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Abstract

This paper considers the application of structured matrix methods for the compu-
tation of multiple roots of a polynomial. In particular, the given polynomial f(y) is
formed by the addition of noise to the coefficients of its exact form f̂(y), and the
noise causes multiple roots of f̂(y) to break up into simple roots. It is shown that
structured matrix methods enable the simple roots of f(y) that originate from the
same multiple root of f̂(y) to be ‘sewn’ together, which therefore allows the multiple
roots of f̂(y) to be computed. The algorithm that achieves these results involves
several greatest common divisor computations and polynomial deconvolutions, and
special care is required for the implementation of these operations because they
are ill-posed. Computational examples that demonstrate the theory are included,
and the results are compared with the results from MultRoot, which is a suite of
Matlab programs for the computation of multiple roots of a polynomial.

Key words: Roots of polynomials, structured matrix methods

1 Introduction

The computation of the roots of a polynomial is a classical problem in math-
ematics and many methods have been developed, including the methods of
bisection [1], Laguerre [8,11], Bairstow, Græffe and Müller [9], Horner [12],
Jenkins and Traub [14], and Newton [16]. These methods have advantages
and disadvantages with respect to speed, accuracy and convergence. For ex-
ample, the methods of Müller and Newton may diverge, and the methods of
Horner and Bairstow have good convergence properties, but all methods yield
incorrect results when multiple roots are computed because these roots break
up into simple roots. This has motivated the development of methods that
are explicitly designed for the computation of multiple roots of a polynomial,
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that is, methods that do not cause the multiple roots of the polynomial to
break up into simple roots [3,4,24–26]. The methods described in these pa-
pers require greatest common divisor (GCD) computations and polynomial
deconvolutions, and the difficulty of computing multiple roots of a polyno-
mial follows from the ill-posed nature of these operations. In particular, if two
polynomials f̂(y) and ĝ(y) have a non-constant GCD, their perturbed forms
f(y) and g(y), respectively, are coprime with probability one (under very mild
assumptions). Similarly, even if ĝ(y) is an exact divisor of f̂(y), the decon-
volution f(y)/g(y) is a rational function and not a polynomial. It therefore
follows that special care is required for the computational implementation of
these operations, and it will be shown that structured matrix methods allow
numerically robust solutions to be obtained. This numerical difficulty must be
compared with the symbolic implementation of these operations on f̂(y) and
ĝ(y) using exact arithmetic, which does not present difficulties.

There also exist algorithms for the determination of real roots of a polynomial,
for example, Sturm sequences, Descartes’ rule of signs and continued fractions
techniques, but these algorithms solve a problem that differs from the problem
considered in this paper. Also, they fail to terminate when multiple roots are
considered, unless additional information is provided.

The method whose implementation is described in this paper is similar to
the method considered in [3,4,24], and it is based on the method described
in [17], pages 65-68. The examples in [3,4,24] do not consider the effect of
added noise, and thus an exact polynomial is specified and the errors in the
computed results are due to roundoff error only. By contrast, the structured
matrix methods used in this work allow the effects of noise to be considered,
such that multiple roots of the exact polynomial f̂(y) are computed, even
when an inexact (noisy) form f(y) of f̂(y),

f(y) = f̂(y) + δf(y), (1)

is specified, where δf(y) is the noise added to f̂(y).

The polynomial root solver MultRoot is a suite of Matlab programs for
the computation of multiple roots of a polynomial in the presence of added
noise [25,26], but it differs from the work described in this paper because
the magnitude of the noise added to the coefficients of f̂(y) is required, such
that a threshold on the singular values of the Sylvester matrix of f(y) and
its derivative f (1)(y) can be specified. By contrast, knowledge of this noise
level is not required for the work described in this paper, which has prac-
tical advantages because the noise level may not be known, or it may only
be known approximately, or the noise level may vary between the coefficients,
such that a threshold cannot be specified a priori. In particular, computational
experiments showed that if the signal-to-noise ratio is higher than a specified
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value, which is a function of the values and multiplicities of the roots, then
the errors in the computed roots are small and knowledge of the noise level
is not required. The dependence of the computed roots on these parameters
has been observed by computational experiments, and not considered analyti-
cally, and thus only a qualitative statement, and not a quantitative statement,
can be made. Also, computational experiments showed that the errors in the
computed roots decrease as the noise level decreases, which is expected. If,
however, the noise level is known, it can be used to verify the acceptability,
or otherwise, of the computed roots.

The method whose computational implementation is considered in this paper
is described in Section 2. This algorithm is explicitly designed for the compu-
tation of multiple roots, and its application to a polynomial, all of whose roots
are simple, does not yield any advantages with respect to the methods dis-
cussed above. It is shown in Section 3 that the method described in this paper
has a geometric interpretation based on the pejorative manifolds of a poly-
nomial that has multiple roots, and that this allows an easier understanding
of its numerical implementation [15]. Structured and unstructured condition
numbers of a multiple root of a polynomial are discussed in Section 4, and
it is shown they may differ by several orders of magnitude. This difference
in magnitude provides the motivation for the method that implements the
polynomial root solver described in this paper, and it forms a clear distinction
between this root solver and the root solvers reviewed above.

The method whose implementation is considered in this paper requires that
polynomial deconvolutions of the form hi(y) = pi−1(y)/pi(y) be considered. It
is clear that the ith and (i+ 1)th deconvolutions are coupled, and it is there-
fore advantageous to consider these deconvolutions simultaneously, such that
the coupling is explicitly included in the formulation of the problem, rather
than consider them as decoupled (independent) deconvolutions. It is shown in
Section 5 that structured matrix methods can be used for the computation
of these coupled deconvolutions. Section 6 contains examples of the polyno-
mial root solver described in this paper, and the results are compared with
the results obtained from the polynomial root solver MultRoot. Section 7
contains a summary of the paper.

This paper is a continuation of the work in [23], and it is shown in this paper
that:

• Structured matrix methods allow multiple roots of an exact polynomial f̂(y)
to be computed when an inexact form f(y) of f̂(y) is given.

• The polynomial root solver used to compute multiple roots of f̂(y) when
f(y) is specified can be interpreted in terms of the pejorative manifolds of
f̂(y). The equations that define the pejorative manifolds of a third order
polynomial are derived.
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• Structured and unstructured condition numbers of a multiple root of a poly-
nomial are considered. It is shown that they may differ by several orders of
magnitude, and that this difference increases as the multiplicity of the root
increases.

• A structured matrix method can be used to perform polynomial deconvo-
lution, and it is shown that this method is better than the method of least
squares. Specifically, the structured matrix method returns the coefficients
of an exact polynomial, but the method of least squares returns the coeffi-
cients of a polynomial that is an approximation of a rational function.

• The results of the polynomial root solver described in this paper are com-
pared with the results of the polynomial root solver MultRoot when the
coefficients of the polynomial are perturbed, such that the signal-to-noise
ratio is a random variable that spans two orders of magnitude. This prop-
erty makes the specification of a threshold difficult, and the examples in
this paper differ, therefore, from the examples in [23], in which this ratio is
constant.

2 A method for the computation of multiple roots of a polynomial

This section describes the method in [17], pages 65-68, whose computational
implementation is considered in this paper. Consider the exact polynomial

f̂(y) =
m
∑

i=0

âiy
m−i = s1(y)s

2
2(y)s

3
3(y) · · ·s

rmax

rmax
(y), (2)

where s1(y) is the product of all the linear factors of f̂(y), s
2
2(y) is the product

of all the quadratic factors of f̂(y), and in general, sii(y) is the product of
all the factors of degree i of f̂(y). If f̂(y) does not contain a factor of degree
k, then sk(y) is equal to a constant, which can be assumed to be unity. The
method used for the computation of multiple roots, designated as Method
MR, of f(y) is shown below.

Method MR: The computation of multiple roots of a polynomial

Input The polynomial f̂(y) that is defined in (2).

Output The roots of f̂(y).

Begin
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(1) Define q0(y) = f̂(y) and perform the GCD computations,

q1(y) = GCD
(

q0(y), q
(1)
0 (y)

)

= s2(y)s
2
3(y)s

3
4(y) · · ·s

rmax−1
rmax

(y)

q2(y) = GCD
(

q1(y), q
(1)
1 (y)

)

= s3(y)s
2
4(y)s

3
5(y) · · ·s

rmax−2
rmax

(y)

q3(y) = GCD
(

q2(y), q
(1)
2 (y)

)

= s4(y)s
2
5(y)s

3
6(y) · · ·s

rmax−3
rmax

(y)
...

which terminate at qrmax
(y), which is a constant.

(2) Compute the polynomials hi(y), i = 1, . . . , rmax, from the deconvolutions,

h1(y) = q0(y)
q1(y)

= s1(y)s2(y)s3(y) · · ·

h2(y) = q1(y)
q2(y)

= s2(y)s3(y) · · ·

h3(y) = q2(y)
q3(y)

= s3(y) · · ·
...

hrmax
(y) = qrmax−1(y)

qrmax(y)
= srmax

(y).

(3)

(3) Compute the polynomials si(y), i = 1, . . . , rmax, from the deconvolutions,

s1(y) =
h1(y)

h2(y)
, s2(y) =

h2(y)

h3(y)
, · · ·

up to

srmax−1(y) =
hrmax−1(y)

hrmax
(y)

, srmax
(y) = hrmax

(y). (4)

(4) Solve the equations

s1(y) = 0, s2(y) = 0, · · · , srmax
(y) = 0,

in order to determine the roots of f̂(y). In particular, if α0 is a root of sk(y),
then it is a root of multiplicity k of f̂(y).

Method MR shows that the computation of the multiple roots of f̂(y) can be
broken down into the computation of the roots of several polynomials si(y) of
lower degree, all of whose roots are simple, and the roots of sk(y) are roots
of multiplicity k of f̂(y). An example of this method for the computation of
multiple roots of a polynomial is given in [23], which also includes a discussion
of the problems that arise when the method is implemented in a floating point
environment and the given polynomial is an inexact form f(y) of f̂(y), where
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f(y) is defined in (1). It is shown that these problems arise because the two
fundamental operations (GCD computations and polynomial deconvolutions)
in Method MR are ill-posed, and that the GCD of two exact polynomials
must be replaced by an approximate greatest common divisor (AGCD) of two
inexact polynomials.

Examination of Method MR shows that the computation of the roots of f̂(y)
is broken down into two stages:

Stage 1: Compute the multiplicities mi of the distinct roots αi of f̂(y).
Stage 2: Compute the value of each distinct root αi of f̂(y).

These two stages reveal an important difference between Method MR and
other methods that are used to compute the roots of a polynomial. In partic-
ular, these other methods usually start with an estimate of a root and then
employ an iterative procedure for its refinement. The same procedure is ap-
plied to all roots, independent of their multiplicities, and it usually involves
the Newton-Raphson iteration, or a variant of it, and thus problems occur at
a multiple root because f (1)(y) = 0 for these values of y.

The computation of the multiplicities mi of the distinct roots of f̂(y) before
the computation of the values of the roots provides a geometric interpretation
of Method MR. This geometric interpretation is considered in Section 3, and
it leads to a discussion of structured and unstructured condition numbers of
a multiple root of a polynomial.

3 Geometric interpretation

This section provides a geometric interpretation of Method MR, and it is
shown that a distinction must be made between its application to an exact
polynomial f̂(y) that has multiple roots, and an inexact form f(y) of f̂(y)
because it is assumed that the roots of f(y) are simple.

Consideration is given to the determination of the roots of f̂(y), and it is
therefore adequate to consider the monic form of f̂(y). If the distinct roots of
f̂(y) are αi, i = 1, . . . , p, and αi has multiplicity mi ≥ 1,

f̂(y) =
m
∑

i=0

âiy
m−i =

p
∏

i=1

(y − αi)
mi , â0 = 1,

p
∑

i=1

mi = m, (5)

then the coefficients of f̂(y) have
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m−
p
∑

i=1

(mi − 1) = p,

degrees of freedom. It is assumed the coefficients âi are real, and thus the roots
of f̂(y) are real or they form complex conjugate pairs.

It follows that all polynomials of degree m that have p distinct roots with
multiplicities mi, i = 1, . . . , p, lie on a manifold M of dimension p in Rm. The
manifold M is an example of a pejorative manifold [15], the formal definition
of which is now given. In particular, it follows from (5) that a monic polynomial
t̂(y) can be written as

t̂(y) =
m
∑

i=0

t̂iy
m−i =

p
∏

i=1

(y − βi)
mi , t̂0 = 1,

p
∑

i=1

mi = m,

and thus there exist non-linear functions wi(β1, . . . , βp) such that

t̂i = wi(β1, . . . , βp), i = 1, . . . , m. (6)

Definition 3.1 (Pejorative manifold) Let µ = {m1, . . . , mp} be the set of
multiplicities of the polynomial t̂(y). The pejorative manifold M(µ) ⊂ Rm con-
sists of the set of real coefficients (t̂1, . . . , t̂m) such that t̂(y) has p distinct roots
whose multiplicities are given by µ.

The pejorative manifold, with specified multiplicities mi, i = 1, . . . , p, can
also be defined as the locus of points

(

t̂1, . . . , t̂m
)

∈ Rm that satisfy (6) for
all distinct values of βi, i = 1, . . . , p. Definition 3.1 of a pejorative manifold is
restricted to a set of points in Rm, but it can be easily extended to polynomials
with complex coefficients.

The importance of a pejorative manifold for the computation of multiple roots
of a polynomial can be seen by considering the two forms of f̂(y) in (5). In
particular, if the inexact monic polynomial f(y) is defined by perturbing each
coefficient âi of f̂(y) by a random variable δai, i = 1, . . . , m,

f(y) =
m
∑

i=0

(âi + δai) y
m−i, â0 = 1, δa0 = 0, (7)

then the multiple roots of f̂(y) break up into simple roots and thus the point
with coordinates âi + δai, i = 1, . . . , m, does not lie on M. It is shown in Sec-
tion 4 that in this circumstance, the multiple roots of f̂(y) are ill-conditioned
and thus their condition numbers are large, that is, a small change in the co-
efficients of f̂(y) yields a large change in its roots. If, however, the perturbed
form of f̂(y) is defined as

7



f(y) =
p
∏

i=1

(

y − (αi + δαi)
)mi

,

then the multiplicities of the roots αi are preserved, but their values are
changed to αi + δαi, and the perturbations δαi define a structured pertur-
bation of f̂(y). Furthermore, the structured condition number associated with
these perturbations is small, and the roots αi are therefore stable, that is, a
small structured perturbation to the coefficients of f̂(y) causes a small change
in the values of the roots, and f(y) and f̂(y) are represented by nearby points
on M.

It follows from this discussion that a distinction must be made between a
random perturbation of f̂(y) that causes its multiple roots to break up into
simple roots, and the situation in which a structured perturbation of f̂(y)
causes the multiple roots of f̂(y) to retain their multiplicities. The large ratio
in the magnitudes of the condition numbers of the roots of f̂(y) associated
with these two perturbations shows that the multiplicities of the roots of f̂(y)
should be determined before their values are computed, that is, the pejora-
tive manifold M must be identified. The computation of the roots of f̂(y) is
therefore restricted to M, which shows the importance of the computation
of the integers mi, i = 1, . . . , p. These integers are calculated by the GCD
computations and polynomial deconvolutions in Method MR.

Example 3.1 Consider a cubic polynomial f̂(y) with real roots α1, α2 and
α3,

f̂(y)= y3 − (α1 + α2 + α3)y
2 + (α1α2 + α1α3 + α2α3)y − α1α2α3.

• If f̂(y) has a cubic root, then α1 = α2 = α3, and thus

f̂(y) = y3 − 3α1y
2 + 3α2

1y − α3
1.

The pejorative manifold M(3) of cubic polynomials that have one real cubic
root is the twisted cubic curve

C :
(

−3α1 3α2
1 −α3

1

)

.

• If f̂(y) has one double root and one simple root, then α1 = α2 6= α3, and
thus

f̂(y) = y3 − (2α1 + α3)y
2 + (α2

1 + 2α1α3)y − α2
1α3.

The pejorative manifold M(2,1) of cubic polynomials that have one real
double root and one real simple root is the surface
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S :
(

−(2α1 + α3) (α2
1 + 2α1α3) −α2

1α3

)

, α1 6= α3.

The parametric curve C and parametric surface S are, respectively,

C : (X Y Z ) = (X(t) Y (t) Z(t) ) = (−3t 3t2 −t3 ), t ∈ R, (8)

and

S : (X Y Z )= (X(s, t) Y (s, t) Z(s, t) )

= (−(2s+ t) s2 + 2st −s2t ), s 6= t, s, t ∈ R, (9)

and they are shown in Figure 1. The closure of the pejorative manifold M(2,1)

is the union of M(2,1) and M(3) because this closure is obtained by colliding
the roots of M(2,1). 2

The geometry and interactions between the pejorative manifolds has an in-
teresting structure, some features of which are now considered. Let µ =
{m1, . . . , mp} and consider the pejorative manifold M(µ). The set of these pe-
jorative manifolds partitions Rm because each polynomial has a unique root
structure. In addition, their closures interact in a natural way because M(µ)

consists of the union of M(µ) and all pejorative manifolds that can be obtained
by combining the roots of M(µ). The closure of a pejorative manifold is an al-
gebraic variety and its structure can be considered using algebraic methods. It
contains complicated singularities, but it will not be necessary to understand
this geometry for the study of the embeddings of pejorative manifolds.

The feasibility of method MR requires that the embeddings of the pejora-
tive manifolds in Rm be considered. In particular, the embeddings of different
pejorative manifolds should be investigated in order to determine if the root
structure of f̂(y) can be recovered from the perturbed polynomial f(y). It
is therefore assumed in this section that f(y) and p, that is, the perturbed
polynomial and the dimension of the pejorative manifold to which f̂(y) be-
longs, are known. This section considers the possible determination of the root
structure of f̂(y) from f(y) and p. If this root structure can be determined,
then it is equal to the multiplicities mi of the distinct roots of f̂(y).

If two pejorative manifolds of the same dimension are near f(y), then it is
plausible that f(y) is derived from a perturbation of a polynomial on either
pejorative manifold, but only one of these pejorative manifolds has the same
root structure as f̂(y). If, however, only one pejorative manifold is near f(y),
then it is likely that f(y) is derived from a perturbation of a polynomial that
is represented by a point on this pejorative manifold. Specifically, the closest
point on each pejorative manifold of dimension p is a candidate polynomial. If
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Fig. 1. (a) The curve C, and (b) the surface S, which are defined in Example 3.1.
The variables X,Y and Z are defined in (8) and (9) for (a) and (b) respectively.

the polynomial represented by one of these points is significantly nearer than
the other polynomials, then it is reasonable to believe that this polynomial has
the same root structure as f̂(y). It is therefore desirable to study the geometry
and embeddings of pejorative manifolds.

It is reasonable to expect that if p is sufficiently smaller than m, the em-
beddings of pejorative manifolds are separated in space, because this case
represents a very low dimensional space embedded in a much higher dimen-
sional space, that is, m ≫ p. In this over-determined situation, the algorithm
presented in this paper finds a structured perturbation of f(y) that trans-
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forms f(y) onto the (typically unique) pejorative manifold M(µ) near f(y),

from which the values and multiplicities of the roots of f̂(y) can be calculated.

4 Structured and unstructured condition numbers of a polynomial

Section 3 discussed the pejorative manifolds of a polynomial that has one or
more multiple roots, and it was stated that a root of a polynomial is stable
with respect to perturbations of its coefficients if the multiplicities of its roots
are preserved. This situation defines a structured condition number of a root
of a polynomial, and it must be compared with the situation that occurs when
random perturbations are applied to the coefficients of a polynomial. These
perturbations are unstructured and cause multiple roots of a polynomial to
break up into simple roots, in which case the perturbed polynomial is not
identified with any point on a pejorative manifold. These two situations -
a random (unstructured) perturbation and a structured perturbation - are
considered in Theorems 4.1 and 4.2 respectively.

Let g(y, α̃) be a polynomial of degree m that is written as the product of
two polynomials g1(y, α̃) and h(y), where the multiplicities of the roots α̃ =
{αi}

p
i=1, αj 6= αk, of g1(y, α̃) are to be preserved when g(y, α̃) is perturbed,

and h(y) contains the other roots of g(y, α̃),

g(y, α̃) = g1(y, α̃)h(y) =
m
∑

i=0

biy
m−i =

(

p
∏

i=1

(y − αi)
mi

)

h(y).

The root αi has multiplicity mi, and h(y), which is of degree n = m−
∑p

i=1mi,
satisfies h(αi) 6= 0. Two forms of g(y, α̃) are needed because the first form
(expressed in terms of the coefficients bi) is used in Theorem 4.1, and the
second form (expressed in terms of the roots αi and the polynomial h(y)) is
used in Theorem 4.2.

The error model that defines a random perturbation δbi applied to the coeffi-
cient bi of g(y, α̃) is

|δbi| ≤ ε |bi| , i = 0, . . . , m, (10)

where ε−1 is the upper bound of the componentwise signal-to-noise ratio. An
expression for the condition number of a root of g(y, α̃) when the component-
wise perturbations (10) are applied to the coefficients bi of g(y, α̃) is stated in
Theorem 4.1 [18].

Theorem 4.1 Let the coefficients bi of g(y, α̃) be perturbed to bi + δbi, where
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(10) is satisfied. The root αk of g(y, α̃) has multiplicity mk, and let one of these
mk roots be perturbed to αk + δαk due to the perturbations in the coefficients.
The componentwise condition number of αk is

κ (αk)= max
|δbi|≤ε|bi|

|δαk|

|αk|

1

ε

=
1

ε
1− 1

mk

1

|αk|

(

mk!

|g(mk) (αk, α̃)|

m
∑

i=0

∣

∣

∣biα
m−i
k

∣

∣

∣

) 1

mk

. (11)

The next theorem extends Theorem 4.1 to the situation in which the multi-
plicities of the roots of g(y, α̃) are preserved. This condition requires that a
structured perturbation be applied to the coefficients of g(y, α̃) [13].

Theorem 4.2 The condition number of a root αk of g(y, α̃), such that the
multiplicity mk of αk is preserved is

ρ(αk) =
∆αk

∆g(y, α̃)

=

∥

∥

∥

∥

(

∏p
i=1(y − αi)

mi

)

h(y)
∥

∥

∥

∥

mk

∣

∣

∣αkh(αk)
∏p

j=1,j 6=k(αk − αj)
∣

∣

∣

×







max degree

δp(y, α̃) ≤ (n+ p− 1)







|δp(αk, α̃)|
∥

∥

∥

(

∏p
i=1 (y − αi)

mi−1
)

δp (y, α̃)
∥

∥

∥

, (12)

where δp(y, α̃), whose maximum degree is (n+ p− 1), is given by

δp(y, α̃) = δh(y)
p
∏

i=1

(y − αi)− h(y)
p
∑

i=1

(

(miδαi)
p
∏

j=1,j 6=i

(y − αj)
)

, (13)

∆αk =
|δαk|

|αk|
and ∆g(y, α̃) =

‖δg(y, α̃)‖

‖g(y, α̃)‖
.

Proof Consider the perturbed polynomial

g(y, α̃) + δg(y, α̃) =

(

p
∏

i=1

(y − (αi + δαi))
mi

)

(

h(y) + δh(y)
)

,

from which it follows that, on retaining only the lowest order terms,

12



δg(y, α̃)=

(

p
∏

i=1

(

(y − αi)− δαi

)mi

)

(

h(y) + δh(y)
)

−

(

p
∏

i=1

(y − αi)
mi

)

h(y)

=

(

p
∏

i=1

(

(y − αi)
mi −mi(y − αi)

(mi−1)δαi

)

)

(

h(y) + δh(y)
)

−

(

p
∏

i=1

(y − αi)
mi

)

h(y).

Thus

δg(y, α̃)= δh(y)

(

p
∏

i=1

(y − αi)
mi

)

−h(y)
p
∑

i=1





p
∏

j=1,j 6=i

(y − αj)
mj



mi(y − αi)
mi−1δαi

= δh(y)

(

p
∏

i=1

(y − αi)
mi−1

p
∏

i=1

(y − αi)

)

−h(y)
p
∑

i=1





p
∏

j=1,j 6=i

(y − αj)
mj



mi(y − αi)
mi−1δαi

= δh(y)

(

p
∏

i=1

(y − αi)
mi−1

p
∏

i=1

(y − αi)

)

− h(y)
p
∑

i=1

(miδαi)×





p
∏

j=1,j 6=i

(y − αj)
mj−1

p
∏

j=1,j 6=i

(y − αj)



 (y − αi)
mi−1

= δh(y)

(

p
∏

i=1

(y − αi)
mi−1

p
∏

i=1

(y − αi)

)

− h(y)
p
∑

i=1

(miδαi)×





p
∏

j=1

(y − αj)
mj−1

p
∏

j=1,j 6=i

(y − αj)



 .

The first order perturbation δg(y, α̃) is therefore equal to

δg(y, α̃) =

(

p
∏

i=1

(y − αi)
mi−1

)

δp (y, α̃) , (14)

where δp (y, α̃) is defined in (13), and thus

δh(y) =
δp(y, α̃) + h(y)

∑p
i=1

(

miδαi

∏p
j=1,j 6=i (y − αj)

)

∏p
i=1 (y − αi)

. (15)
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The degrees of the numerator and denominator polynomials in this expression
for δh(y) are (n+ p− 1) and p respectively. Since δh(y) is a polynomial, p of
the roots of the numerator polynomial must be αk, k = 1, . . . , p, and thus the
perturbations δαk are given by

δαk = −
δp(αk, α̃)

mkh(αk)
∏p

j=1,j 6=k(αk − αj)
, k = 1, . . . , p. (16)

The substitution of these expressions for δαk into (15) enables δh(y) to be
defined, and thus δαk and δh(y) are specified for every function δp(y, α̃). The
condition number (12) follows from (14) and (16). 2

The last term on the right hand side of (12) can be cast in terms of matrices and
vectors. In particular, if δpi(α̃) are the coefficients of the polynomial δp(y, α̃),

δp(y, α̃) =
n+p−1
∑

i=0

δpi(α̃)y
n+p−1−i,

then

δp(αk, α̃) =
n+p−1
∑

i=0

δpi(α̃)α
n+p−1−i
k = φ(n+p)(αk)

T δp(n+p)(α̃),

where δpi(α̃) are the entries of δp(n+p)(α̃) ∈ C
n+p, and

φ(n+p)(αk) =
[

αn+p−1
k αn+p−2

k · · · αk 1

]T

∈ C
n+p.

Consider now the denominator of the second term on the right hand side of
(12). In particular, the polynomial

(

p
∏

i=1

(y − αi)
mi−1

)

δp (y, α̃) ,

is of degree m− 1, and thus

∥

∥

∥

∥

∥

(

p
∏

i=1

(y − αi)
mi−1

)

δp (y, α̃)

∥

∥

∥

∥

∥

=
∥

∥

∥Pδp(n+p)(α̃)
∥

∥

∥ ,

where P ∈ Cm×(n+p) is a Tœplitz matrix whose entries are the coefficients of
the polynomial

∏p
i=1 (y − αi)

mi−1. The second term on the right hand side of
(12) can therefore be written as
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|δp(αk, α̃)|
∥

∥

∥

(

∏p
i=1 (y − αi)

mi−1
)

δp (y, α̃)
∥

∥

∥

=

∣

∣

∣φ(n+p)(αk)
T δp(n+p)(α̃)

∣

∣

∣

‖Pδp(n+p)(α̃)‖

=

∣

∣

∣φ(n+p)(αk)
T δp(n+p)(α̃)

∣

∣

∣

∥

∥

∥(P TP )
1

2 δp(n+p)(α̃)
∥

∥

∥

,

which is bounded by

∣

∣

∣

∣

φ(n+p)(αk)
T
(

P TP
)− 1

2

(

P TP
) 1

2 δp(n+p)(α̃)

∣

∣

∣

∣

∥

∥

∥(P TP )
1

2 δp(n+p)(α̃)
∥

∥

∥

≤

∥

∥

∥

∥

φ(n+p)(αk)
T
(

P TP
)− 1

2

∥

∥

∥

∥

,

and thus the structured condition number (12) can also be written as

ρ(αk) ≤

∥

∥

∥

∥

(

∏p
i=1(y − αi)

mi

)

h(y)
∥

∥

∥

∥

mk

∣

∣

∣αkh(αk)
∏p

j=1,j 6=k(αk − αj)
∣

∣

∣

∥

∥

∥

∥

φ(n+p)(αk)
T
(

P TP
)− 1

2

∥

∥

∥

∥

.

It is noted that κ(αk) is a function of the upper bound of the componentwise
signal-to-noise ratio ε−1, and that ρ(αk) is independent of ε−1. Example 4.1
considers the implications of this difference.

Example 4.1 Consider the condition numbers (11) and (12) for the situation
h(y) = 1 and p = 1, in which case g(y, α) = (y − α)m. If m ≫ 1 and

(

m!

|g(m) (α, α)|

m
∑

i=0

∣

∣

∣biα
m−i

∣

∣

∣

) 1

m

=

(

m
∑

i=0

∣

∣

∣biα
m−i

∣

∣

∣

) 1

m

≈ 1,

then (11) can be approximated by

κ (α) ≈
1

ε

1

|α|
. (17)

This approximation shows that an increase in ε−1 causes an increase in the un-
structured condition number of a root of high multiplicity, and the instability
of this root therefore increases as ε−1 increases.

Consider now the structured condition number ρ(α) for g(y, α). In particular,
it follows from (12) and (13) that

ρ(α) ≤
‖(y − α)m‖

m |α| ‖(y − α)m−1‖
=

‖(y − α)m−1(y − α)‖

m |α| ‖(y − α)m−1‖
≤

‖y − α‖

m |α|
≈

1

m
,
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if |α| ≫ 1, which must be compared with (17). It is seen that ρ(α) is inde-
pendent of ε−1 and that it decreases as the multiplicity of α increases. This
theoretical result is confirmed by the computational results in [5], where it is
shown that the efficiency of the computation of a root increases as its multi-
plicity increases. 2

The structured condition number (12) allows the following theorem to be
established [13].

Theorem 4.3 Consider the polynomial g(y, α̃) when p = 1,

g(y, α) = (y − α)m h(y), h(α) 6= 0,

and let ḡ(y, α) be the neighbouring polynomial,

ḡ(y, α) = (y − α)m (h(y)− h(α)) ,

which has a root α of multiplicity at least m+1. The relative difference between
g(y, α) and ḡ(y, α) is inversely proportional to the condition number ρ(α) of
the root y = α of g(y, α).

Proof Since p = 1, it follows from (13) that

δp(y, α) = δh(y) (y − α)−mh(y)δα,

and thus from (12),

ρ(α) ≤
‖(y − α)mh(y)‖σ

m |αh(α)|
,

where

σ =







max degree

δp(y, α) ≤ n







|δp(α, α)|
∥

∥

∥(y − α)m−1 δp (y, α)
∥

∥

∥

.

The magnitude of the difference between the polynomials g(y, α) and ḡ(y, α)
is

‖δg(y, α)‖ = ‖g(y, α)− ḡ(y, α)‖ = ‖(y − α)m‖ |h(α)| ,

and thus the relative difference between g(y, α) and ḡ(y, α) is inversely pro-
portional to ρ(α),
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‖δg(y, α)‖

‖g(y, α)‖
≤

σ

m |α|

‖(y − α)m‖

ρ(α)
. (18)

It follows that if ρ(α) is large, there is a neighbouring polynomial that has a
root of multiplicity at least m+ 1. 2

Equation (18) shows that if ρ(α) is large, then g(y, α) is near another pejorative
manifold, and if this polynomial is also ill-conditioned, then it is near a lower
dimensional pejorative manifold of this manifold. This procedure of locating
manifolds that are defined by higher order multiplicities is continued until the
roots of the computed polynomial are sufficiently well-conditioned and close
to the original polynomial. In this circumstance, the original polynomial may
be considered to be a small perturbation of the computed polynomial, all of
whose roots are well-conditioned. The computed polynomial is acceptable if it
is sufficiently near the original polynomial, and it is reasonable to hypothesize
that the original polynomial has a constraint that favours multiple roots.

5 Structured matrix methods

The polynomial root solver implemented by Method MR contains two opera-
tions, GCD computations and polynomial deconvolutions. Previous work has
shown that the GCD computations can be implemented by structured matrix
methods applied to the Sylvester resultant matrix of two polynomials [19–22].
This section considers, therefore, the application of structured matrix meth-
ods for the polynomial deconvolutions in Method MR. The simplest method of
performing polynomial deconvolution is least squares, but it is unsatisfactory
because it returns the coefficients of a polynomial that is an approximation of
a rational function. By contrast, it will be seen that structured matrix meth-
ods guarantee that the solution vector contains the coefficients of an exact
polynomial, and not the coefficients of a polynomial that is an approximation
of a rational function.

A template for polynomial division that returns the quotient and remainder,
and is simple and efficient, is described in [6], but it does not consider the
effects of errors in the polynomial coefficients. The method for polynomial
deconvolution, which is a restricted form of polynomial division when the
remainder is identically equal to zero, that is described below enables the
effect of perturbations in the polynomial coefficients to be considered. Also, it
enables r coupled polynomial deconvolutions to be considered simultaneously,
rather than as r individual polynomial deconvolutions.

The method MR contains two sets of polynomial deconvolutions, where the
first set of deconvolutions, which is defined in (3), contains rmax deconvolu-
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tions, and the second set of deconvolutions, which is defined in (4), contains
rmax − 1 deconvolutions. It is therefore appropriate to consider the r deconvo-
lutions

hi(y) =
pi−1(y)

pi(y)
, i = 1, . . . , r, (19)

where the polynomial pk(y) appears in the kth and (k + 1)th deconvolutions.
The degrees of the polynomials are 1

deg pi(y) = mi, i = 0, . . . , r,

deg hi(y) = ni, i = 1, . . . , r,

and the integers M,M1 and N are defined in terms of these degrees as

M =
r−1
∑

i=0

(mi + 1), M1 =
r
∑

i=0

(mi + 1) = M + (mr + 1),

and

N =
r
∑

i=1

(ni + 1), ni = mi−1 −mi, i = 1, . . . , r.

The polynomials pi(y), i = 0, . . . , r, must be processed before the deconvolu-
tions are performed because computations on polynomials whose coefficients
vary widely in magnitude are unreliable [7,10]. These preprocessing opera-
tions, which are now considered, minimise the ratio of the coefficient of maxi-
mum magnitude, to the coefficient of minimum magnitude, of the polynomials
pi(y), i = 0, . . . , r.

Let the polynomials pi(y), i = 0, . . . , r, be given by

pi(y) =
mi
∑

j=0

ai,jy
mi−j, i = 0, . . . , r, (20)

and consider the substitution

y = θw,

1 These degrees should not be confused with the multiplicities of the roots of f̂(y).
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where θ is a parameter to be determined and w is the new independent vari-
able. The polynomials (20) become, therefore,

qi(w) =
mi
∑

j=0

(

ai,jθ
mi−j

)

wmi−j, i = 0, . . . , r, (21)

and the coefficient of maximum magnitude in these r + 1 polynomials is

max
{

max
j=0,...,m0

∣

∣

∣a0,jθ
m0−j

∣

∣

∣ , max
j=0,...,m1

∣

∣

∣a1,jθ
m1−j

∣

∣

∣ , . . . , max
j=0,...,mr

∣

∣

∣ar,jθ
mr−j

∣

∣

∣

}

.

The expression for the coefficient of minimum magnitude is similar, but with
max replaced by min, and thus θ0, the optimal value of θ, is given by

argmin
θ

{

max {maxj=0,...,m0
|a0,jθ

m0−j| , . . . ,maxj=0,...,mr
|ar,jθ

mr−j|}

min {minj=0,...,m0
|a0,jθm0−j| , . . . ,minj=0,...,mr

|ar,jθmr−j |}

}

.

This minimisation problem can be written as:

minimise t
s

subject to

t ≥ |a0,j| θ
m0−j, j = 0, . . . , m0

t ≥ |a1,j| θ
m1−j, j = 0, . . . , m1

...

t ≥ |ar,j| θ
mr−j , j = 0, . . . , mr

s ≤ |a0,j | θ
m0−j , j = 0, . . . , m0

s ≤ |a1,j | θ
m1−j , j = 0, . . . , m1

...

s ≤ |ar,j | θ
mr−j , j = 0, . . . , mr

s > 0

θ > 0.

The transformations

T = log t, S = log s, φ = log θ,

19



and

αi,j = log |ai,j| , i = 0, . . . , r, j = 0, . . . , mr,

where log ≡ log10, enable this constrained minimisation to be written as:

minimise T − S

subject to

T −(m0 − j)φ ≥ α0,j , j = 0, . . . , m0

T −(m1 − j)φ ≥ α1,j , j = 0, . . . , m1

...

T −(mr − j)φ ≥ αr,j, j = 0, . . . , mr

−S +(m0 − j)φ ≥ −α0,j , j = 0, . . . , m0

−S +(m1 − j)φ ≥ −α1,j , j = 0, . . . , m1

...

−S +(mr − j)φ ≥ −αr,j , j = 0, . . . , mr.

This problem can be written in matrix form as:

minimise
[

1 −1 0

]















T

S

φ















subject to

20





















































A0

A1

...

Ar

B0

B1

...

Br

































































T

S

φ















≥



















































λ0

λ1

...

λr

−λ0

−λ1

...

−λr



















































, (22)

where

Ai =





























1 0 −mi

1 0 −(mi − 1)
...

1 0 −1

1 0 0





























∈ R
(mi+1)×3, λi =





























αi,0

αi,1

...

αi,mi−1

αi,mi





























∈ R
mi+1,

and

Bi =





























0 −1 mi

0 −1 (mi − 1)
...

0 −1 1

0 −1 0





























∈ R
(mi+1)×3,

for i = 0, . . . , r. The coefficient matrix and vector on the right hand side of
(22) are of orders 2M1×3 and 2M1 respectively. The constrained minimisation
(22) is a standard problem in linear programming, and it allows the optimal
value θ0 of θ to be calculated.

It follows that the polynomials (21) are given by

qi(w) =
mi
∑

j=0

(

ai,jθ
mi−j
0

)

wmi−j, i = 0, . . . , r,
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and thus if qi denotes the vector of the coefficients of qi(w),

qi =
[

ai,0θ
mi

0 ai,1θ
mi−1
0 · · · ai,mi

]T

∈ R
mi+1, i = 0, . . . , r,

the r deconvolutions (19) can be written as r decoupled equations,

Ci(qi)hi = qi−1, i = 1, . . . , r, (23)

where each matrix Ci(qi) ∈ R
(mi−1+1)×(ni+1) is Tœplitz, and the vector hi ∈

Rni+1 contains the coefficients of the polynomial hi(y) after the substitution
y = θ0w is made. The coefficient matrix C(q1, . . . ,qr) of the r equations in
(23) is

C(q1, . . . ,qr) = diag
[

C1(q1) · · · Cr−1(qr−1) Cr(qr)

]

∈ R
M×N .

It is noted that the polynomials in (19) are expressed in the independent vari-
able y, and the polynomials in (23) are expressed in the independent variable
w.

It is assumed that the coefficients of the polynomials are inexact, and thus
(23) does not possess a solution. It is therefore necessary to add a structured
matrix to C(q1, . . . ,qr), and a structured vector to the right hand side, such
that the coefficient matrix on the left hand side of the r equations (23) re-
tains its diagonal block Tœplitz form, and the modified form of this equation
therefore represents r polynomial deconvolutions. In particular, let zi ∈ R

mi+1

be the vector of perturbations added to the vector qi of the coefficients of the
polynomial qi(w), i = 0, . . . , r, and let

z =
[

z0 z1 · · · zr

]T

∈ R
M1 ,

where

z0=
[

z0 · · · zm0

]T

∈ R
m0+1,

z1=
[

zm0+1 · · · zm0+m1+1

]T

∈ R
m1+1,

z2=
[

zm0+m1+2 · · · zm0+m1+m2+2

]T

∈ R
m2+1,

...

zr =
[

zM · · · zM1−1

]T

∈ R
mr+1.

22



A matrix of structured perturbations is added to each matrix Ci(qi), i =
1, . . . , r, and thus the coefficient matrix in (23) is replaced by

B(z1, . . . , zr)=C(q1, . . . ,qr) + E(z1, . . . , zr)

= diag
[

C1(q1) C2(q2) · · · Cr−1(qr−1) Cr(qr)

]

+

diag
[

E1(z1) E2(z2) · · · Er−1(zr−1) Er(zr)

]

,

where B(z1, . . . , zr) ∈ RM×N and Ei(zi) ∈ R(mi−1+1)×(ni+1), i = 1, . . . , r, are
Tœplitz matrices.

Consider now the vector on the right hand side of (23), the perturbed form of
which is





























q0 + z0

q1 + z1
...

qr−2 + zr−2

qr−1 + zr−1





























=





























q0

q1

...

qr−2

qr−1





























+
[

IM
... 0

]



































z0

z1
...

zr−1

· · ·

zr



































=





























q0

q1

...

qr−2

qr−1





























+ Pz,

where

P =
[

IM
... 0

]

∈ R
M×M1.

Equation (23) shows that the ith and (i + 1)th deconvolutions, i = 1, . . . , r,
are coupled, and the matrix P guarantees that this coupling is preserved in
the vectors zi, i = 1, . . . , r. It also follows that the corrected form of (23) is

(

C(q1, . . . ,qr) + E(z1, . . . , zr)
)

h = q + Pz, (24)

where h ∈ RN and q ∈ RM are given by, respectively,

h =
[

h1 h2 · · · hr−1 hr

]T

and q =
[

q0 q1 · · · qr−2 qr−1

]T

.

The residual due to an approximate solution of (24) is
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r̃ = r̃(z) = (q+ Pz)−
(

C(q1, . . . ,qr) + E(z1, . . . , zr)
)

h, (25)

and thus a first order Taylor expansion of r̃(z) yields

r̃(z+ δz) =
(

q+ P (z+ δz)
)

−
(

C(q1, . . . ,qr) + E(z1 + δz1, . . . , zr + δzr)
)

(h+ δh)

= r̃(z) + Pδz−
(

C(q1, . . . ,qr) + E(z1, . . . , zr)
)

δh

−δE(z1, . . . , zr)h, (26)

where

δE(z1, . . . , zr) = diag
[

δE1(z1) · · · δEr−1(zr−1) δEr(zr)

]

.

There exist matrices Yi(hi) ∈ R(mi−1+1)×(mi+1), i = 1, . . . , r, such that

Ei(zi)hi = Yi(hi)zi, i = 1, . . . , r,

and thus

δEi(zi)hi = Yi(hi)δzi, i = 1, . . . , r,

from which it follows that

δE(z1, . . . , zr)h=diag
[

Y1(h1) Y2(h2) · · · Yr−1(hr−1) Yr(hr)

]





























δz1

δz2
...

δzr−1

δzr





























=





























0 Y1(h1)

0 Y2(h2)
...

. . .

0 Yr−1(hr−1)

0 Yr(hr)





























δz,

= Y (h1, . . . ,hr)δz, (27)
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where Y = Y (h1, . . . ,hr) ∈ RM×M1 is given by

Y (h1, . . . ,hr) =





























0 Y1(h1)

0 Y2(h2)
...

. . .

0 Yr−1(hr−1)

0 Yr(hr)





























.

The substitution of (27) into (26) yields the non-linear equation

r̃(z+ δz) = r̃(z)− (C + E)δh− (Y − P )δz,

and thus the Newton-Raphson method requires the iterative solution of

[

(C + E) (Y − P )

]







δh

δz





 = r̃,

which is an under-determined equation, where r̃ = r̃(z) and

[

(C + E) (Y − P )

]

∈ R
M×(N+M1).

If h(0) and z(0) = 0 are the initial values of h and z, respectively, in the Newton-
Raphson method, then the (j + 1)th iteration requires the minimisation of

∥

∥

∥

∥

∥

∥

∥

h(j+1) − h(0)

z(j+1)

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

h(j) + δh(j) − h(0)

z(j) + δz(j)

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥







δh(j)

δz(j)





−







−
(

h(j) − h(0)
)

−z(j)







∥

∥

∥

∥

∥

∥

∥

2

,

subject to

[

(C + E) (Y − P )

](j)







δh(j)

δz(j)





 = r̃(j),

where the initial value of h is calculated from (23),
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h(0) =





























C1(q1)

C2(q2)
. . .

Cr−1(qr−1)

Cr(qr)





























† 



























q0

q1

...

qr−2

qr−1





























, (28)

and the superscript † denotes pseudo-inverse. This is a least squares minimi-
sation with an equality constraint (the LSE problem),

min
y

‖Fy − s‖ subject to Gy = t, (29)

where

F = IN+M1
, G =

[

(C + E) (Y − P )

](j)

∈ R
M×(N+M1),

y =







δh(j)

δz(j)





 ∈ R
N+M1, s =







−
(

h(j) − h(0)
)

−z(j)





 ∈ R
N+M1 ,

and t = r̃(j) ∈ RM .

Algorithm 5.1 shows that the QR decomposition can be used to solve the LSE
problem (29).

Algorithm 5.1: Deconvolution using the QR decomposition

Input The r + 1 polynomials pi(y), i = 0, . . . , r.

Output The r polynomials hi(y), i = 1, . . . , r.

Begin

(1) Solve the linear programming problem (22) and compute the vectors qi

that store the coefficients of the polynomials qi(w), i = 0, . . . , r.
(2) Set z(0) = 0 and calculate h(0) from (28).
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(3) Repeat

(a) Compute the QR decomposition of GT ,

GT = QR = Q







R1

0





 .

(b) Set w1 = R−T
1 t.

(c) Partition FQ as

FQ =
[

F1 F2

]

,

where F1 ∈ R(N+M1)×M and F2 ∈ R(N+M1)×(N+M1−M).
(d) Compute

w2 = F †
2 (s− F1w1) .

(e) Compute the solution

y = Q







w1

w2





 .

(f) Set h := h+ δh and z := z+ δz.
(g) Update G, s and t, and compute the residual r̃(z) from (25).

Until ‖r̃(z)‖
‖q+Pz‖

≤ 10−12

(4) Transform the polynomials whose coefficients are stored in h from the
variable w to the variable y by the substitution w = y/θ0.

End

6 Examples

This section contains three examples in which the polynomial root solver de-
scribed in this paper is compared with MultRoot, which is another polyno-
mial root solver explicitly designed for the computation of multiple roots of a
polynomial [25,26].

Random noise is added to the exact coefficients of the polynomials specified
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in the examples, but the form of the noise differs between Examples 6.1 and
6.2, and Example 6.3:

• The componentwise signal-to-noise ratio is a random variable, and not con-
stant, in Examples 6.1 and 6.2. In particular, it follows from (5) and (7) that
since ε−1

i is the upper bound of the signal-to-noise ratio of the coefficient âi
of the exact polynomial f̂(y), the perturbations δai are given by

δai = âiriεi, i = 0, . . . , m, (30)

where ri and εi are uniformly distributed random variables in the intervals
[−1, 1] and [10−9, 10−7], respectively. The random nature of εi makes the
specification of a threshold for the small singular values of a matrix, and
therefore the determination of its numerical rank, difficult.
The roots of the polynomials in Example 6.1 are of the same order of

magnitude, and similarly, the roots of the polynomials in Example 6.2 are
of the same order of magnitude. These examples consider, therefore, the
effect of a variation of two orders of magnitude in the values of εi.

• In Example 6.3, the upper bound of the componentwise signal-to-noise ratio
ε−1 is constant and equal to 108, and the roots vary widely in magnitude.
In particular, if αi is a root of f̂(y), then

maxi |αi|

mini |αi|
≈ 105,

in this example.

The polynomial root solver MultRoot is called with the function

multroot(poly,threshold)

where poly is the vector of the coefficients of the polynomial whose roots are
to be computed, and threshold is the value of the threshold, below which the
singular values of a matrix are assumed to be zero. If this argument is omitted,
it is assigned a default value of 10−10. There are two other input arguments, a
threshold for the singular values that are defined to be zero and a parameter
that controls the growth of the residuals in the GCD computations, but these
two arguments are optional.

Bini and Fiorentino developed the multiprecision polynomial root solver MP-

Solve [2]. The algorithm that is implemented in this root solver is based on
a sequence of nested sets that contain the roots of the polynomial. The algo-
rithm is particularly suitable for sparse polynomials or polynomials that are
generated by straight line programs. 2 The polynomial p(y) whose roots are

2 A straight line program is a sequence of arithmetic assignments to new variables,
where the operands are constants, previously assigned variables, indeterminates or
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to be computed is assumed to be exact, and provision is not made for errors
in the coefficients of p(y). The polynomial root solver described in this paper
is explicitly designed to compute multiple roots in the presence of noise, and
thus a comparison of the results obtained by MPSolve and the polynomial
root solver described in this paper is not valid.

The three examples in this section compare MultRoot and the polynomial
root solver described in this paper, and noise is added to the coefficients of
the polynomials, as described above. The examples show that differences exist
between these two root solvers in this circumstance. It is noted, however, that
they return identical results in the absence of added noise.

Example 6.1 Noise with componentwise signal-to-noise ratio ε−1
i , where εi

is a uniformly distributed random variable in the interval [10−9, 10−7], was
added to the coefficients of the polynomial

f̂(y)= (y + 9.7177)2(y + 5.7885)2(y + 4.5993)3(y + 6.8623)4 ×

(y − 1.9438)4(y − 5.6878)5,

as shown in (30), thereby yielding the polynomial f(y). The computed roots
of f(y) are shown in Table 1, where the first two columns show the exact
roots and their multiplicities, and the last three columns show the computed
roots, the computed multiplicities and the relative errors in the computed
roots. It is seen that the multiplicities of the roots of f̂(y) are preserved
in the roots of f(y), and that the largest relative errors occur for the roots
{−4.5993,−5.7885,−6.8623,−9.7177}, which is expected because these roots
are closely spaced. Likewise, the smallest relative errors occur for the roots
{1.9438, 5.6878} because these roots are well separated from the other roots.

exact root exact computed root computed relative error

mult. mult.

-9.7177 2 -9.71864125 2 9.68588764e−05

-5.7885 2 -5.78993616 2 2.48105234e−04

-4.5993 3 -4.59916523 3 2.93012847e−05

-6.8623 4 -6.86127489 4 1.49383132e−04

1.9438 4 1.94380036 4 1.84824181e−07

5.6878 5 5.68779415 5 1.02806795e−06

Table 1: The results of Example 6.1.

constants, and the operator is addition, multiplication, subtraction or division.
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The roots of f(y) were then computed using MultRoot for the values

threshold =
{

10−9, 10−8, 10−7, 10−6
}

, (31)

and the computed roots were almost independent of the value of threshold.
The values of threshold stated in (31) were selected because they span the
range of values of εi. A typical set of computed roots is shown in Figure 2,
and it is seen that simple roots were returned, that is, the multiple nature of
the roots of f̂(y) is not preserved in the roots of f(y). �
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Fig. 2. The roots of f(y) computed by MultRoot for Example 6.1.

Example 6.2 The procedure described in Example 6.1 was repeated for the
polynomial,

f̂(y) = (y + 5.8308)3(y + 4.5941)5(y − 7.060)6(y − 7.4785)7,

and the results from the polynomial root solver considered in this paper are
shown in Table 2, where the columns show the exact roots, their multiplic-
ities, the computed roots, their multiplicities, and the relative errors in the
computed roots. It is clear that the multiple nature of the exact roots of f̂(y)
has been retained in the computed roots of f(y). The results in the table
are similar to the results in Table 1 because the relative errors of the closely
spaced roots, {7.0600, 7.4785}, are O(10−6), but the relative errors of the well
separated roots, {−4.5941,−5.8308}, are smaller. It is also noted that the
multiplicities of the closely spaced roots are larger than the multiplicities of
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the well separated roots, and this difference also contributes to the differences
in the relative errors of the computed roots.

exact root exact computed root computed relative error

mult. mult.

-5.8308 3 -5.83079995 3 9.10861928e−09

-4.5941 5 -4.59410012 5 2.70268815e−08

7.0600 6 7.06000635 6 9.00016803e−07

7.4785 7 7.47849411 7 7.87925358e−07

Table 2: The results of Example 6.2.

The roots of f(y) were then computed by MultRoot, using the values of
the parameter threshold in (31). In all cases, MultRoot returned simple
roots, and the computed roots showed very little variation with the value of
threshold. A typical set of computed roots is shown in Figure 3, and it is
seen that cluster analysis would suggest there are three distinct roots because
the roots {7.0600, 7.4785} have merged. �
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Fig. 3. The roots of f(y) computed by MultRoot for Example 6.2.

Example 6.3 Noise with componentwise signal-to-noise ratio ε−1 = 108 was
added to the coefficients of the polynomial
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f̂(y)= (y − 2.6911× 10−3)3(y + 77.785)4(y − 2.1469× 10−2)3 ×

(y − 7.7952)2(y + 1.8629× 102)2(y + 3.7298× 10−2)2,

thereby yielding the polynomial f(y). The roots of f̂(y) span about five orders
of magnitude, and their computed values are shown in Table 3. The multiple
nature of the roots of f̂(y) is preserved in the computed roots, and the relative
errors in the roots are approximately equal to, or less than, ε, which shows
that the computed roots are acceptable.

The roots of f(y) were computed by MultRoot for the values of threshold
defined in (31). The program returned simple, and therefore incorrect, roots,
for threshold < ε, but the correct roots and multiplicities were returned for
threshold ≥ ε. This must be compared with the results shown in Table 3,
which did not require the specification of a threshold. 2

exact root exact computed root computed relative error

mult. mult.

-1.8629e+02 2 -1.86290015e+02 2 8.20301293e−08

-3.7298e−02 2 -3.72980000e−02 2 3.34291232e−10

7.7952e+00 2 7.79519991e+00 2 1.10662241e−08

2.6911e−03 3 2.69110007e−03 3 2.60706889e−08

2.1469e−02 3 2.14689999e−02 3 3.58568239e−09

-7.7785e+01 4 -7.77849973e+01 4 3.41004828e−08

Table 3: The results of Example 6.3.

The results of Example 6.3 are typical of many other results, and they therefore
illustrate an important difference between MultRoot and the polynomial
root solver described in this paper.

7 Summary

This paper has described the implementation of a polynomial root solver ex-
plicitly designed for the computation of multiple roots of a polynomial in the
presence of noise. In this polynomial root solver, the multiplicities of the roots
are computed initially, and they are then used as constraints for the compu-
tation of the values of the roots. This polynomial root solver contains GCD
computations and polynomial deconvolutions, both of which are ill-posed op-
erations, and it was shown that structured matrix methods allow computa-
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tionally reliable solutions to these operations to be obtained. It was shown that
the method used in the polynomial root solver has a geometric interpretation
in terms of the pejorative manifolds of a polynomial that has multiple roots.
Structured and unstructured condition numbers of a multiple root of a poly-
nomial were considered, and it was shown that the differences between them
explain the good results obtained from the polynomial root solver described
in this paper, and the poor results obtained from polynomial root solvers that
do not make provision for multiple roots.

The Matlab software that was used to obtain the results in this paper can
be obtained by contacting the author.
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