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Many species are undergoing rapid population declines, while other species have increased. 20 

Previous work has related population change to species traits to elucidate the drivers of population 21 

change. However, this assumes that these drivers operate consistently across habitats. We use 22 

national-scale monitoring data on UK bird abundance from 1994-2012 to calculate habitat-specific 23 

population trends, allowing us to evaluate whether the effect of species traits was consistent 24 

between habitats. Although we found significant interactions with habitat for traits relating to 25 

migratory behaviour, diet, nest site, body mass and habitat specialisation, the direction of these trait 26 

effects were generally consistent between habitats. This suggests that large-scale processes 27 

operating across habitats are responsible for many changes in bird populations, although processes 28 

operating within habitats can modulate the effect of these drivers. Despite this, differences in 29 

population trends between habitats remain when variation in population trends due to species 30 

identity is accounted for, indicating that some habitat effects do occur. By identifying the scale at 31 

which drivers of population change operate, it is possible to target conservation actions more 32 

directly. Population declines were most evident in woodland and urban habitats, and we suggest 33 

these habitats should be the focus of increased research and conservation effort if declines evident 34 

in many bird species are to be reversed. 35 

 36 
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1. Introduction 43 

Large-scale biodiversity monitoring programmes, often utilising the participation of citizen scientists, 44 

have revealed rapid population changes in multiple taxa  (Jiguet et al. 2012; Powney and Isaac 2015) 45 

These include declines in common moth species (Conrad et al. 2006) and climate induced  changes in 46 

bird and butterfly populations (Devictor et al. 2012). Population declines are especially evident in 47 

certain habitats. In Europe, for example, widespread declines in farmland birds and more localised 48 

declines in woodland birds have been well documented (Donald et al. 2001; Hewson and Noble 49 

2009). These declines could result from a general reduction in habitat quality (i.e. be a property of a 50 

habitat), but could also be driven by the responses of certain species typical of a habitat to broad-51 

scale environmental drivers (i.e. be a property of species), or some interaction between these 52 

habitat and species effects.  53 

Understanding the extent to which habitat versus species effects drive population trends is 54 

important for directing conservation strategies. If population declines are primarily driven by habitat 55 

effects, then this supports the use of conservation interventions targeted in particular habitats to 56 

address specific changes in quality, while if population declines are primarily driven by species 57 

effects then species-specific conservation responses or landscape-scale measures that operate 58 

across habitats may be more appropriate to halt declines.    59 

Investigations to date have tended to focus on either habitat effects or species effects, so 60 

understanding of their relative importance and interactions is limited. Whilst some studies have 61 

identified contrasting population trends between habitats, others have examined how bird 62 

ƉŽƉƵůĂƚŝŽŶ ƚƌĞŶĚƐ ǀĂƌǇ ǁŝƚŚ ƐƉĞĐŝĞƐ͛ ĐŚĂƌĂĐƚĞƌŝƐƚŝĐƐ͕ ĚĞƐĐƌŝďĞĚ ďǇ Ă ƌĂŶŐĞ ŽĨ ĞĐŽůŽŐŝĐĂů ƚƌĂŝƚƐ͘ “ƚƵĚŝĞƐ 63 

of European birds have revealed consistent associations with habitat specialism, with generalists 64 

having more positive population trends than specialists (Julliard et al. 2004; Le Viol et al. 2012; Salido 65 

et al. 2012; Shultz et al. 2005; Van Turnhout et al. 2010), and highlighted declines in populations of 66 

Afro-Palearctic migrants migrants (Ockendon et al. 2012; Salido et al. 2012; Sanderson et al. 2006; 67 
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Van Turnhout et al. 2010), particularly of species wintering in the humid bioclimatic zone (Thaxter et 68 

al. 2010). However, these studies look at national population trends, so do not allow the consistency 69 

of these trait effects to be evaluated between habitats. For example, the importance of traits such as 70 

migratory strategy for driving population trends varies spatially (Morrison et al. 2013), part of which 71 

may be associated with spatial variation in habitat cover. Given strong contrasts in population trends 72 

between habitats, it is therefore important to assess the extent to which the ecological traits 73 

associated with population trend may also vary between habitats to inform conservation action. If 74 

the importance of different traits varied strongly between habitats, this would indicate that the 75 

drivers of population trend are likely to differ between them. 76 

Analysing habitat-specific population trends of species potentially allows the importance of habitat-77 

level and species-level drivers of population change to be evaluated. We extend the methods 78 

developed by Newson et al. (2009) to calculate habitat-specific population trends for 89 bird species 79 

in the UK. Analysis of this dataset has shown that the broad pattern of these habitat-specific trends 80 

is consistent with the widespread operation of the buffer effect, where declining species retreat to 81 

high quality habitats while increasing species spread into lower quality habitats (Sullivan et al. 2015). 82 

However, the high degree of variation around this broad pattern suggests that other processes are 83 

also important in driving variation in population trends between habitats. In this study, we analyse 84 

these habitat-specific population trends with the aim of (1) identifying habitats where bird 85 

population trends are especially negative, (2) evaluating the relative importance of habitat- and 86 

species-effects in driving trends, and (3) assessing the consistency of trait effects between habitats. 87 

2. Materials and methods 88 

2.1 Habitat specific population trends 89 

WĞ ĐĂůĐƵůĂƚĞĚ ƐƉĞĐŝĞƐ͛ ƉŽƉƵůĂƚŝŽŶ ƚƌĞŶĚƐ ƵƐŝŶŐ ĚĂƚĂ ĨƌŽŵ ƚŚĞ BƌĞĞĚŝŶŐ BŝƌĚ “ƵƌǀĞǇ ;BB“Ϳ͕ ǁŚŝĐŚ 90 

since its inception in 1994 has been the principal monitoring scheme for populations of widespread 91 



5 
 

breeding birds in the UK. The BBS uses a stratified random sampling design, ensuring representative 92 

coverage of habitats throughout the UK (Baillie et al. 2014). BBS squares are also stratified by region 93 

to ensure maximum utilisation of available volunteers; BBS squares are weighted in later analyses to 94 

correct for biases in sampling effort introduced by this. Each BBS square is visited twice during the 95 

breeding season (mid-March to late-June), with the visits separated by at least four weeks. In each 96 

square, volunteers walk two 1 km transects (as close to parallel as possible), and record all bird 97 

species seen or heard within 200m transect sections. We used the maximum count of the two visits, 98 

and excluded flying birds except for aerial feeders, displaying skylarks Alauda arvensis and hovering 99 

common kestrels Falco tinnunculus.  100 

Volunteers record up to two habitat classes for each 200m transect section following a hierarchical 101 

coding system described by Crick (1992). Following Newson et al.(2009), we reclassified habitats into 102 

12 habitat classes given in Table A1 (see Table A2 for number of BBS squares and transect sections 103 

surveyed in each year). These were deciduous woodland (abbreviated to DECID), mixed woodland 104 

(MIXW), coniferous woodland (CONIF), upland semi-natural open habitats (UPSN), lowland semi-105 

natural open habitats (LOSN), arable farmland (ARAB), pasture (PAST), mixed farming (MIXF), rural 106 

settlements (RURA), urban settlements (URBA), wetlands (WETL) and flowing water (FLOW). 107 

Separate population trends were calculated for each habitat. To do this, data were subset by habitat 108 

types so that only transect sections of a particular habitat contributed to the calculation of that 109 

ŚĂďŝƚĂƚ͛Ɛ ƚƌĞŶĚƐ͘ LŽŐ-linear generalised linear models with Poisson error terms were constructed 110 

using the GENMOD procedure in SAS 9.2 (SAS Institute 2008), with bird count modelled as a function 111 

of site (i.e. BBS square) and categorical year to give population indices in each year, with a dispersion 112 

parameter (deviance divided by the degrees of freedom) to account for overdispersion. Subsetting 113 

data in this way by habitat meant that the number of transect sections per site varied. To control for 114 

this we included the log of the number of transect sections containing the given habitat type as an 115 

offset variable (Newson et al. 2009).  116 
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We did not analyse change in annual population indices directly, as they are sensitive to yearly 117 

fluctuations. Instead, we fitted a post-hoc smoothed trend through the annual indices using non-118 

parametric thin-plate splines, constraining the degrees of freedom to be the nearest integer to 0.3 x 119 

length of time-series (Baillie et al. 2014). We calculated the population trend for each species 120 

between 1995 and 2011 as (smoothed population index2011 ʹ smoothed population index1995) / 121 

smoothed population index1995. The first and last years of our dataset (1994 and 2012) were 122 

excluded from this calculation as they have a large influence of the direction of trends so may bias 123 

population changes (Baillie et al. 2014).  For each species we repeated this procedure of calculating 124 

annual indices and then fitting post-hoc smooths on 199 bootstraps (Baillie et al. 2014), sampling 125 

with replacement each time. We calculated standard errors and confidence intervals around 126 

population trends from these bootstraps. Species were classed as increasing or declining if the 95% 127 

confidence limits of the population trend did not overlap zero.  Habitat-specific population trends for 128 

all species are presented in Appendix B. 129 

2.2 Ecological variables 130 

We collated trait data on breeding season diet, nest site, mass, habitat specialisation, winter 131 

bioclimatic zone and thermal niche in order to test for trait ʹ habitat interactions. Data on diet, mass 132 

and nest site were obtained from Snow and Perrins (2004), with the former two traits previously 133 

collated by Robinson (2005). Breeding season diet was categorised into the following mutually 134 

exclusive categories: herbivorous, granivorous, carnivorous ʹ vertebrates (hereafter referred to as 135 

carnivorous), carnivorous ʹ invertivorous (hereafter insectivorous) and omnivorous. Nest site was 136 

classified as into the following mutually exclusive categories: requiring low vegetation to nest (i.e. 137 

species nesting in shrubs < 2m above the ground, species nesting in low vegetation, and ground 138 

nesting species that nest in long grass or under other low vegetation (e.g. winchat Saxicola rubetra)), 139 

other ground nesting species (hereafter ground nesting), nesting in tree cavities, and nesting in 140 

trees. Species that did not fit into these categories, for example species nesting in buildings or on 141 
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water, were classed as other. Mass was taken as the mean mass of males and females. We obtained 142 

an index of species habitat specialisation (SSI) from Davey et al. (2012). This was calculated as the 143 

coefficient of variation of species densities across the 12 habitat classes (Table A1), with higher 144 

values indicating increasing habitat specialisation. Data on the wintering bioclimatic zone of species 145 

were obtained from Ockendon et al. (2012), Thaxter et al. (2010) and Morrison et al. (2013). Species 146 

were classified as resident, partial or short-distance (i.e. wintering north of the Sahara) migrant, or 147 

for trans-Saharan migrants wintering in either the arid, humid or southern bioclimatic zones. Only 148 

two species wintered in the southern bioclimatic zone, so these were combined with species 149 

wintering in the arid zone in subsequent analyses (humid zone species were treated separately as 150 

previous work has found they have contrasting population trends to other sub-Saharan migrants 151 

(Thaxter et al. 2010). An index of species thermal niche (STI), representing the mean breeding 152 

ƐĞĂƐŽŶ ƚĞŵƉĞƌĂƚƵƌĞ ŝŶ Ă ƐƉĞĐŝĞƐ͛ EƵƌŽƉĞĂŶ ĚŝƐƚƌŝďƵƚŝŽŶ͕ was obtained from Devictor et al. (2008). 153 

2.3 Statistical analysis 154 

Analysis of population trends was performed in R (R Core Team 2014). We conducted analyses to (1) 155 

partition variation in habitat-specific population trends between species and habitats, (2) test for 156 

differences in population trends between habitats and (3) examine how consistent the effects of 157 

species traits were among habitats (details below). We used the natural log of population trend + 1 158 

in order to homogenize variances and ensure normality of residuals. Previous studies of population 159 

trends have restricted analyses to species that are on average recorded in more than 30 BBS squares 160 

each year as there may be insufficient power to detect declines in less well recorded species (Joys et 161 

al. 2003).  This may lead to rare and declining species being excluded (Renwick et al. 2012). Instead, 162 

we used a more lenient threshold and included species-habitat combinations where a species was 163 

recorded on an average of 10 or more BBS squares per habitat type each year, but then down-164 

weighted the importance of trends with high degrees of uncertainty in subsequent modelling by 165 

specifying case weights as the reciprocal of population trend standard error, which was also logged 166 
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to reflect our treatment of the population trend data. This approach allows infrequently recorded 167 

species with clear population trends to contribute to models, so maximises the number of species 168 

that can be included in the study, while reducing the influence of species with highly uncertain 169 

population trends. Despite the use of a more lenient threshold, a number of rare species were 170 

recorded too infrequently to be included in this study. In addition, we excluded common gull Larus 171 

canus, lesser black-backed gull Larus fuscus, herring gull Larus argentatus, black-headed gull 172 

Chroicocephalus ridibundus and grey heron Ardea cinerea from analyses, as the BBS survey design is 173 

not appropriate for assessing population trends of these colonial species (Baillie et al. 2014). In total 174 

there were 746 habitat-specific population trends of 89 species used in analysis. 175 

We followed the method of Reino et al. (2005), adapted from Legendre and Legendre (2012), to 176 

partition the proportion of variation in population trends attributable to species and habitat. We 177 

fitted a linear model with population trend as a function of habitat and species (M1), as well as 178 

models with just habitat (M2) or species (M3) as explanatory variables. Explained variation in the full 179 

additive model consists of variation attributable to habitat, variation attributable to species, and 180 

shared variation due to correlations between species and habitat, while explained variation in the 181 

two constituent models consists of variation attributable to the target variable (species or habitat) 182 

and shared variation. This shared variation can be isolated by subtracting explained variation in the 183 

full model from the sum of explained variation in the two constituent models (i.e. shared variation = 184 

M2 + M3 ʹ M1). This shared variation can then be subtracted from the constituent models (M2 and 185 

M3) to give the proportion of variation attributable to species and habitat. Unexplained variation in 186 

the full additive model (M1) is attributable to species-habitat interactions, as adding a species-187 

habitat interaction term leads to a saturated model with no unexplained variation.    188 

To test whether population trends differed between habitats, we used a mixed effects model with 189 

species as a random effect to model population trend as a function of habitat. Mixed effects models 190 

were constructed in lme4 (Bates et al. 2014). The purpose of the species random effect was to 191 
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account for the expected correlation of population trends of the same species. We repeated this 192 

analysis on a subset of species that occurred in all habitats, to test whether differences in population 193 

trends between habitats were a consequence of differences in species composition, or due to 194 

differing trends between habitats for the same species. Differences in population trends across all 195 

species between habitats could be driven by increasing species increasing more or less than the 196 

national average or declining species decreasing more or less than the national average. We 197 

explored this by repeating the modelling procedure described above separately for a subset of 198 

increasing species and a subset of declining species assessed from national population trends 199 

between 1995 and 2011 (Risely et al. 2013). We tested whether population trends in each habitat 200 

were significantly different from the overall mean population trend across all habitats and species 201 

(using the Satterthwaite approximation of degrees of freedom), and also used simultaneous tests of 202 

generalised linear hypotheses implemented in multcomp (Hothorn et al. 2008) to test for significant 203 

differences between habitat types. This analysis was repeated using a broader categorisation of five 204 

functional habitat classes (woodland ʹBROAD, CONIF and MIXW, semi-natural open ʹ UPSN and 205 

LOSN, farmland ʹ ARAB, PAST and MIXF, human ʹ RURA and URBA and wetland ʹ WETL and FLOW). 206 

To investigate whether population trends of specialist species varied between habitats, we first 207 

assessed whether species selected a habitat more frequently than expected given its availability by 208 

calculating Jacobs index, Jh,s = (uh,s ʹ ah,s)/ (uh,s + ah,s ʹ 2 uh,s ah,s), where uh,s is the proportion of 209 

observations of species s in habitat h and ah,s, is the proportion of transect sections in BBS squares 210 

where species s was recorded that contained habitat h. Jacobs index ranges from -1 to 1, with values 211 

>0 indicating more frequent selection of a habitat than expected given availability. We then used 212 

mixed effects models to model population trend as a function of habitat, restricting this analysis to 213 

species with Jacobs index values greater than 0. We repeated this with species where J > 0.25, 214 

focusing the analysis further onto habitat specialists. 215 

We tested for inter-habitat differences in the effect of species traits on population change by 216 

constructing a general linear mixed effects model (LMM) with habitat, traits and interactions 217 
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between traits and habitat for traits where we hypothesised a priori that the effect of the trait 218 

would vary among habitats (see Table 1 for hypotheses) as explanatory variables. We included SSI, 219 

STI, the natural logarithm of body mass, migratory strategy (resident, short distance or partial 220 

migrant, long-distance migrant wintering in the humid bioclimatic zone, long-distance migrant 221 

wintering elsewhere in sub-Saharan Africa), diet (insectivorous, granivorous, herbivorous, 222 

carnivorous or omnivorous) and nest site (ground, low vegetation, trees, tree cavities or other) as 223 

main effects. Given our hypotheses, interactions with habitat were included for STI, SSI, the humid 224 

and arid/ southern levels of migratory strategy, the insectivorous and granivorous levels of diet, and 225 

the ground, low vegetation and tree cavity levels of nest site. There were at least three species for 226 

each trait-habitat interaction combination (mean = 15 ± 10 SD species, see Table A3 for number of 227 

species in each trait-habitat combination). Species was included as a random effect. This model was 228 

simplified by sequential removal of non-significant terms, followed by aggregation of factor levels 229 

until a minimum adequate model was obtained (Crawley 2007).  We calculated variance inflation 230 

factors (VIF) to assess multicolinearity in predictor variables; these were < 3 for all variables expect 231 

for diet, where VIF = 4.98.  Diet was correlated with body mass, with granivorous and insectivorous 232 

species tending to be lighter than other species. Both body mass and diet were retained in our 233 

analysis, however repeating the analysis excluding body mass reduced multicoliniarity (VIF < 2) but 234 

resulted in the same minimum adequate model. We assessed model fit by plotting residuals against 235 

fitted values, as well as plotting residuals against each explanatory variable. In all cases no patterns 236 

were observed (Fig. A1).  237 

We reduced the number of comparisons made during model selection by first assessing the 238 

significance of interactions with habitat as a whole, and only assessing the significance of 239 

interactions with individual habitat classes if the interaction with habitat was significant. Had we 240 

looked at all interactions with habitat classes in the full model then there would have been 124, 241 

giving a high probability of significant results occurring by chance. The Bonferonni adjustment for 242 

ƚŚŝƐ ŶƵŵďĞƌ ŽĨ ƚĞƐƚƐ ŝƐ ɲ с Ϭ͘ϬϬϬϰ͘ HŽǁĞǀĞƌ͕ ƐƵĐŚ ĐŽƌƌĞĐƚŝŽŶƐ ŚĂǀĞ ďĞĞŶ ĐƌŝƚŝĐŝǌĞĚ ĨŽƌ ďĞŝŶŐ ŽǀĞƌůǇ 243 
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conservative as highly significant results may be rejected (Crawley 2007). We therefore take a 244 

pragmatic approach to dealing with multiple testing, interpreting results where P <0.0004 as strongly 245 

supported,  but still considering strongly significant results with larger P values (i.e. P ч Ϭ͘Ϭϭ ďƵƚ ш 246 

0.0004) as worthy of discussion. Results where 0.05>P > 0.01 are presented and retained in the 247 

minimum adequate model, but interpreted with caution. The significance of main effects that were 248 

also retained in the minimum adequate model as interactions was assessed by likelihood ratio tests 249 

of the model without the main effect and interaction term against the more complicated model just 250 

lacking the interaction term.  251 

We repeated this test for inter-habitat differences in trait effects using phylogenetic generalised 252 

least squares (PGLS) to account for correlations between species trends that result from shared 253 

evolutionary history (Felsenstein 1985). We used a phylogenetic tree of British birds obtained from 254 

Thomas (2008)͘ WĞ ŝŵƉůĞŵĞŶƚĞĚ ƚŚĞ ŵŽĚĞů ƵƐŝŶŐ PĂŐĞů͛Ɛ ĐŽƌƌĞůĂƚŝŽŶ ƐƚƌƵĐƚƵƌĞ (Paradis et al. 2004) 255 

in the gls procedure in nlme (Pinheiro and Bates 2007)͘ TŚĞ ʄ ƉĂƌĂŵĞƚĞƌ ŝŶ PĂŐĞů͛Ɛ ĐŽƌƌĞůĂƚŝŽŶ 256 

structure determines how similar the covariances are to those in a Brownian motion model of trait 257 

evolution, with values of 1 indicating Brownian motion and 0 indicating random trait evolution. 258 

Following Revell  (2010) ǁĞ ƉĂƌĂŵĞƚĞƌŝƐĞĚ ʄ ƐŝŵƵůƚĂŶĞŽƵƐůǇ ǁŝƚŚ ĐŽĞĨĨŝĐŝĞŶƚ ĞƐƚŝŵĂƚŝŽŶ ǁŚĞŶ ĨŝƚƚŝŶŐ 259 

the PGLS. 260 

3. Results 261 

3.1 Differences in overall population trends between habitats 262 

TŚĞƌĞ ǁĞƌĞ ƐŝŐŶŝĨŝĐĂŶƚ ĚŝĨĨĞƌĞŶĐĞƐ ŝŶ ƉŽƉƵůĂƚŝŽŶ ƚƌĞŶĚƐ ďĞƚǁĞĞŶ ŚĂďŝƚĂƚ ĐůĂƐƐĞƐ ;ʖ2 = 66.1, P < 263 

0.0001). Trends were significantly more negative in all woodland habitat classes and in urban/ 264 

suburban habitats compared to the overall mean population trend across habitats (Fig. 1a). 265 

Population trends were most positive in wetlands and standing water, followed by both upland and 266 

lowland semi-natural grassland/ heath, but were not significantly different from the overall mean 267 
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across habitats (Fig. 1a). Largely similar patterns were evident when the analysis was restricted to 268 

species selecting a habitat more frequently than expected given availability (Fig. A2), although 269 

population trends were less negative in deciduous woodland, stable instead of negative in mixed 270 

woodland, positive instead of negative in coniferous woodland, and more negative in arable and 271 

ŵŝǆĞĚ ĨĂƌŵůĂŶĚ ;FŝŐ͘ AϮͿ͘ TƌĞŶĚƐ ĚŝĨĨĞƌĞĚ ƐŝŐŶŝĨŝĐĂŶƚůǇ ďĞƚǁĞĞŶ ďƌŽĂĚ ĨƵŶĐƚŝŽŶĂů ŚĂďŝƚĂƚ ĐůĂƐƐĞƐ ;ʖ2 = 272 

43.8, P < 0.001, Fig. 1b), driven by contrasting patterns for rural settlements and urban/ suburban 273 

settlements in the human class and wetlands/ standing water and flowing water in the wetland class 274 

(Fig. 1a).  275 

When separating species showing positive national population trends from declining species, 276 

population trends of increasing species were significantly less positive in deciduous and mixed 277 

woodland than in other habitats (Figure 1c), while species that were declining nationally were 278 

declining more strongly in deciduous woodlands and in urban/ suburban areas than other habitats 279 

(Figure 1d).These differences in the magnitude of population trends were reflected in significant 280 

differences in the distribution of population trends between habitats (ʖ2 = 147.0, P < 0.0001, Table 281 

A4). The highest proportion of declining species were found in urban/ suburban areas (32.7% of 282 

species declining), deciduous woodland (33.8%) and mixed woodland (38.3%). Large numbers of 283 

declining species were also found in rural settlements (29.6%) and in farmland habitat classes (23.9% 284 

- 28.2%), but were offset by a high proportion (46.3% - 54.4%) of species with increasing population 285 

trends in those habitats. In most habitats more species were estimated to be increasing in 286 

abundance than declining, with this pattern only reversed in mixed and deciduous woodland.   287 

 288 

3.2 Partitioning variation in trend between species and habitats 289 

Variation in habitat-specific population trends was largely explained by a strong independent effect 290 

of species (71.5% of variation in saturated model explained). Habitat alone explained 2.6% of 291 
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variation, with the combined effect of habitat and species explaining a further 0.4%. As this is a 292 

saturated model the remaining 25.5% of variation can be attributed to the interaction between 293 

species and habitats. This can be seen in considerable variation in species trends between habitats, 294 

with 23 species out of the 89 for which trends were calculated showing significant increases in one 295 

habitat and significant declines in another. 296 

The importance of species does not mean that the differences in population trend between habitats 297 

(Fig. 1a) are unrelated to habitat. Observed contrasts in habitat-specific trends remained when this 298 

ĂŶĂůǇƐŝƐ ǁĂƐ ƌĞƉĞĂƚĞĚ ŽŶůǇ ŝŶĐůƵĚŝŶŐ ŐĞŶĞƌĂůŝƐƚ ƐƉĞĐŝĞƐ ƚŚĂƚ ŽĐĐƵƌ ŝŶ Ăůů ŚĂďŝƚĂƚƐ ;FŝŐ͘ Aϯ͕ ʖ2 = 26.9, P 299 

= 0.005).   300 

3.3 Variation in population trends in relation to species traits 301 

Migratory strategy, nest site and diet were retained in the minimum adequate mixed effects model 302 

(Table A5). Species wintering in the humid zone had more negative population trends than other 303 

ƐƉĞĐŝĞƐ ;ɴ с -Ϭ͘ϲϭϯ ц Ϭ͘ϭϱϮ͕ ʖ2 = 15.8, P < 0.0001).  Population trends of ground nesting species were 304 

ŵŽƌĞ ŶĞŐĂƚŝǀĞ ƚŚĂŶ ƐƉĞĐŝĞƐ ŶĞƐƚŝŶŐ ŝŶ ŽƚŚĞƌ ƉůĂĐĞƐ ;ɴ с -Ϭ͘ϰϮϬ ц Ϭ͘ϭϰϰ͕ ʖ2 = 8.6, P = 0.003). Although 305 

both granivore and insectivore factor levels of diet were retained in the minimum adequate model, 306 

ŶĞŝƚŚĞƌ ǁĂƐ ƐƚĂƚŝƐƚŝĐĂůůǇ ƐŝŐŶŝĨŝĐĂŶƚ ĂƐ Ă ŵĂŝŶ ĞĨĨĞĐƚ ;ʖ2 ч Ϭ͘ϯ͕ P ш Ϭ͘ϲϬϴͿ͘  307 

The above traits were all retained in the minimum adequate phylogenetic model as well. However, 308 

in that analysis ground nesting was not significant as a main effect, while insectivorous species had 309 

more positive population trends than non-ŝŶƐĞĐƚŝǀŽƌŽƵƐ ƐƉĞĐŝĞƐ ;ɴ с Ϭ͘ϰϰϱ ц Ϭ͘ϭϳϭ͕ F с ϳ͘Ϭ͕ P = 310 

0.008). Several traits had significant effects in the phylogenetic analysis but not in the mixed effect 311 

model analysis (coefficients of both models in Table A5). Species requiring low vegetation to nest 312 

ŚĂĚ ŵŽƌĞ ƉŽƐŝƚŝǀĞ ƉŽƉƵůĂƚŝŽŶ ƚƌĞŶĚƐ ;ɴ с Ϭ͘ϱϬϬ ц Ϭ͘ϭϯϴ͕ F с ϭϯ͘ϱ͕ P = 0.0002), while population trend 313 

ǁĂƐ ŶĞŐĂƚŝǀĞůǇ ƌĞůĂƚĞĚ ƚŽ “TI ;ɴ с -0.056 ± 0.024, F = 5.5, P = 0.0195). SSI and the Arid/ Southern 314 
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bioclimatic zone factor level of migratory strategy were included in the minimum adequate 315 

phylogenetic model, but were not signiĨŝĐĂŶƚ ĂƐ ŵĂŝŶ ĞĨĨĞĐƚƐ ;F ч ϭ͘Ϯ͕ P ш Ϭ͘ϭϴϴͿ͘ 316 

 317 

3.4 Consistency of trait effects between habitats 318 

The effects of ecological traits were often consistent among habitats, with interactions mainly 319 

strengthening or weakening the effect of traits in certain habitats (Table 2). However, the direction 320 

of several trait effects was reversed; in the mixed effects model analysis granivorous and 321 

insectivorous species had more positive population trends than other species in upland semi-natural 322 

habitats but more negative population trends in other habitats, while in the phylogenetic analysis 323 

the direction of STI, SSI and ground nesting trait effects varied between habitats (Table 2). 324 

Of the hypothesised trait-habitat interactions (Table 1), only interactions between migratory 325 

strategy and habitat were supported (Table 2, see Table A5 for coefficients). As hypothesised, 326 

population trends of Afro-Palearctic migrants wintering in the humid bioclimatic zone were less 327 

ŶĞŐĂƚŝǀĞ ŝŶ ĐŽŶŝĨĞƌŽƵƐ ǁŽŽĚůĂŶĚƐ ;LMM͗ ʖ2 = 13.0, P = 0.0003, PGLS: F = 10.5, P = 0.001) and upland 328 

semi-ŶĂƚƵƌĂů ŚĂďŝƚĂƚƐ ;ƚŚĞ ůĂƚƚĞƌ ŽŶůǇ ŝŶ ƚŚĞ LMM ĂŶĂůǇƐŝƐ͕ ʖ2 = 9.8, P = 0.0017) and more negative in 329 

ĂƌĂďůĞ ĂŶĚ ŵŝǆĞĚ ĨĂƌŵůĂŶĚ ;LMM͗ ʖ2 = 22.6, P <0.0001, PGLS: F = 26.0, P <0.0001). To check this was 330 

not a result of a single-species outlier, this effect remained when the rapidly declining turtle dove 331 

Streptopelia turtur, which uses these habitats, was excluded ;ʖ2 =20.2, P < 0.0001). Migrants 332 

wintering in the arid/ southern bioclimatic zone had positive population trends in upland semi-333 

natural habitats compared to negative trends elsewhere (PGLS analysis only, F = 7.2, P = 0.002).  334 

Although other hypothesised trait-habitat interactions were not supported, some trait-habitat 335 

interactions that we did not predict a priori were statistically significant. Population trends of humid 336 

zone migrants were less negative in lowland semi-ŶĂƚƵƌĂů ŚĂďŝƚĂƚƐ ;LMM͗ ʖ2 = 9.8, P = 0.0017, PGLS: 337 

F = 10.5, P с Ϭ͘ϬϬϭͿ ĂŶĚ ĨůŽǁŝŶŐ ǁĂƚĞƌ ;ƚŚĞ ůĂƚƚĞƌ ŽŶůǇ ŝŶ ƚŚĞ LMM͕ ʖ2 = 5.5, P = 0.019), while 338 
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population trends of both humid and arid/ southern migrants were more negative in urban 339 

settlements (PGLS only, F = 26.0, P <0.0001 and F = 9.7, P = 0.002 respectively). Granivorous species 340 

ŚĂĚ ŵŽƌĞ ŶĞŐĂƚŝǀĞ ƉŽƉƵůĂƚŝŽŶ ƚƌĞŶĚƐ ŝŶ ƵƌďĂŶ ƐĞƚƚůĞŵĞŶƚƐ ;LMM͗ ʖ2 = 17.8, P < 0.0001, PGLS: F = 341 

26.1, P ф Ϭ͘ϬϬϬϭͿ ĂŶĚ ŝŶ ďŽƚŚ ǁĞƚůĂŶĚ ŚĂďŝƚĂƚƐ ƚŚĂŶ ŝŶ ŽƚŚĞƌ ŚĂďŝƚĂƚƐ ;ʖ2 = 13.4, P = 0.0002, PGLS: F = 342 

26.1, P < 0.0001). In the mixed model analysis both granivorous and insectivorous species had more 343 

positive population trends in upland semi-ŶĂƚƵƌĂů ŚĂďŝƚĂƚƐ ;ʖ2 = 7.0, P с Ϭ͘ϬϬϴ ĂŶĚ ʖ2 = 9.5, P = 0.002 344 

respectively) and insectivorous species had more negative population trends in urban settlements 345 

;ʖ2 = 9.9, P = 0.002), while in the phylogenetic analysis granivorous species had more negative 346 

population trends in mixed woodland (Table A5). Ground-nesting species had more negative 347 

population trends in urban settlemenƚƐ ƚŚĂŶ ŝŶ ŽƚŚĞƌ ŚĂďŝƚĂƚƐ ;LMM͗ ʖ2 = 15.4, P < 0.0001, PGLS: F = 348 

24.5, P < 0.0001). In the phylogenetic analysis, STI had a contrasting effect between habitats, with a 349 

positive effect in arable and mixed farmland and rural and urban settlements compared to a 350 

negative effect in other habitats (F = 22.5, P < 0.0001). SSI had a non-significant negative effect in all 351 

habitats except for lowland semi-natural habitats, where it had a positive effect on population trend 352 

(F = 7.5, P = 0.006). 353 

 354 

4. Discussion 355 

Population trends of UK breeding birds varied among habitats, with generally negative population 356 

trends in woodland and urban habitats. Despite these differences, the strongest component of 357 

variation was between species, indicating that many of the drivers of UK bird population trends are 358 

likely to be acting across habitats. However, species-scale effects are not the only driver of 359 

population change, as we found that variation in the strength of trait effects between habitats 360 

accounted for about a quarter of the variation in population trends. Our results are consistent in this 361 

respect with a previous study in The Netherlands investigating variation in the response of bird 362 
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communities to temperature and land-use change (Kampichler et al. 2012), and suggest that habitat-363 

level drivers can ameliorate or enhance the effect of broad scale drivers. 364 

4.1 Effect of species traits on population trends 365 

Many of the effects of species traits reported here are consistent with those found in previous 366 

studies looking at European bird population trends. Thus, as demonstrated previously, long distance 367 

humid zone migrants (Ockendon et al. 2012; Thaxter et al. 2010) and ground nesting species (Van 368 

Turnhout et al. 2010) were the most likely to decline in abundance. Declines of ground nesting 369 

species in the Netherlands have been attributed to increased nitrogen deposition and related 370 

increases in nitrophillous vegetation (Van Turnhout et al. 2010). Our results are consistent with this, 371 

with species requiring low vegetation to nest having more positive population trends in the 372 

phylogenetic analysis, but may also reflect the impact of increasing populations of generalist, 373 

particularly mammalian, predators upon ground-nesting species such as waders  (MacDonald and 374 

Bolton 2008).  375 

In contrast to previous studies, which have found that bird communities in Europe are becoming 376 

increasingly dominated by warm associated species (Devictor et al. 2008; Devictor et al. 2012; 377 

Kampichler et al. 2012), we find (in the phylogenetic analysis only) population declines in species 378 

associated with warmer regions. There are two potential explanations for this. Firstly, the UK 379 

experienced three successive winters with severe cold spells towards the end of the time series, 380 

including one month (December 2010) where temperatures were 5°C below the 1971-2000 mean 381 

(Met Office 2015), which were likely to have impacted populations of cold sensitive species (Pearce-382 

Higgins et al. 2015). Excluding data from these three years weakens the overall relationship between 383 

population ƚƌĞŶĚ ĂŶĚ “TI ;ɴ с -0.019 ± 0.027). Secondly, in our analyses population trends of each 384 

species are weighted equally, so may give a different inference to that from analyses of change using 385 

weighted average community temperature associations in which the contribution of species is 386 

weighted by their abundance (e.g. Devictor et al. 2012; Kampichler et al. 2012). Using our data to 387 
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estimate changes in the Community Temperature Index (CTI) in a comparable way to these previous 388 

ƐƚƵĚŝĞƐ ƌĞƉůŝĐĂƚĞƐ ƚŚĞ ƉƌĞǀŝŽƵƐůǇ ŽďƐĞƌǀĞĚ ƉŽƐŝƚŝǀĞ ƚƌĞŶĚ ;ɴ с Ϭ͘ϬϬϰ ц Ϭ͘ϬϬϭͿ͘ TŚƵƐ ǁŚŝůĞ ǁĞ ĚŽ ŶŽƚ 389 

find that warm associated species are more likely to have increased, our data do not contradict 390 

previous studies that have documented increases in community averaged temperature associations, 391 

with differences in results instead due to methodological differences.  392 

We did not find a significant relationship between population trend and body mass. Habitat 393 

specialisation was retained in the phylogenetic minimum adequate model due to a significant 394 

interaction with habitat, but was not significant as a main effect. Both traits have been found in be 395 

correlated with population trend in previous studies, with larger species and habitat generalists 396 

having more positive population trends (Salido et al. 2012; Shultz et al. 2005). Despite these traits 397 

not being significant, the direction of these trait effects in this study (positive relationship with mass, 398 

negative relationship with habitat specialisation) were consistent with previous studies. 399 

4.2 Consistency of drivers between habitats 400 

Previously reported declines in humid zone migrants (Ockendon et al. 2012; Thaxter et al. 2010; 401 

Vickery et al. 2014) were particularly severe relative to other species in rural settlements, arable and 402 

mixed farmland. Such spatial variation is suggestive of a role of breeding season drivers of 403 

population decline (see also Morrison et al. 2013; Ockendon et al. 2012). As detrimental impacts 404 

during the breeding season have been reported in single species studies for the majority of 405 

European long-distance migrants breeding in farmland (Vickery et al. 2014), stronger declines in 406 

agricultural and rural settlement habitats could result from the interacting or additive effects of 407 

reduced resources in the breeding season due to agricultural intensification combined with habitat 408 

degradation and climatic stresses in the wintering grounds (Vickery et al. 2014). However, variation 409 

in habitat-specific trends could also result from density dependent processes. As species decline in 410 

response to a species-scale driver these declines are predicted to be stronger in less preferred 411 

habitats as species retreat to their preferred habitats (Sullivan et al. 2015).  412 
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One potential mechanism causing variation in habitat-specific trends of humid zone migrants could 413 

be that the arrival times of humid zone migrants may be constrained by their reliance on resource 414 

pulses following early spring rains prior to migration, potentially leading to phenological mismatch in 415 

their breeding grounds (Ockendon et al. 2012). The effect of this upon breeding success and 416 

population trends is likely to be less severe in habitats, such as coniferous woodland, where 417 

resources are less seasonal in abundance than in other habitats, such as deciduous woodland (Both 418 

et al. 2010). We found that declines in humid zone migrants were less severe in coniferous 419 

woodland, and to a lesser extent semi-natural grassland and heath, than in other habitats, providing 420 

some support for humid zone migrant declines being less negative in habitats with stable resources 421 

or relatively late phenologies. However, the less negative population trend of humid zone migrants 422 

in coniferous woodland was also at least partly due to such habitats being distributed further north  423 

(Fig. A5; see also Morrison et al. 2013; Ockendon et al. 2012), potentially because they have later 424 

phenologies or greater prey abundance than in the south (Conrad et al. 2006; Smith et al. 2011). This 425 

may also explain the steeper declines of humid zone migrants in rural areas and arable and mixed 426 

farmland, as these have a southerly distribution in the UK, so experience earlier springs and hence 427 

greater potential for phenological mismatch (Morrison et al. 2013). We note that the effect of 428 

phenological mismatch on habitat-specific population trends is further complicated by variation in 429 

ŵŝŐƌĂƚŽƌǇ ƐƉĞĐŝĞƐ͛ ĂďŝůŝƚǇ ƚŽ ĐŚĂŶŐĞ ƚŚĞŝƌ ĂƌƌŝǀĂů ƚŝŵĞ (Møller et al. 2008) and by the potential for 430 

increased post-fledging survival to offset negative effects of phenological mismatch on productivity 431 

(Reed et al. 2013). 432 

The weak negative relationship between habitat specialisation and population trend in most habitats 433 

in the phylogenetic analysis is consistent with the increasing domination of bird communities by 434 

generalist species reported previously in the UK (Davey et al. 2012), Sweden (Davey et al. 2013) and 435 

across Europe (Le Viol et al. 2012). The significant contrast between semi-natural open habitats, 436 

where this relationship was more positive than in other habits, was only apparent in the 437 

phylogenetic analysis and was not significant at the Bonferoni adjusted alpha level, but is consistent 438 
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with a previous assessment of rates of change in community specialisation in UK birds (Davey et al. 439 

2012) and on Dutch heath compared to farmland (Kampichler et al. 2012).   440 

The effect of species thermal niche on population trends varied between habitats in the 441 

phylogenetic analysis, with a positive effect in more anthropogenic habitats (arable and mixed 442 

farmland, rural and urban settlements) and a negative effect in other habitats. A similar division in 443 

the direction of the effect of species thermal niche between more anthropogenic and more natural 444 

habitats has been reported by Kampichler et al. (2012), however in that study warm associated 445 

species increased in more natural habitats and became less dominant in farmland. The reasons for 446 

variation between habitats in the effect of temperature on bird communities in both studies are 447 

unclear, and warrant further investigation, but could reflect differences in the importance of climate 448 

and non-climate drivers of bird populations in different habitats (Eglington and Pearce-Higgins 449 

2012), or variation in the thermal association of species between habitats (e.g. Clavero et al. 2011; 450 

Kampichler et al. 2012). 451 

We did not find support for the hypothesised interactions between diet and habitat (Table 1), 452 

although several others were identified. The hypothesis that granivorous species were declining 453 

more strongly in farmland was not supported, however, the more negative population trends of 454 

granivorous species in urban settlements and the two wetland habitats was highly statistically 455 

significant in both modelling approaches. The more negative trends of granivorous species in 456 

wetlands was not driven by a single species, as it remained significant when the wetland associated 457 

reed bunting Emberiza schoeniclus ǁĂƐ ƌĞŵŽǀĞĚ ;ʖ2 = 14.9, P = 0.0001), so the mechanisms behind 458 

this pattern need further exploration. The more negative population trends of granivorous and 459 

ground nesting birds in urban areas are discussed below.  460 

4.3 Reasons for declines in woodlands and urban areas 461 
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Although our results suggest that species effects are more important than habitat effects, we do find 462 

support for consistent variation in trends between habitats. Declines were particularly evident in 463 

woodland habitats and urban/ suburban settlements, the latter contrasting with more positive 464 

trends in rural settlements. These differences were not due to differences in species composition 465 

between habitats, as these patterns remained when the analysis was repeated only including species 466 

found in all habitats (Fig. A3). 467 

While declines in woodland bird populations have been noted previously (Hewson and Noble 2009), 468 

the strong negative population trends of birds in urban/ suburban areas contrasts with trends in 469 

rural settlements, and is the first time that such a difference has been documented in UK bird 470 

populations, but reflects wider evidence that urbanisation is associated with negative impacts on 471 

biodiversity (Aronson et al. 2014). Interestingly, despite negative overall population trends, large 472 

numbers of species were increasing in urban/ suburban areas, suggesting that environmental change 473 

there is creating both winners and losers. Indeed, population trends of nationally increasing species 474 

were comparable to the average across all habitats, with the overall negative trend instead driven by 475 

nationally declining species having more negative population trends in urban settlements than in 476 

other habitats (Fig 1d). Population declines were most evident in strong urban specialists (Jacobs 477 

ŝŶĚĞǆ х Ϭ͘ϮϱͿ ĂŶĚ ƐƉĞĐŝĞƐ ŶŽƚ ƉŽƐŝƚŝǀĞůǇ ĂƐƐŽĐŝĂƚĞĚ ǁŝƚŚ ƵƌďĂŶ ƐĞƚƚůĞŵĞŶƚƐ ;JĂĐŽďƐ ŝŶĚĞǆ ч ϬͿ͕ ǁŚŝůĞ 478 

declines were not evident in species moderately associated with urban settlements (Jacobs index >0 479 

and ч Ϭ͘ϮϱͿ͘ 480 

Population trends of granivorous and ground nesting birds were more negative in urban areas in 481 

both mixed and phylogenetic models. A number of granivorous and/ or ground-nesting species 482 

typical of open farmland, such as linnet Carduelis cannabina, skylark Alauda arvensis, meadow pipit 483 

Anthus pratensis and yellowhammer Emberiza citrinella, were declining especially strongly in urban 484 

areas (Appendix B). These changes could be due to loss of urban wastelands for brownfield 485 

development, decline in the quality of open habitats in and bordering urban/ suburban areas, or a 486 
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density dependent shift in habitat preferences towards higher quality habitats outside urban areas 487 

as national populations decline (Sullivan et al. 2015). Although we did not specifically examine 488 

population trends of species nesting in cavities in buildings, house sparrows Passer domesticus and 489 

common swifts Apus apus, which both nest in or on buildings, were both declining more strongly in 490 

urban and suburban areas compared to other habitats. Both these species may be affected by 491 

renovations to buildings reducing the availability of cavities (Shaw et al. 2008).  492 

General drivers that could be operating in urban and suburban areas include increased infilling of 493 

green space with houses (Evans et al. 2009), predation by cats (Beckerman et al. 2007), disease 494 

transmission at garden bird feeders (Robinson et al. 2010) and increased noise and light pollution 495 

(Francis et al. 2009). Similar drivers are likely to be operating in urban areas across Europe, so 496 

declines in urban bird populations may be evident in other countries. Further work will be important 497 

to evaluate the role of these habitat-level drivers in urban and suburban areas. 498 

Apart from the main patterns apparent across all habitats, population trends in woodland did not 499 

vary strongly with species traits. For example, species associated with both the shrub layer (e.g. 500 

common whitethroat Sylvia communis, European robin Erithacus rubecula) and with mature trees 501 

(e.g. nuthatch Sitta europaea, great spotted woodpecker Dendrocopos major) had less positive 502 

population trends in deciduous woodlands than other habitats. Populations of both nationally 503 

increasing and nationally declining species tended to be more negative in woodlands than in other 504 

habitats, supporting the importance of general drivers of declines in woodland. However, declines 505 

ǁĞƌĞ ŵŽƌĞ ƐĞǀĞƌĞ ŝŶ ƐƉĞĐŝĞƐ ƚŚĂƚ ĚŝĚ ŶŽƚ ƉŽƐŝƚŝǀĞůǇ ƐĞůĞĐƚ ǁŽŽĚůĂŶĚ ;JĂĐŽďƐ ŝŶĚĞǆ ч ϬͿ͕ ŵĞĂŶŝŶŐ ƚŚĂƚ 506 

declines in woodland were stronger for generalist species and specialist species associated with 507 

other habitats than for woodland specialists. This may indicate that declining non-woodland 508 

specialists are retracting to their preferred habitats (Sullivan et al. 2015). However, population 509 

trends of deciduous woodland specialists were still negative, and may be more severe than indicated 510 

by this study as populations of woodland specialists underwent large declines prior to the start of 511 
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the BBS (Defra 2013). Candidate drivers include increased deer browsing (Newson et al. 2012), 512 

eutrophication, canopy shading, and reduction in the shrub layer, with associated taxonomic 513 

homogenisation of woodland floor plant communities (Keith et al. 2009) and increases in grass 514 

species at the expense of herbs (Corney et al. 2008). These changes may be responsible for declines 515 

in species using the understory and shrub layer of woodlands (Hewson and Noble 2009), with 516 

changes in canopy shading hinting at changes in woodland structure that may have influenced 517 

arboreal species. Population trends of woodland birds, as revealed by the woodland birds indicator, 518 

are similar in many parts of Europe (Gregory et al. 2007), so the declines noted here may be evident 519 

in other European countries. However, trends of woodland birds in central and eastern Europe are 520 

stable in contrast to a declining indicator elsewhere (Gregory et al. 2007). Two differences between 521 

these areas and the UK are lower densities of deer in continental Europe ;BƵƌďĂŝƚĦ ĂŶĚ CƐĄŶǇŝ ϮϬϭϬͿ 522 

and a higher nitrogen inputs in farming (and thus potentially greater eutrophication of woodland) in 523 

western Europe compared to eastern Europe (Liu et al. 2010).   524 

Population trends in farmland were more positive than those in some other habitats. However, the 525 

trends produced here are relative to a baseline of the beginning of the BBS in 1994, when farmland 526 

bird populations were already low following steep declines between the mid-1970s and mid 1980s  527 

(Defra 2013). Ongoing declines in some species are evident, however, with 1/4th of species declining 528 

in farmland. Indeed, the generally positive population trends of species in farmland is likely to be 529 

driven by generalist species, as restricting the analysis to species with a strong preference for 530 

farmland (i.e. Jacobs index > 0.25) resulted in a negative overall population trend in mixed farmland 531 

and a stable overall population trend in arable farmland. 532 

4.4 Comparison with indicators 533 

Different patterns were revealed by analysing habitat-specific population trends compared to 534 

species-based indicators. Although there has been a long term decline, the woodland bird indicator 535 

has largely been stable since the beginning of the BBS in 1994 (Defra 2013), although this national 536 
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assessment masks declines in woodland specialists, particularly in southern Britain, which are largely 537 

offset by increases further north (Massimino et al. 2015). However, habitat-specific trends of 538 

woodland birds have declined in this period. In contrast, both the farmland and wetland bird 539 

indicator trends have decreased over the BBS period (Defra 2013), while habitat-specific trends have 540 

been positive over this period. A key difference between indicators and habitat-specific trends is 541 

that the former contains habitat specialists (Renwick et al. 2012), while the latter also includes 542 

populations of generalists using that habitat. While many farmland specialists are declining, many 543 

generalist species associated with farmland are increasing (Massimino et al. 2015). Therefore, while 544 

around 1/4th of species for which farmland-specific population trends were calculated were 545 

declining, these were offset by increases in other species. Restricting our analysis to habitat 546 

specialists resulted in habitat-specific trends of woodland species being less negative or even 547 

positive, while trends in farmland became less positive or even negative (Fig. A2), supporting this 548 

explanation for differences between our results and wild bird indicators. For many applications 549 

indicators will be more relevant, as they focus on population trends of habitat specialists that are 550 

likely to be greater conservation priorities than generalists. However, analysis of habitat-specific 551 

trends sheds light onto the differing fortunes of a wider suite of species in different habitats and 552 

may therefore indicate previously undescribed patterns of environmental change. They are also 553 

likely to be particularly useful to monitor habitats with few specialists.    554 

4.5 Conclusions and conservation implications 555 

Producing habitat-specific trends for birds in the UK has revealed considerable differences in 556 

population trends between habitats, with notable declines in birds in woodland and in urban/ 557 

suburban areas. Population trends were largely driven by species-scale effects, particularly related 558 

to migratory strategy, with consistent declines in species that winter in the humid zone of Africa. 559 

However, variation in the strength of trait effects between habitats suggests that processes 560 

operating in certain habitats can enhance or reduce the effects of larger-scale drivers operating 561 
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across habitats. For example, reduced declines in humid-zone migrants in northern and less seasonal 562 

habitats was consistent with potential impacts of phenological mismatch. Importantly, the general 563 

consistency in the direction of trait effects indicates that while declines of certain groups of species 564 

were less severe in certain habitats, populations were still declining in these habitats, so they are 565 

unlikely to provide a refuge for these species. 566 

It is important to assess whether large-scale drivers of population decline are also dominant in other 567 

taxa, as our results are from highly mobile species living in fragmented landscapes, where large-scale 568 

drivers may be more important. Indeed, our results contrast with two previous studies that suggest 569 

habitat-level effects are more important than species-level effects in explaining population declines 570 

in mammals (Cowlishaw et al. 2009; Fisher et al. 2003). However, our results may be used to infer 571 

that, for UK birds at least, habitat-specific conservation solutions to large-scale population declines 572 

may have only limited success. Certainly devising conservation strategies to address large-scale 573 

drivers of population change acting across habitats, such as the impacts of climate change or 574 

declines in long-distance migrants, will be challenging, but research in this area is of upmost 575 

importance. However, given strong declines in woodland and urban birds, there is an urgent need 576 

for further work to understand their causes. Whilst our findings for woodland birds are not novel 577 

(Hewson and Noble 2009), we believe that the negative trends we have identified for urban 578 

populations of species are, and should be urgently examined and addressed as an emerging signal of 579 

environmental degradation, particularly as it is in such environments that the greatest proportion of 580 

people encounter biodiversity. 581 
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Tables 765 

Table 1. Hypothesised trait-habitat interactions. Predictions that were found to be supported are 766 

shown in bold. 767 

Trait Mechanism leading to interaction Predicted interactions 

Migratory (1) Consequences of phenological mismatch less (1.1) Declines of long-distance 
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strategy severe in habitats with more stable resource 

environments  (Both et al. 2010) or in cooler 

habitats were spring arrives later. 

migrants stronger in 

deciduous woodland than 

coniferous woodland. 

(1.2) Declines of long-distance 

migrants weaker in uplands. 

 (2) Interaction between processes in the breeding 

and non-breeding grounds lead to stronger 

declines in long-distance migrants in habitats with 

the greatest human influence (Vickery et al. 

2014).   

(2) Declines of long-distance 

migrants stronger in 

farmland. 

Nest site (3) Ground nesting species sensitive to 

agricultural activity in breeding season (Van 

Turnhout et al. 2010). 

(3) Population trends of 

ground nesting birds more 

negative in farmland. 

 (4) Eutrophication and subsequent scrub 

encroachment into grasslands and changes in 

woodland ground cover favours species nesting in 

low vegetation over ground nesting species 

(Corney et al. 2008; Van Turnhout et al. 2010). 

(4) Population trends of 

ground nesting birds more 

negative in semi-natural 

grassland and woodland 

 

 (5) Loss of understory vegetation in woodland 

due to deer browsing (Holt et al. 2010). 

(5) Population trends of 

species nesting in low 

vegetation more negative in 

woodland. 

 (6) Availability of tree cavities limiting populations 

of cavity nesting species (Newton 1998). 

(6) More negative population 

trends of cavity nesting 

species in woodland. 

Diet (7) Shortage of seeds in farmland reduces winter 

survival of granivorous species (Siriwardena et al. 

2008). 

(7) More negative population 

trends of granivorous species 

in arable farmland. 

 (8) Agricultural intensification, including pesticide 

use, reduces the abundance of invertebrates in 

agricultural areas, reducing food availability of 

insectivorous species (Hallmann et al. 2014). 

(8) More negative population 

trends of insectivorous species 

in farmland. 

SSI (9) Adaptable generalist species better able to 

exploit resources in human-modified habitats 

(Davey et al. 2012; Shultz et al. 2005). 

(9) Relationship between 

habitat specialisation and 

population trend more 

negative in farmland and 

human settlements. 
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STI (10) Greater impact of climate change relative to 

other environmental change in semi-natural 

habitats (Eglington and Pearce-Higgins 2012; 

Kampichler et al. 2012). 

(10) Positive effect of STI on 

population trend less evident 

in farmland and human 

settlements. 
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 779 

 780 

Table 2. Consistency of trait effects among habitats.  781 

Model Habitat Migratory 

strategy 

 Diet  Nest STI SSI 

  Humid Arid/ 

southern 

Granivore Insectivore Ground   

LMM DECID љ NS ;љͿ ;љͿ љ NS NS 

 CONIF ќ ΎΎΎ NS ;љͿ ;љͿ љ NS NS 

 MIXW љ NS ;љͿ ;љͿ љ NS NS 

 UPGR ќ ΎΎ NS ј ΎΎ јΎΎ љ NS NS 

 LOGR ќ ΎΎ NS ;љͿ  ;љͿ љ NS NS 

 ARAB љљ ΎΎΎ NS ;љͿ ;љͿ љ NS NS 

 PAST љ NS ;љͿ ;љͿ љ NS NS 
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 MIXF љљ ΎΎΎ NS ;љͿ ;љͿ љ NS NS 

 RURA љљ ΎΎΎ NS ;љͿ ;љͿ љ NS NS 

 URBA љ NS љљ ΎΎΎ љљ ΎΎ љљ ΎΎΎ NS NS 

 WETL љ NS љљ ΎΎΎ ;љͿ љ NS NS 

 FLOW ќ Ύ NS љљ ΎΎΎ ;љͿ љ NS NS 

PGLS DECID љ ;љͿ ј ј ;љͿ љ ;љͿ 

 CONIF ќ ΎΎ ;љͿ ј ј ;љͿ љ ;љͿ 

 MIXW љ ;љͿ њ ΎΎΎ ј ;љͿ љ ;љͿ 

 UPGR љ јΎΎ ј  ј ј ΎΎΎ љ ;љͿ 

 LOGR ќ ΎΎ ;љͿ ј  ј ;љͿ љ јΎΎ 

 ARAB љљ ΎΎΎ ;љͿ ј ј ;љͿ јΎΎΎ ;љͿ 

 PAST љ ;љͿ ј ј ;љͿ љ ;љͿ 

 MIXF љљ ΎΎΎ ;љͿ ј ј ;љͿ јΎΎΎ ;љͿ 

 RURA љљ ΎΎΎ ;љͿ ј ј ;љͿ јΎΎΎ ;љͿ 

 URBA љљ ΎΎΎ љљ ΎΎ њ ΎΎΎ ј љљ ΎΎΎ јΎΎΎ ;љͿ 

 WETL љ ;љͿ њ ΎΎΎ ј ;љͿ љ ;љͿ 

 FLOW љ ;љͿ њ ΎΎΎ ј ;љͿ љ ;љͿ 

Arrows show the direction of trait effects, with arrows in parentheses denoting non-significant 782 

effects. Asterisks show the significance of trait habitat interactions; *** P < 0.001, ** P < 0.01, * P 783 

<0.05. Double arrows show a strengthening of a trait effect in a habitat, while angled arrows denote 784 

a weakening of trait effects. Traits that were not significant and thus removed from the minimum 785 

model are marked NS. Traits that were not significant in either modelling approach are not shown. 786 

Model coefficients are given in Table A5. 787 
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Figures 794 

 795 

Figure 1. Variation in population trend between habitats. (a) Mean population trends in each habitat 796 

estimated from a LMM modelling log (population trend +1) as a function of habitat, with species as a 797 

random effect. Error bars show standard errors. (b) Modelled mean population trends in aggregated 798 

functional habitat classes. See Table 1 for definition of habitat abbreviations. (c) As (a), but only 799 

including species with nationally increasing population trends. (d) As (a), but only including species 800 

with nationally declining population trends The dashed line shows the grand mean of population 801 

trends across all habitats; asterisks show significant and near-significant differences from this (* P < 802 

0.05, ** P <0.01, *** P <0.001).  Population trends that are significantly different from zero (P < 803 

0.05) are marked with + if they are greater than zero and ʹ if they are less than zero. Lower-case 804 

letters written above bars show results of pairwise tests for differences between habitats ʹ habitats 805 

with different letters had significantly different population trends. Sample sizes (number of species) 806 

are given in parentheses after each habitat name. Differences in population trends after controlling 807 

for significant trait main effects are similar and are shown in Fig. A4. 808 
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