its form. Unsurprisingly,
the number of Michell structures to have been identified to
date is not large, see e.g. Michell (1904), Chan (1962), Chan
(1967), Hemp (1973), Lewiński et al. (1994), and Rozvany
(1998). Furthermore, whilst some notable exceptions exist,
see Hemp (1974), Chan (1975), Sokół and Lewiński (2010),
and Tyas et al. (2011), the majority of known Michell struc-
tures are designed to support only a single external point
load.

In this paper, we present details of an apparently new
Michell structure, for a problem which appears to have
been hitherto overlooked. The problem involves a uni-
formly distributed vertical load applied along a horizontal
line spanning across an infinite number of equally-spaced
pinned supports. The motivation for this configuration orig-
inates from the (still unsolved) classical problem of finding
the optimal half-plane structure to transmit a uniformly dis-
tributed load along a line between two level pinned supports,
to these supports, see Hemp (1974) and Chan (1975). In
the case of equal allowable stresses and an infinite num-
ber of equally-spaced supports, the resulting geometry of
the Michell structure, and the mathematical solution for
kinematic fields, all turn out to be comparatively simple.
Importantly, the volume per single span of the resulting
structure is approximately 11.0 % lower than that of the
parabolic arch with vertical hangers and 7.86 % lower than
that of the classical solution by Hemp (1974), which is

known to be sub-optimal. We stop short of proving the
optimality of the proposed structure for the half-plane;
however, results from numerical simulations presented in
the paper appear to support our claim. We also present a
number of numerical solutions for similar problems with
unequal allowable stresses, suggesting that a wider fam-
ily of related, simple and practically relevant structures
exists.

2 An auxiliary problem

Before analysing our main problem, featuring an infi-
nite number of equally-spaced supports, it is instructive
to examine a simpler configuration. Consider a uniformly
distributed load (w per unit length) that is applied to a
horizontal line segment of length 2L, and needs to be trans-
mitted to a pinned support at the centre of the segment. It is
not difficult to verify that the suitable optimal solution for
the upper half-plane is a ‘half-wheel’, the structure compris-
ing concentric semicircles and orthogonal radii, as shown on
Fig. 1. A nearly identical structure has been constructed for
the problem involving external vertical point loads at points
x = ±L by Michell (1904) and Hemp (1973). The outer
rim of their classic solution represents a concentrated mem-
ber, connected to the support by the continuum of straight
spokes. The solution for the distributed load, described in
this section, does not have concentrated members and would
be more correctly interpreted as a ‘half-disc’, a mesh of
mutually orthogonal radial and concentric members.

The structure is conveniently mapped by the orthogonal
curvilinear system (α, β), such that

α = r , β = θ , φ = β + π

2
, A = 1 , B = α , (6)

in which r , 0 � r � L, is the linear distance from the
support, θ , −π/2 � θ � π/2, the polar angle measured

Fig. 1 The Michell half-wheel transmitting a uniformly distributed
load to a single pinned support



Optimum structure for a uniform load over multiple spans

counter-clockwise from the vertical symmetry axis and φ

the angle measured from the horizontal line to the tangent of
an α-line. Functions A and B are the Lamé coefficients, i.e.
the scale factors for the chosen system of orthogonal curvi-
linear coordinates (Morse and Feshbach 1953). A suitable
strain field is given by

u = −�σ
α

σC

, v = �σ
αβ

σ∗
, ω = �σ

β

σ∗
, (7)

where u and v denote displacements along α and β, respec-
tively, ω denotes the rotation and σ∗ = σCσT /(σC + σT ).
If T ′ and T ′′ denote the end loads per unit coordinate dif-
ference in the α and β directions, then they must satisfy the
standard equilibrium equations in curvilinear coordinates:

∂T ′

∂α
= T ′′ ∂φ

∂β
,

∂T ′′

∂β
= −T ′ ∂φ

∂α
, (8)

see Hemp (1973). In our case ∂T ′′/∂β = 0, and the equi-
librium of vertical components of forces acting along the
bottom of the structure requires that T ′′ = w. Equation (8)1

can now be integrated, yielding T ′ = wα + t ′(β). One
needs to add another boundary condition to fully specify
the force field within the structure. For example, if T ′ is
required to vanish along the outer rim of the structure, then
t ′(β) = −wL and T ′ = w(α − L), hence, completing the
solution.

The volume of the resulting structure is found from the
virtual work of external loads, which in our case yields

Waux = 2

�σ

∫ L

0
− wv|β=−π/2 dα = π

2

wL2

σ∗
. (9)

Strain field (7) may be trivially extended to cover the
entire half-plane, thus signalling the global optimality of
the solution. Although not a structure in the conventional
sense, this solution for a single pinned support still has
lower volume than, the admittedly suboptimal, half-plane
structure constructed by Hemp (1974) for the case of two
pinned supports. Indeed, when σC = σT , (9) reduces to
Waux = πwL2/σ , whereas the volume of Hemp’s structure
is 3.155wL2/σ .

3 The virtual displacement field

Perhaps unsurprisingly, the strain field described in
Section 2 cannot be immediately adopted to problems fea-
turing multiple supports. Indeed, if we were to consider two
level supports, and attempt to match two copies of field (7),
expanding from each of the supports, then this would be
found to be impossible due to the monotonic variation of
each local u and v as functions of local α. Motivated by this
observation, we consider an extension of the structure from

Region

Region

Fig. 2 Half-span of the proposed structure

Section 2, with a half-span as shown in Fig. 2 (we assume
that the other half is obtained by reflecting the structure
about the vertical Oy). The original quarter-wheel of width
L is cut along the vertical line originating from the point
x = X in the global Cartesian coordinate system Oxy. We
assume that the virtual displacement field within the shaded
region 0 � x � X, now denoted as T1, is defined precisely
the same as described in Section 2. Outside T1, the trajec-
tories of tensile circumferential members are continued as
straight ties until they reach y = 0. We denote this sec-
ond region as RT

2 , in accordance with definition (5). In
order to ensure that the inclined ties equilibrate the verti-
cal distributed load, one has to complete the construction
by adding a horizontal concentrated member along the bot-
tom of RT

2 ; this member is best interpreted as a degenerate
region ST

3 , see definition (3).
Parameter X, presently unknown, fully determines the

geometry of the optimal structure. The additional degree
of freedom, offered by having X within our formulation,
will turn out to be sufficient to ensure that the horizontal
displacement vanishes at x = L. This will enable us to
reflect the structure about the vertical x = L and, conse-
quently, by copying and reflecting the field, to construct the
virtual displacement field satisfying all kinematic require-
ments, i.e. vanishing displacement at the infinite sequence
of equally-spaced level pinned supports. Simple geometric
considerations lead to the conclusion that X can also be
written in terms of the angle θ0 between axis Ox and the top
tie within region RT

2 :

X = L sin2 θ0 . (10)

Throughout this paper we are using right-handed coordinate
systems, with positive angles measured counter-clockwise.
Because of this, rather than working with an obtuse angle,
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it will be more convenient to use negative angle θ0. In view
of relationship (10), we shall be using parameters X and θ0

concurrently as an additional way of simplifying some of
the forthcoming expressions.

The mathematical description of this structure calls for
the use of several curvilinear coordinate systems. The region
T1 can be fully described using the same coordinate system
as in Section 2. Thus, we assume that α1, β1, φ1, A1, B1,
u1, v1 and ω1 are defined precisely as in (6), (7) (note that
here and henceforth the numeric subscripts indicate which
specific region a given quantity relates to). The only dif-
ference concerns ranges of the variation of the coordinates.
Since the verticals x = ±X are described within T1 by equa-
tion α1 = −X sin β1, therefore, −π/2 � β1 � π/2 (as
before) and 0 � α1 � min{ L| sin θ0|, X/| sin β1|}. In par-
ticular, along the boundary with region RT

2 , the curvilinear
displacements and rotation are given by

u1|x=X = �σX

σC sin β1
, v1|x=X = − �σXβ1

σ∗ sin β1
, (11)

ω1|x=X = �σβ1

σ∗
. (12)

The curvilinear coordinate system appropriate for
describing the strain field within region RT

2 is harder to for-
mulate. The systems of straight, non-intersecting ties asso-
ciated with regions described by (5) may be analysed using
the mathematical formalism by Hemp (1973, Section 4.2).
Since line x = X is the boundary between T and R regions,
we know that ties within RT

2 must be orthogonal to the struts
within T1. The gradient of each tie within RT

2 is given by
the value of tan β1 at x = X, where the tie “peels off”
the fan. Thus, it is convenient to introduce coordinate β2

within region RT
2 to be the same angle as β1, e.g., the bottom

left corner of RT
2 corresponds to β2 = −π/2, whereas the

uppermost tie corresponds to β2 = θ0. All ties within RT
2

can be described as the family of straight lines parametrised
by β2:

�(x, y, β2) = x − y cot β2 − X(1 + cot2 β2) = 0 . (13)

These lines envelop an evolute, the equation of which can
be found by solving simultaneously �(x, y, β2) = 0 and
∂�(x, y, β2)/∂β2 = 0, which yields

y2 + 4Xx − 4X2 = 0 . (14)

In an orthogonal coordinate system with α2 defined as the
distance from a fixed involute, (14) may be alternatively
written as α2 + F(β2) = 0. Here F(β2) is the arc length
measured along the evolute from the point where α2 = 0.
Since evolute (14) touches the bottom left corner of RT

2 , it is
convenient to use the involute passing through this point as
the coordinate axis. We can now integrate along the evolute
to obtain the full description of our curvilinear coordinates
in the form

φ2 = β2 + π

2
, A2 = 1 , B2 = α2 + F(β2) , (15)

where

F(β2) = X(cot β2 csc β2 − ln[cot β2 − csc β2]) , (16)

see also Hemp (1973). The Cartesian description of coordi-
nate lines in (α2, β2) is obtained by computing

x + iy = X + α2eiβ2 + i
∫ β2

−π/2
eiξF (ξ) dξ , (17)

which leads to the explicit formulae

x = (α2 − X ln[cot β2 − csc β2]) cos β2 + X , (18)

y = (α2 − X ln[cot β2 − csc β2]) sin β2 − X cot β2 . (19)

An additional test of the validity of these equations may
be performed by directly computing the Lamé parameters
from (18) and (19). The resulting expressions match (15)
exactly. Table 1 presents some useful relationships between
coordinates of various lines and points within the global
Cartesian and the local curvilinear coordinate systems.

Given orthogonal coordinates (15), we can formulate the
system of partial differential equations describing principal
and shear strains, as well as the rotation, in the form:

∂u2

∂α2
= �σ

σT

, v2 = ω2(α2 + F(β2)) + ∂u2

∂β2
, (20)

ω2 = ∂v2

∂α2
, ε′′

2 = (α2 + F(β2))
−1

(
∂v2

∂β2
+ u2

)
. (21)

Table 1 Significant lines and points within the coordinate system (α2, β2)

Cartesian Curvilinear Significance

x = X α2 = X ln[cot β2 − csc β2] the boundary between regions T1 and RT
2

y = 0 α2 = X (cot β2 csc β2 + ln[cot β2 − csc β2]) the bottom of region RT
2

y = (L − x)
√

X/(L − X) β2 = θ0 the top tie of region RT
2

(X, 0 ) ( 0, −π/2 ) the bottom left corner of region RT
2

(X,
√

X(L − X) ) (X ln[cot θ0 − csc θ0], θ0 ) the top left corner of region RT
2

( L, 0 ) (X(cot θ0 csc θ0 + ln[cot θ0 − csc θ0]), θ0 ) the right corner of region RT
2
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Equation (20)1 implies that u2 = �σ(α2/σT + G(β2)),
with G(β2) chosen to ensure the continuity along the line
x = X. Since β1 and β2 denote the same angle, the continu-
ity with circumferential displacements requires u2|β2=β1 =
−v1|β1=β2 , so that a reference to (11)2 provides the full
definition

u2 = �σ(α2/σT + G(β2)) , (22)

where

G(β2) = X

(
β2

σ∗
csc β2 − 1

σT

ln[cot β2 − csc β2]
)

. (23)

The rotation is fixed along α2-lines within RT
2 ; therefore,

the continuity of rotation along x = X and (12) gives ω2 =
�σβ2/σ∗. This enables us to compute v2 directly from (20)2,
with the result

v2 = �σ

(
X csc β2

σC

− β2

σ∗
(α2 − X ln[cot β2 − csc β2])

)
.

(24)

The substitution of displacement (24) into (21)1 again gives
ω2 = �σβ2/σ∗, as it should. By substituting the value for
α2 associated with x = X from Table 1 into (24), it is also
possible to verify that v2|β2=β1 = u1|β1=β2 . The remain-
ing equation (21)2 provides a direct means of computing the
strain along β2-lines, which is found to be

ε′′
2 = 2�σ

σ∗

(
1 − X cot β2 csc β2

α2 + F(β2)

)
− �σ

σC

. (25)

For the field within RT
2 to satisfy the Michell criteria (5),

we must ensure that −�σ/σC � ε′′
2 � �σ/σT . It is worth

reminding ourselves that the denominator within (25) is an
equation of the evolute. It can only vanish in a single point of
region RT

2 , where the evolute touches the bottom left corner,
see (14). However, due to the cancellation of terms, one has
everywhere along the bottom boundary of RT

2 :

ε′′
2 |y=0 = �σ/σT , (26)

see (25) and Table 1. Simultaneously, everywhere along the
boundary between regions T1 and RT

2 ,

ε′′
2 |x=L/2 = −�σ/σC . (27)

Keeping in mind that, for every fixed β2, ε′′
2 is a

monotonously increasing function of α2, see (25), that
changes from −�σ/σC at x = L/2 to �σ/σT at y = 0, we
come to the sought-for conclusion that RT

2 is a valid Michell
region of type RT , see (5).

Having constructed a consistent strain field for a sin-
gle half-span, we have not yet solved the original problem,
featuring an infinite sequence of equally-spaced level sup-
ports. A full span of length 2L can be obtained by reflecting
the constructed fields with respect to Oy. In addition, we
can use (22), (24) and Table 1 to write ux

2 , the horizontal
component of displacement along y = 0, in the form

ux
2 |y=0 ≡ u2|y=0 sin φ2 + v2|y=0 cos φ2

= �σ

(
cot2 β2

σT

− 1

σC

)
X . (28)

We intended to produce a symmetric structure, which can be
reflected about the vertical x = L. This can only be done if
the horizontal displacement ux

2 |y=0 vanishes at x = L, i.e.
at β2 = θ0. Clearly, this happens when

θ0 = − arctan

√
σC

σT

, (29)

which, due to relation (10), is equivalent to

X = σC

σC + σT

L . (30)

Remarkably, condition (29) is also equivalent to the opti-
mality condition obtained for the parabolic funicular loaded
by a transmissible, uniformly distributed load, see Wang and
Rozvany (1983) and Darwich et al. (2010). We have now
identified the value of X for which it is possible to pro-
duce a structure that, via a series of simple reflections and
translations, is replicated across an infinite sequence of level
pinned supports placed 2L apart along Ox. A depiction of a

Fig. 3 A single span of the
constructed optimum structure
in the case of equal allowable
stresses
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single span of such a structure for the important case when
σC = σT is presented in Fig. 3.

It has already been mentioned that regions of type T ,
i.e. the regions that satisfy the Michell criteria and condi-
tions (1), are often perceived to be synonymous with all
Michell structures. Since these regions feature systems of
mutually orthogonal members, the requirement of member
orthogonality is often presumed for general Michell struc-
tures. This requirement is, evidently, violated at the bottom
boundary of region RT

2 , where ties join a concentrated ten-
sile member. Interestingly, Rozvany (1997) presents several
examples showing how the orthogonality requirement can
be relaxed along boundaries between RC and RT regions.
The situation is simpler in our case. Since both principal
strains become equal to �σ/σT at the bottom boundary,
see (26), one can interpret the concentrated member at the
bottom of RT

2 as a degenerate ST
3 region (3), within which

the orthogonality requirements do not hold.
Note that Cartesian point (X, 0) is a singular point of the

strain field. Within region T1 the horizontal component of
strain at y = 0 is always compressive, i.e. ε′

1 = −�σ/σC .
In particular, this is true at the boundary with RT

2 , if one
approaches (X, 0) along the vertical x = X, see (27). At
the same time, if one approaches (X, 0) along the involute
α2 = 0 in RT

2 , i.e. takes the limit β2 → −π/2 of (25) with
α2 = 0 fixed, or if one approaches (X, 0) along the bottom
of RT

2 , one obtains (26), i.e. the maximum allowable tensile
strain. This singularity does not affect the continuity of the
displacement or stress fields.

The virtual displacement field constructed in this section
does not cover the space above the structure. This means
that the described structure is guaranteed to be optimal only
in the domain coinciding with the structure itself. How-
ever, our numerical investigation, which will be described
in Section 6, strongly suggests that the described Michell
structure is globally optimal for the upper half plane as long
as σC � σT .

4 The volume of the structure

The volume of a single span of the proposed structure can be
computed by calculating the work done by the external loads
and dividing it by �σ . The work done WI by the distributed
load acting along −X � x � X can be found with the help
of expressions (9) and (30):

WI = �σ
π

2

wX2

σ∗
= �σ

π

4

σC

σT

wL2

σ
. (31)

In order to determine the work done WII by the distributed
load acting along X � |x| � L, one needs to find the ver-

tical displacement u
y

2 along the bottom boundary of RT
2 .

Using (22), (24) and Table 1, we obtain

u
y

2 |y=0 ≡ −u2|y=0 cos φ2 + v2|y=0 sin φ2

= �σ
(
β2 csc2 β2 + cot β2

)
X/σ∗ . (32)

Using (32), the second work integral is computed as

WII = 2
∫ L

X

wu
y

2 |y=0 dx = 4wX

∫ θ0

−π/2
−u

y

2 |y=0
cos β2

sin3 β2
dβ2

= �σ

(
3σC + 5σT

6
√

σCσT

− 2σ 2θ0

σCσT

− π

4

σC

σT

)
wL2

σ
. (33)

Clearly, Wmin = (WI + WII )/�σ , hence

Wmin =
(

3σC + 5σT

6
√

σCσT

− 2σ 2θ0

σCσT

)
wL2

σ

=
(

3�σ + 5

6
√

�σ

+ (1 + �σ)2

2�σ

arctan
√

�σ

)
wL2

σ
,(34)

Region T3

Region T4

Region T5
Region T5

Fig. 4 The conjectured configuration of the virtual displacement field
for the upper half-plane
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where �σ = σC/σT � 1. In the particularly important case
of equal allowable stresses, the volume of a single span of
the described structure is given by

Wmin =
(

4

3
+ π

2

)
wL2

σ
≈ 2.90413

wL2

σ
, (35)

which is 11.0 % lower than the volume of a simple parabolic
arch with vertical hangers, and 7.86 % lower than that of the
classical solution obtained by Hemp (1974), which is known
to be sub-optimal, see also Chan (1975).

5 Global optimality

Although we have now obtained a continuous virtual dis-
placement field that satisfies all of our kinematic and static

requirements, this does not constitute a proof of global
optimality. A rigorous proof requires construction of a con-
tinuous virtual displacement field that covers the entire
half-plane.

The derivation of such a field is beyond the scope of the
present paper. However, we believe that geometry of the
described Michell structure strongly suggests a likely con-
figuration of the virtual displacement field above the struc-
ture, see the sketch in Fig. 4. In the proposed configuration,
an additional region T3 of lines and circles is placed above
the region of inclined members RT

2 . Then the upper bound-
aries of regions T1 and T3 form two orthogonal circular arcs,
which are sufficient to describe an additional fully strained
region T4, which will be largely identical to the cantilevers
constructed by Chan (1962). Complementary to region T4,
there will need to be two additional regions T ′

5 and T ′′
5 , sim-

Table 2 Numerical vs. analytical volumes, V
(×wL2/σC

)

σT /σC

nx 0.1 0.2 0.5 0.95238 1.0 1.05 2 5 10

Numerical 300 7.61859 5.59423 3.89496 2.99108 2.90631 2.82084 1.94611 1.20120 0.845556

320 7.61765 5.59376 3.89467 2.99093 2.90614 2.82067 1.94599 1.20113 0.845491

340 7.61680 5.59336 3.89441 2.99079 2.90601 2.82055 1.94587 1.20107 0.845430

360 7.61606 5.59301 3.89422 2.99066 2.90590 2.82044 1.94579 1.20103 0.845393

380 7.61545 5.59271 3.89405 2.99056 2.90581 2.82034 1.94571 1.20099 0.845376

400 7.61497 5.59243 3.89388 2.99046 2.90570 2.82025 1.94565 1.20095 0.845343

420 7.61457 5.59218 3.89372 2.99036 2.90560 2.82016 1.94559 1.20091 0.845319

440 7.61424 5.59198 3.89360 2.99026 2.90551 2.82007 1.94554 1.20088 0.845295

460 7.61393 5.59177 3.89347 2.99019 2.90543 2.81999 1.94550 1.20085 0.845274

480 7.61360 5.59159 3.89338 2.99011 2.90537 2.81992 1.94546 1.20082 0.845247

500 7.61330 5.59144 3.89329 2.99005 2.90530 2.81986 1.94543 1.20079 0.845226

520 7.61306 5.59130 3.89320 2.98999 2.90525 2.81981 1.94539 1.20077 0.845204

540 7.61286 5.59117 3.89312 2.98994 2.90520 2.81976 1.94535 1.20075 0.845190

560 7.61262 5.59106 3.89305 2.98989 2.90514 2.81971 1.94532 1.20072 0.845170

580 7.61240 5.59097 3.89299 2.98985 2.90510 2.81967 1.94528 1.20071 0.845150

600 7.61221 5.59086 3.89292 2.98981 2.90507 2.81963 1.94526 1.20070 0.845143

620 7.61205 5.59076 3.89286 2.98977 2.90503 2.81959 1.94523 1.20068 0.845132

640 7.61193 5.59068 3.89280 2.98974 2.90500 2.81956 1.94521 1.20066 0.845109

660 7.61178 5.59061 3.89275 2.98970 2.90497 2.81954 1.94519 1.20066 0.845098

680 7.61162 5.59054 3.89270 2.98967 2.90493 2.81951 1.94516 1.20064 0.845097

700 7.61149 5.59047 3.89266 2.98965 2.90491 2.81948 1.94515 1.20063 0.845069

720 7.61136 5.59041 3.89262 2.98962 2.90488 2.81944 1.94513 1.20063 0.845075

740 7.61126 5.59035 3.89258 2.98959 2.90485 2.81942 1.94510 1.20062 0.845063

760 7.61115 5.59029 3.89255 2.98956 2.90483 2.81940 1.94510 1.20062 0.845056

∞† 7.609035 5.588912 3.891541 2.988762 2.904020 2.818590 1.944614 1.200328 0.8447375

Analytical - 7.608263‡ 5.588723‡ - - 2.904130 2.818719 1.944596 1.200307 0.8447861

Diff. (%) - 0.0101 % 0.0034 % - - −0.0038 % −0.0046 % 0.0009 % 0.0017 % −0.0057 %

†Obtained by extrapolation, using a power-law extrapolation scheme as used by Darwich et al. (2010)
‡Analytical solution for arch with vertical hangers, after (Pichugin et al. 2012)
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ilar to, but not identical to the fields constructed by Chan
(1967) (H. S. Y. Chan’s solutions assume that the vertical
boundaries of the domain are fixed, whereas in our case one
must enforce the conditions for reflective symmetry). One
can then construct further extensions of the field above, by
adding further fully strained regions akin to the approach
taken for Michell cantilevers by Lewiński et al. (1994),
Graczykowski and Lewiński (2006a), Graczykowski and
Lewiński (2006b), and Graczykowski and Lewiński (2007).

6 Numerical solutions

In order to verify the optimality of the structure described in
previous sections, numerical solutions have been obtained
using an efficient numerical layout optimization proce-
dure by Gilbert and Tyas (2003). This procedure was also
used to provide compelling numerical evidence that the
parabolic arch is not an optimal structure to transfer a uni-
formly distributed transmissible load to two pinned supports

Fig. 5 Selected rationalized numerical solutions that illustrate the effects of varying the ratio of allowable stresses
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(Darwich et al. 2010), prior to formal proof of this being
obtained by Tyas et al. (2011).

Detailed numerical results are shown in Table 2 for
various ratios of the maximum allowable tensile and com-
pressive stresses, σT and σC , modelling half the problem
domain (due to symmetry) with increasingly fine nodal
resolutions. The largest model run, for the σC = σT

case, contained 10,591,164,111 potential members (i.e.
over 10 billion potential members; see supplementary elec-
tronic material). Extrapolated volumes were also obtained
using the power law extrapolation scheme described in
Darwich et al. (2010). More specifically, models com-
prising nx = 300, 320, . . . , 760 divisions were used to
provide source data, where nx is the number of nodal
divisions across the full span. A weighted nonlinear least-
squares approach was used to find best-fit coefficient values
for use in the extrapolation, with the weighting factor
taken as nx , to increase the influence of fine resolution
solutions.

It is clear from Table 2 that the extrapolated numerical
solutions agree extremely well with the analytical solutions
presented in this paper for the σT � σC cases, suggesting
that the analytical solutions presented are likely to be glob-
ally optimal for the half plane. (In fact the very high levels
of accuracy that can now be obtained using modern numer-
ical methods and computational resources would seem to
indicate that the latter will increasingly provide a pragmatic
means of confirming global optimality.)

Fine resolution numerical layout optimization solutions
are often complex in form, particularly when uniform loads
are involved (since equilibrium requirements dictate that
each loaded node must be connected by one or more
members). Consequently, for sake of clarity, Fig. 5 shows
relatively coarse resolution numerical solutions. These have
been rendered even clearer via application of a geometry
optimization post-processing step, which involves rational-
izing the solution by adjusting the positions of nodes (He
and Gilbert 2015); full details of the numerical solutions are
included in the electronic supplementary information.

It is evident from Fig. 5 that the structure obtained when
σC = σT (shown at the top of the figure) displays a remark-
able similarity to the analytical solution shown in Fig. 3.
Also, when σT > σC , the numerical results are very sim-
ilar to the layout postulated in Fig. 2, with the parameter
X, which defines the location at which half-wheel fields are
replaced by systems of straight tension members decreasing
according to the ratio of σC and σT , as predicted by (30).
However, when σT < σC , a different structure emerges.
In this case an arch compression rib with inclined tensions
hangers develops over the central section of the span, with
a Hencky-net fan emerging from the Michell wheel-like
section closer to the support. Interestingly, the numerical

solutions for unequal allowable stresses indicate that our
solution, although seemingly unusual, is closely related to
two well known classes of structure, widely used in engi-
neering practice. For example, the left hand side of Fig. 5
presents structures dominated by compression (σC > σT ).
As σC/σT increases, the fans around the supports shrink
in size; at σC/σT ≈ 3.70, this fan vanishes entirely and
the structural form of the overall structure tends towards a
simple arch with vertical hangers, with the numerical solu-
tions tending towards the analytical solutions obtained by
Pichugin et al. (2012). Conversely, in the case of struc-
tures dominated by tension (σC < σT ), shown on the right
hand side of Fig. 5, the solutions metamorphose towards
a cable-stayed bridge-like structure, with the fans shrink-
ing to become stocky, near-vertical, towers. This remarkable
and entirely unexpected result suggests that arch and cable-
stayed bridge structures lie at opposite ends of a continuous
spectrum of optimal structural forms.

7 Conclusions

Details of a new half-plane Michell structure capable of
carrying a uniformly distributed load of infinite horizontal
extent over a series of equally-spaced pinned supports have
been presented. Although formal proof of optimality of the
structure has not yet been demonstrated, the proposed ana-
lytical solution is supported by results from high-resolution
numerical simulations. Numerical solutions also suggest
the existence of a wider family of related, simple, and
practically relevant structures, which range in form from an
arch with vertical hangers to a cable-stayed bridge, depend-
ing on the specified ratio of limiting compressive to tensile
stress.
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