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Abstract

The analysis of shape is a key part of anatomical research and in the large majority of cases landmarks provide

a standard starting point. However, while the technology of image capture has developed rapidly and in

particular three-dimensional imaging is widely available, the definitions of anatomical landmarks remain

rooted in their two-dimensional origins. In the important case of the human face, standard definitions often

require careful orientation of the subject. This paper considers the definitions of facial landmarks from an

interdisciplinary perspective, including biological and clinical motivations, issues associated with imaging and

subsequent analysis, and the mathematical definition of surface shape using differential geometry. This last

perspective provides a route to definitions of landmarks based on surface curvature, often making use of ridge

and valley curves, which is genuinely three-dimensional and is independent of orientation. Specific definitions

based on curvature are proposed. These are evaluated, along with traditional definitions, in a study that uses a

hierarchical (random effects) model to estimate the error variation that is present at several different levels

within the image capture process. The estimates of variation at these different levels are of interest in their

own right but, in addition, evidence is provided that variation is reduced at the observer level when the new

landmark definitions are used.
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Introduction

Biological shape is a topic of considerable scientific interest

that has a very long history and that has many applications

across the range of biological species. In terms of measure-

ment, anatomical landmarks have been the basis of quanti-

tative assessment and modelling of shape since the

pioneering work of Thompson (1963, originally published

in 1917) and Martin & Saller (1957). The identification of

points that are well-defined and have anatomical meaning

allows shape to be characterised in a manner that corre-

sponds across subjects and that therefore provides the basis

of subsequent statistical analysis. Bookstein (1991) and Dry-

den & Mardia (1998) give detailed descriptions of a very

substantial body of methods that are now available for rou-

tine use and that have had an enormous influence in

anthropological and medical studies from many different

application areas. In particular, these methods allow a

proper analysis of shape, expressed in the complete three-

dimensional configuration of landmarks, rather than reduc-

ing the information to particular distances and angles

between selected landmarks. Shape is broadly defined as

the information that remains after location, orientation,

and possibly also scale, have been removed.

For the important application area of the human face,

detailed definitions of landmarks were provided by Farkas
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(1994) and this remains a standard reference. However,

many of these definitions are given in terms of two-dimen-

sional views. This was entirely appropriate when visual

inspection, or two-dimensional photographic or X-ray

images, provided the starting point, but there are signifi-

cant difficulties associated with this approach. A major issue

is the requirement to place the head in an orientation that

gives well-defined meaning to, and reproducible identifica-

tion of, the landmarks of interest. A common approach is

to use the Frankfurt horizontal plane, which is defined in

terms of three anatomical landmarks: left orbitale and left

and right porion. The left orbitale, lies at the lowest points

of the eye sockets, but this is defined by bone and so esti-

mation is made more difficult by the soft tissue that is

superimposed. The left and right porion lie at the upper

perpendicular projection onto the soft tissue at the external

end of the ear canal. All these locations require careful

training to identify, and however well this is done some

error is inevitable. The use of the left, but not right, orbitale

immediately creates difficulties as a result of asymmetry.

This could be addressed by the use of both orbitale but

since a plane requires only three points for mathematical

definition, the use of four must necessarily involve some

compromise. The difficulty is that quite a number of other

important landmarks, for example on the nose tip and chin,

then take their definitions from this planar reference. In

addition, a further vertical planar reference is required and

the mid-sagittal plane is commonly used for this. The defini-

tion of this plane is based on the landmarks that lie on the

mid-line of the face, which again leads to the difficulty of

estimating landmarks before this plane is in place, as well as

compromising across multiple landmarks.

Weber & Bookstein (2011) address some of these issues by

taking a three-dimensional perspective in the context of

the skull, where landmarks can be categorised by their rela-

tionship to broader features of the skull. For example, some

landmarks lie at the crossing point of three-dimensional

curves, such as the intersection of a ridge curve with the

mid-line curve lying in the mid-sagittal plane. This type of

thinking clearly extends to the face, although the pliable

nature of soft tissue makes identification in practice more

problematic.

The aim of the present paper is to propose new defini-

tions of facial landmarks that are not dependent on the ori-

entation of the head. These are based on three-dimensional

surface characteristics and the key information used to char-

acterise landmarks is curvature. This refers in general to the

local shape of the facial surface but, following Weber &

Bookstein (2011), anatomical curves across the face can also

often provide key characteristics that inform landmark defi-

nitions.

The approach is interdisciplinary, providing insights from

biology, clinical use, computer vision, differential geometry

and statistical analysis. Good landmark definitions require

the relevant information to be readily identifiable, with

good intra- and inter-person reproducibility. These also

need to apply to different imaging modalities such as

stereophotogrammetry and laser scanning.

In ‘Biological and clinical perspectives’, the manner in

which the scientific and clinical questions underlying the

need for data collection and analysis inform the process of

definition is discussed. The issues associated with imaging

technology and computer vision are discussed in ‘Imaging

perspective’. This leads in ‘A geometrical perspective’ to a

discussion of curvature from the perspective of differential

geometry and to specific new definitions of anatomical

landmarks on the face. A study of reproducibility of land-

mark identification based on these definitions is reported in

‘Validation study’ where the variations present at multiple

levels of the imaging process are identified and where some

evidence of reduced inter-observer variation with the new

landmark definitions is apparent. Some final discussion is

given in ‘Discussion’.

Biological and clinical perspectives

There are many reasons why the study of human facial

shape is of interest. Two particular examples, involving

issues of biological development and the need to assess the

outcome of facial surgery, are described below in order to

highlight the wide range of motivations for interest in

facial shape and to identify issues that can inform the selec-

tion, definition and identification of anatomical landmarks.

The origins of schizophrenia

In the early embryological stages of human development,

the anterior brain and the face are very closely connected.

As a result, disorders of early brain development can be

associated with facial dysmorphology. The origins of

schizophrenia provide a particular example. A specific study

is described by Hennessy et al. (2007), who used three-

dimensional laser surface imaging to capture the facial sur-

face of patients who satisfied DSM-IV criteria for

schizophrenia, in comparison with control subjects. Twenty-

six anatomical landmarks were manually identified on each

facial surface image. Interpolation using thin-plate splines

was then used to generate a larger number of surface

points (semi-landmarks) for analysis. The aim was to identify

aspects of facial shape that distinguish schizophrenia

patients from controls, and both male and particularly

female patients showed evidence of significant facial dys-

morphology. This included a narrowing and reduction of

the mid/lower face and fronto-nasal prominences, with

reduced width and posterior displacement of the mouth,

lips and chin in particular. There was also evidence of

increased width of the upper face, mandible and skull base,

with lateral displacement of the cheeks, eyes and orbits,

and anterior displacement of the superior margins of the

orbits. The conclusion was that the fronto-nasal prominence
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has a characteristic topography that is associated with

schizophrenia. The fact that this is precisely the area of the

face that has the closest embryological relationship with

the anterior brain points to possible common early develop-

mental perturbation. In a related study, Prasad et al. (2015)

analyse the facial dysmorphology associated with 22q11.2

deletion syndrome (velocardiofacial syndrome, associated

with high risk for psychosis) and compare this with that of

schizophrenia.

Assessing the outcome of facial surgery

In a very different setting, facial surgery aims to alter an

existing facial shape, usually to address the effects of

trauma or of congenital issues. For example, cleft-lip and/or

palate is one of the commonest forms of facial disfigure-

ment in children, and there have been a variety of initia-

tives to assess the effectiveness of surgical repair. This

includes the study described by Hood et al. (2003) where

the facial shapes of 3-month-old infants exhibiting unilat-

eral clefts and non-cleft controls of the same age were com-

pared. Images of these children were also captured at

6 months and 1 year old, after surgical correction of the

cleft cases. Particular interest lay in the degree of facial

asymmetry, quantified by the mismatch between manually

identified anatomical landmarks and their reflections, after

Procrustes registration, as described by Bock & Bowman

(2006). Control asymmetry scores showed no evidence of

change across time, while the cleft groups displayed imme-

diate reduction after surgery, followed by moderate

improvement over time.

These examples underline the central role of anatomical

landmarks in quantifying shape in general and important

derived measures such as asymmetry in particular. The accu-

racy and reproducibility of landmarks is therefore of high

importance as variation here will be transmitted to subse-

quent analysis. This strengthens the need to reconsider the

definitions of landmarks, to overcome the difficulties associ-

ated with two-dimensional perspectives and to take advan-

tage of the direct three-dimensional surface information

available.

Imaging perspective

The relatively recent advent of three-dimensional surface

imaging methods provides rich and complete representa-

tions of surface shape. However, the accuracy of subsequent

landmarking will clearly be highly influenced by the accu-

racy of the underlying surface. Some approaches to three-

dimensional imaging are outlined here, with particular

focus on the accuracy that can be achieved.

Stereo-camera systems capture the image of an object

from two or more viewpoints in a synchronised manner.

The main advantages of this type of system are the short

capture time and the wide range of environments in which

they can operate. The three-dimensional reconstruction is

performed offline at a high computational cost but with

the availability of high-quality cameras this approach can

reach very high accuracy, up to 0.1 mm. Structured light

approaches project two-dimensional patterns of light onto

the object of interest and this can achieve high accuracy, up

to 0.3 mm, but these systems are sensitive to lighting condi-

tions. Boehnen & Flynn (2005) and Al-Khatib (2010) docu-

ment the details of these and other approaches.

Laser methods project a beam of light (spot or stripe)

onto the object of interest and extract three-dimensional

information by triangulation from the image captured by a

camera. Convenient, hand-held versions of this technology

are now available. This approach is characterised by low

computational cost, longer capture time and size limitation,

but the accuracy achieved is very high, up to 0.05 mm

(Boehnen & Flynn, 2005; Sansoni et al. 2009).

The Shape from X approaches, where X may refer to Tex-

ture, Defocus or Shading, use only one view from a single

camera. However, the three-dimensional surface has to be

inferred through information on orientation and so these

approaches are not well suited for applications requiring

high accuracy and resolution (Moons et al. 2009; Sansoni

et al. 2009; Pears et al. 2012).

Beyond the intrinsic accuracy of the imaging system,

there are many other levels at which variation may be pre-

sent. These include the facial expression of the subject, the

lighting conditions and other environmental factors of the

image capture session that may affect the quality of the

reconstruction. It is important to develop a good protocol

and adhere to this during image capture so that the effects

of these different sources of variation can be contained as

far as possible. However, even where high-quality images

have been captured there are additional issues associated

with the subsequent identification of anatomical land-

marks. In manual identification, the human visual percep-

tion system plays a central role. While this system is highly

attuned to some aspects of shape, the accurate location of

individual points is a less common task for which training

and experience is required. A statistical model to assess the

size of the variabilities in landmark identification, at all

these different levels, is discussed in the context of a valida-

tion study described in ‘Validation study’. However, as dis-

cussed briefly in the Introduction above, clear and

unambiguous definitions are an essential starting point,

and new proposals for these are made in the following sec-

tion.

A geometrical perspective

The critical importance of landmarks in providing key infor-

mation on three-dimensional shape was emphasised in ‘Bio-

logical and clinical perspectives’, while the difficulties

associated with standard definitions of landmarks, involving

careful orientation and two-dimensional perspectives, was
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highlighted in the Introduction. A potential solution is

available through the mathematical characterisation of

local surface shape. This provides quantifiable measures of

shape that are fully three-dimensional and independent of

orientation. The details of this approach, and consequent

proposals for new definitions of landmarks, are developed

in this section.

The classical geometry of surfaces is well understood.

Koenderink (1990) gives a wide-ranging and thorough

introduction, while Koenderink & van Doorn (1992) provide

a very accessible summary of the main ideas, including

those sketched below. The key concept is that the local

shape at almost all points on a surface can be represented

in the form

z ¼ 1

2
ðj1x2 þ j2y

2Þ;

where z lies in the ‘normal’ (perpendicular) direction to

the surface and the orthogonal axes x and y lie on the

‘tangent plane’. The axes x and y correspond to the

directions of maximum and minimum curvature (rate of

bending) of the surface. The values of these maximum

and minimum curvatures, known as principal curvatures

are j1, j2, where by convention j1 � j2. Note that the

axes x, y and z are defined locally around the current

surface point of interest and these axes will change as

the point of interest is moved.

It is the principal curvatures, which are independent of

the location and orientation of the surface, which provide

the essential characterisation of local shape. In particular, a

shape index can be defined as

S ¼ 2

p
tan�1 j2 þ j1

j2 � j1

� �
;

where tan�1 denotes the inverse tan function. The pur-

pose of this index is to characterise local surface shape

in a systematic and interpretable manner. Values of S
close to �1 indicate a ‘spherical cup’ shape where the

curvatures j1 and j2 are positive and very close to one

another. As S increases, the corresponding surfaces bend

smoothly through ‘trough’ and ‘rut’ shapes, towards a

‘saddle’ that is most pronounced at S ¼ 0. As S increases

through the positive half of the scale, this process is

reversed until a ‘spherical cap’ is produced. This is the

converse of the original ‘spherical cup’, now with nega-

tive rather than positive values of the principal curva-

tures j1 and j2. Koenderink & van Doorn (1992) describe

the types of shape that are exhibited along this contin-

uum, together with the corresponding ranges of S,
appropriate verbal descriptors and associated colour

codes. These are shown in the left hand side Fig. 1,

which is modelled on Fig. 5 of Koenderink & van Doorn

(1992). An appealing feature of the shape index is that

it is influenced only by the relative sizes of j1 and j2. If

each curvature is multiplied by the same constant then

the shape index remains unaltered. This reflects the fact

that the intrinsic shape of each feature, such as a spheri-

cal cup for example, is unchanged by whether this cup is

shallow or deep.

The upper facial images in Fig. 1 show the locations of a

set of traditional anatomical landmarks, while the lower

image is coloured by the value of the shape index, con-

structed by the simple device of fitting a quadratic surface

to the surface points within a 1 cm radius of each surface

location. It is clear that these colours track the major fea-

tures of the face, such as the caps and domes of the nose

tip and chin, the ruts of the mouth and around the nose

and eyes, and the ridges of the nose and lips. (The stippled

patterns across the cheeks and forehead are artefacts of the

reconstruction algorithm that sometimes occur on flat sur-

faces.) An appealing approach to defining landmarks is

therefore to characterise them by their location with

respect to these large-scale features. Specifically, this

requires the identification of a set of anatomical curves

which track the ridges and ruts of the facial surface. Land-

marks can then be characterised as locations where these

curves bend most strongly, such as alare crest where the

ridge along the alar section of the nose meets the paranasal

area, or where two curves cross, such as endocanthion

where the upper and lower eyelid curves meet. The use of

anatomical curves is helpful as an intermediary step as it is

easier to identify the pattern of a large-scale feature than

to focus immediately on a single point location.

This approach requires the definition of a set of anatomi-

cal curves across the face. Proposed definitions are given in

Table 1 and displayed on the lower facial image in Fig. 1. In

interpreting these definitions, it is helpful first to give some

explanation of how curves can be characterised from the

values of the surface shape index. In practice, most obser-

vers find it relatively straightforward to locate the line of a

ridge on a surface, but a precise mathematical definition

requires a little care. Informally, a ridge is defined as a con-

tinuous set of points, each of which has a shape index

appropriate to a ridge point and which locally has a stron-

ger ridge shape index than neighbouring values that are at

right angles to the direction of the ridge at that location. A

rut has a similar definition, using a different section of the

shape index scale. Ridges and ruts are the most common

features of interest, but sometimes these disappear before

reaching the end points of interest. For example, this can

happen with the ridges of the philtrum, in which case it is

convenient to define the continuation of a curve. This can

be characterised as the set of points that follow on continu-

ously across the surface, either in the same direction as the

last identifiable direction of the curve or towards some

other location of interest or to the closest point on another

curve. An example is the brow ridge that is extended in

Fig. 1 towards tragus in the ear. (Curves on the ears have
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not been displayed on Fig. 1 because this region is often

subject to inaccuracy in frontal imaging systems and

anatomical interest is most often directed towards the cen-

tral regions of the face. When the ears are of interest, it

may be more advisable to target the imaging of this region

directly.)

In the subsequent definition of landmarks, the crossing of

two curves is a simple concept, but the idea of the curvature

of a curve, referred to as geodesic curvature, merits a little

more consideration. An intuitive characterisation is simply

how quickly a curve bends at each point on its path. How-

ever, for the record, this can be given a precise definition as

jðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 0y 0 � y 0 0z0Þ2 þ ðx0 0z0 � z0 0x0Þ2 þ ðy 0 0x0 � x0 0y 0Þ2

q

ðx02 þ y 02 þ z02Þ32
;

ð1Þ

where x, y, z describe how the co-ordinates of the curve

change as we travel along it. Specifically, x, y, z are func-

tions of s that represent the distance of a particular

point along the curve from start to finish. The quantities

x0, y 0, z0, x0 0, y 0 0, z0 0 denote the first and second deriva-

tives of these functions (see Koenderink, 1990 for

details).

Tables 2 and 3 below propose new definitions of anatom-

ical landmarks based on points of maximum curvature

along curves and on the crossing of curves. In the tables,

each landmark has two definitions; the first (in italics) is the

traditional one, following Farkas (1994), while the second

(in normal font) is the new proposal. For ease of reference,

the landmarks are ordered in a superior–inferior direction.

The definitions in Tables 2 and 3 assume an image of a

subject whose mouth is closed and whose eyes are open. In

cases where stomion is affected by incomplete labial seal,

this landmark will have to be split into upper and lower ver-

sions based on judgement of the point of contact with a

complete labial seal. Of course, this issue applies to any defi-

nition of stomion. In cases where the eyes are closed, as

commonly occurs with laser scan images, endocanthion and

exocanthion are unavailable. An alternative is ektokon-

chion whose traditional definition is ‘the point of

–1
–7

/8
–5

/8
–3

/8
–1

/8
1/

8
3/

8
5/

8
7/

8
1

S
ph

er
ic

al
cu

p
Tr

ou
gh

R
ut

S
ad

dl
e 

ru
t

S
ad

dl
e

S
ad

dl
e 

rid
ge

R
id

ge
D

om
e

S
ph

er
ic

al
ca

p

Fig. 1 The left-hand column of plots shows

the local surfaces associated with the shape

index on the scale from �1 to 1, with colour

coding to identify each shape category. The

top two facial images show the location of

manually identified landmarks. The bottom

images are coloured by the value of the

shape index, and have the landmarks and

anatomical curves superimposed.
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intersection of the lateral orbital margin and a transverse

axis parallel with the upper orbital border, dividing the

orbit in an upper and a lower half’. An adaptation to the

new curve-based definitions is ‘the crossing of the

extensions of the inferior orbital and brow ridge curves’.

Although Tables 2 and 3 cover the majority of the princi-

pal facial landmarks, many others can be defined. One

example is pogonion whose orientation-based definition is

‘the most anterior mid-point of the chin’. An adaptation to

the new curve-based definitions could be ‘the point of max-

imal curvature on the mid-line chin curve’. However, it has

to be recognised that in some subjects this can be a very flat

region where a point of maximal curvature may be very

difficult to identify. A role for definitions relative to other

landmarks, for example ‘the point on the mid-line chin

curve that lies furthest from a line connecting sublabiale

and gnathion’, may therefore remain. Similarly, flatness of

the alar curve may make the identification of alare prob-

lematic, in which case it can be regarded as coincident with

alare crest, which is indeed what happens using the tradi-

tional definitions.

It should be noted that the old and new definitions in

Tables 2 and 3 do not necessarily correspond to the same

anatomical locations. In many cases they are coincident,

with the curve-based definition aiming to provide a more

robust definition, but in some cases, such as sellion, the

Table 1 Definitions of anatomical curves.

Anatomical curves

Brow ridge Ridge points at the supra-orbital region of the forehead

Inferior orbital Rut points immediately below the lower eyelids

Lower/upper eye lid The superior and inferior edges of the palpebral fissure

Alar Ridge points on the lateral extension of the nasal cartilage

Philtrum ridge Ridge points immediately lateral to the mid-line philtrum

Labial seal Rut points where the upper and lower lips meet

Lower/upper lip Ridge points along the lower/upper lip

Ear rim Ridge points on the peripheral boundary of the ear cartilage, constituting the helix and the ear lobe

Tragus Ridge points on the rim of the tragus, terminating with the superior and inferior points of

maximum curvature at the margins of the tragus

Mandible Ridge points across the entire mandible (lower jaw)

Mid-line nasal profile Ridge points from the nasal root along the dorsum of the nose and the columella

Mid-line philtrum Rut points between the columella and the upper lip

Mid-line upper lip The continuation of the philtrum curve to the closest point on the labial seal curve

Mid-line lower lip The continuation of the mid-line upper lip curve to the closest point on the lower lip curve

Mid-line mentolabial The continuation of the mid-line lower lip curve to the closest point of the mentolabial sulcus (rut)

Mid-line chin The continuation of the mid-line mentolabial curve to the closest point on the mandible curve

Table 2 Landmarks defined on single curves. In each case, traditional definitions are given in italics and the new definitions in normal font.

Landmarks on single curves

Sellion The most posterior point of the frontonasal soft tissue contour in the midline of the base of the nasal root

The point of maximal curvature of the mid-line nasal profile curve at its nasal root end

Subnasale The point where the nasal septum merges with the upper cutaneous lip in the mid-sagittal plane

The point of maximal curvature on the mid-line curve at the base of the nasal septum

Alare The most lateral point on each alar contour

The point of maximal curvature along the alar curve

Alare crest The facial insertion of each alar base

The point of maximum curvature on the alar curve where this meets the paranasal area

Cheilion The point located at each labial commissure

The point of maximum curvature at the lateral end of the labial seal curve

Sublabiale The most posterior mid-point on the labiomental soft tissue contour that defines the border between

the lower lip and the chin

The point of maximal curvature in the mid-line curve as it passes through the mentolabial sulcus

Tragion The point located at the upper margin of each tragus

The point of maximum curvature at the superior end of the tragus curve

Otobasion inferius The point of attachment of the ear lobe to the cheek, which determines the lower border of the ear insertion

The final point at the preauricular end of the ear rim curve.

© 2015 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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orientation and curve-based definitions may identify

different points. There is no intrinsic difficulty with that as

the two definitions have different but equally valid inter-

pretations. However, it is worth checking that the curve-

based definitions are workable and effective. A validation

study to address this is described in ‘Validation study’ but a

small initial exploration based on sellion is reported here.

This involved the numerical identification (using a computa-

tional algorithm) of the point of maximal curvature on the

mid-line nasal profile curve and its superior extension for 91

facial images. Each curve was represented in co-ordinate

form as x(s), y(s), z(s), where s is arc length as described at

(1), using the method of p-splines (Eilers & Marx, 1996),

which includes smoothing, here using 8 degrees of free-

dom, to reduce the effect of surface noise. Six examples of

the geodesic curvatures obtained from (1) are shown in the

left hand side of Fig. 2. The presence of a dominant peak,

indicated by the blue line, offers reassurance that a

Table 3 Landmarks defined by the crossing of two curves. In each case, traditional definitions are given in italics and the new definitions in normal font.

Landmarks at the crossing of two curves

Exocanthion The soft tissue point located at the outer commissure of each eye fissure

The crossing of the lateral ends of the lower and upper eye lid curves

Endocanthion The soft tissue point located at the inner commissure of each eye fissure

The crossing of the medial ends of the lower and upper eye lid curves

Nasion The mid-point on the soft tissue contour of the base of the nasal root at the level of the frontonasal suture

The point where the brow ridge curves meet the superior extension of the mid-line nasal profile curve

Pronasale The most anterior mid-point of the nasal tip

The crossing of the mid-line nasal profile and alar curves

Crista philtri The point at each crossing of the vermilion line and the elevated margin of the philtrum

The crossing of the upper lip and philtrum ridge curves

Labiale superius The mid-point of the vermilion line of the upper lip

The crossing of the upper lip and mid-line philtrum curves

Stomion The mid-point of the horizontal labial fissure

The crossing of the mid-line upper lip and labial seal curves

Labiale inferius The mid-point of the vermilion line of the lower lip

The crossing of the lower lip and mid-line lower lip curves

Gnathion The most anterior-inferior mid-point of the chin

The crossing of the mid-line chin and mandible curves
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Fig. 2 The left-hand panel shows six examples of curvatures, each as a function of arc length, derived from the mid-line nasal profile curve and

its superior extension. The location of the dominant peak is indicated by the blue line and the location of sellion from the orientation-based defini-

tion by the red dashed line. The right-hand panel plots the locations of sellion from the orientation, and curvature-based definitions on a sample

of 91 subjects, with the dark grey shaded area indicating the region where the differences are < 2 mm.
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definition based on maximal curvature is well founded. The

red dashed lines indicate the corresponding locations

(along arc length) of sellion from manual identification

using the traditional orientation-based definition. In many

cases these are very close, but in some cases there is a sub-

stantial difference. This is indicated for the entire sample in

the plot of the arc length locations derived from the orien-

tation and curvature definitions in the right hand panel of

Fig. 2. This indicates a high concentration around the line

of equality and a small proportion of substantial differ-

ences. Specifically, 70% of points lie with 1 mm and 79% of

points within 2 mm (indicated by the grey shaded region).

A further example of the definitions identifying different

points is provided by gnathion, where the curve-based defi-

nition usually corresponds to a location that is slightly lower

than that based on orientation, as indicated in Fig. 1.

Validation study

A new proposal for landmark definitions requires a valida-

tion study that will quantify the variation that operates

when identification takes place in practice, and allow com-

parison of the orientation and curve-based approaches. Sev-

eral different levels at which variation is present were

identified in ‘Imaging perspective’, and these need to be

reflected in the study design. Figure 3 illustrates the struc-

ture for a single observer of a single subject, where each of

four subjects were imaged twice on each of two different

days. This allows the variation in facial shape between days

and between repeats on the same day to be identified.

Each of the four images was landmarked twice to identify

the variation of repeat landmarking. All the images for

each subject were landmarked by four different people,

two of whom were trained on the orientation-based

definitions and two on the curvature-based definitions.

As usual in the analysis of shape information, the collec-

tion of landmark configurations needs to be registered by

Generalised Procrustes Analysis (GPA). As the repeat land-

marks from the lowest level of the hierarchy refer to the

same images, GPA was applied to the averages of the pairs

lying at the lowest level of Fig. 3 and the translations, rota-

tions and scaling for each average were applied to the indi-

vidual configurations within these pairs to ensure that the

whole collection was appropriately registered.

The hierarchical structure of the study design naturally

leads to a multilevel model where random effects operate

at each level. Pinheiro & Bates (2000) offer a comprehensive

introduction to models of this type. If we consider the

observation made by the observers applying the orienta-

tion-based definitions, and denote by vijklm the measure-

ment recorded by observer i on subject j on day k with

image capture l and repeat m, for a particular landmark in

a particular dimension, then a natural model is

vijklm ¼ lþ oi þ sj þ djk þ cjkl þ rjklm;

where l denotes the mean value of the landmark co-

ordinate over the population and the random effects

are represented by oi, observer i; sj, subject j; djk, day k

for subject j; cjkl, image capture l for day k for subject

j; rjklm, repeat m for image capture l for day k for

subject j.

This allows an adjustment for each observer due to indi-

vidual variation in the interpretation of the definitions, an

adjustment for each subject because of changes in facial

shape from person to person, as well as a nested set of

adjustments to reflect the day/image/repeat hierarchy of

measurements within each subject. All of these terms, apart

from l, are treated as random variables, each with its own

associated standard deviation. These standard deviations

are the parameters of interest as they express the size of

the variation from each source. This type of model is well

understood and is fitted here by maximum likelihood. As

the aim of the exercise is to describe the levels of variation

present, the model was fitted separately for the data from

the observers applying the two different sets definitions.

Subject

Day 1 Day 2

Image 1 Image 2 Image 1 Image 2

Repeat 1 Repeat 2 Repeat 1 Repeat 2 Repeat 1 Repeat 2 Repeat 1 Repeat 2

Fig. 3 The hierarchical structure of the variability for a single observer of a single subject.
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This allows any differential effects of the definitions to be

expressed within any of the random effects involved.

Figure 4 displays the estimated standard deviations for all

the random effects, separately for each landmark in each

dimension, and with the definitions used identified by sym-

bol and colour. The panels in each column show the results

for the x, y and z dimensions, respectively, where x refers to

left-right, y to bottom-top and z to back-front, based on

orientation of the Procrustes mean shape to place the mean

values of the exocanthions along the horizontal axis, and

the mean values of nasion and subnasale vertically. This sim-

ply allows a clear interpretation of the x, y, z co-ordinates.

The subject variation is not of primary interest because we

know that there is substantial natural variation in facial

shape among people. The day and image variations are very

small as expected. The variation in repeat identification is

modest, with little evidence of systematic differences

between the definition groups. (The results for the christa

philtrum landmarks are an exception at image and repeat

levels, with high variation in the x co-ordinate.) The obser-

ver variation is interesting as this quantifies the extent to

which different observers place the landmarks in different

locations. In the case of nasion there is a high level of varia-

tion for both definitions, which is not surprising because of

the intrinsic difficulty in locating this landmark on a rela-

tively flat region. Interestingly, the curvature definition

group shows substantial improvement in variation for

gnathion and alare and modest improvement for several

other landmarks. Table 4 reports the random effect stan-

dard deviations averaged across landmarks and dimensions,

as an overall summary. The reduction in variation at obser-

ver level for the curvature group is marked, from 0.553 to

0.361. With a very small number of observers involved in

the validation study, this cannot be taken as conclusive evi-

dence of a superiority of the curvature-based definitions. It

does, however, offer encouragement for the use of this

approach.

A second small study was carried out for confirmation.

Twenty observers were trained, 10 each on the curvature

and orientation methods, with the larger number of obser-

vers allowing stronger focus on this key effect. The obser-

vers were asked to locate the difficult landmark gnathion

on five subjects, each with two repeat images, but the land-

marks alare crest L/R and crista philtrum L/R were also

located in order to allow Procrustes registration. The curva-

ture method showed a reduction of 13% in observer vari-

ability in the y co-ordinate, where location of gnathion is

most problematic.

For a single landmark identification on one individual,

the relevant measure of reproducibility combines the vari-

observer day image repeat subject
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Fig. 4 Estimated standard deviations at

different levels of variation in identified

landmark locations in x, y and z directions

(mm), separated by the use of orientation-

and curvature-based definitions.
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ability at all the levels shown in Table 4 apart from subject.

Under a working assumption of independence of the

effects across dimensions, simply as a means of providing a

useful summary measure, the average standard deviations

across the landmarks are 1.27 and 1.51 for the curvature

and orientation approaches, respectively. Figure 5 shows a

facial image with spheres whose radii are proportional to

the standard deviations associated with each landmark,

using curvature-based definitions, to give a more informa-

tive picture of the reproducibility

Discussion

The principal aim of this paper has been to propose an

approach to defining facial landmarks that avoids the need

for careful orientation and that properly exploits the three-

dimensional nature of the images that are now routinely

available. Methods of quantifying and classifying three-

dimensional surface shape have provided the key and, in

particular, anatomical curves have proved to give a very

useful basis for the identification of landmarks. This has the

appeal of exploiting the familiar large-scale structure of the

face rather than basing definitions only on the immediate

neighbourhoods of point locations. The majority of stan-

dard landmarks can be defined as points of maximal geode-

sic curvature or as the crossing points of two or more

anatomical curves. A validation study, while can be

regarded only as indicative because of the small number of

observers involved, has nonetheless provided some support-

ing evidence for improvement in reproducibility through

use of the curve-based definitions.

The availability of quantifiable measures of surface shape

leads naturally to the question of the extent to which good

definitions of landmarks might lead to helpful methods of

automatic, rather than manual, identification. There is a

considerable body of work on this topic; see, for example,

C�eliktutan et al. (2013). Some methods aim at exploiting

simple characteristics of the surface, such as curvature (Pam-

plona Segundo et al. 2010) or projections into particular

orientations (Peng et al. 2011), combined with some prior

knowledge about the geometry of the human face. For

example, the nose and chin tips can be considered as

‘peaks’ or ‘caps’ with characteristic curvature indices, while

the eye and mouth corners are ‘pits’ or ‘cups’. The prior

knowledge is often provided as a set of empirical rules that

have been found to achieve satisfactory performance. An

outstanding example is the work by Gupta et al. (2010),

who derived rules based on statistics from anthropometric

studies. These approaches have an attractive directness and

simplicity, once suitable curvature characteristics have been

constructed.

In contrast to the above, other methods use the informa-

tion in sets of previously identified landmarks, and their rel-

ative configurations, to give guidance on the positions of

the landmarks that might reasonably be expected in a new

facial image. This approach seeks to build a statistical or

‘machine learning’ model that could be considered as an

analogue of the ways in which the human brain exploits

previous experience in making judgements about the plau-

sibility of appropriate positions on a new face. Popular

examples of this strategy include statistical shape models

(Perakis et al. 2013; Sukno et al. 2015) and graph matching

(Jahanbin et al. 2008). The construction of appropriate

training sets from which to derive prior distributions for

landmark locations can prove challenging and is a crucial

element of these methods, as the accuracy of these algo-

rithms can be highly sensitive to the quality of the training

landmarks. However, this approach has the advantage of

considerable flexibility, as the rules for locating the land-

marks of interest are implicitly derived in an automatic

manner. As a consequence, these methods are usually able

to target larger subsets of landmarks and cope with arbi-

trary definitions of the points, as long as they are consistent

with the annotations provided.

In terms of performance of automatic landmarking meth-

ods, the best results reported to date indicate average

Table 4 Standard deviation (mm) of random effects, averaged over

all landmarks and dimensions.

Curvature Orientation

Observer 0.361 0.553

Day 0.288 0.323

Image 0.103 0.086

Repeat 0.562 0.587

Subject 1.645 1.670

Fig. 5 Facial image with spheres whose radii are proportional to the

reproducibility of each landmark, using curvature-based definitions.
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errors between 1.5 and 3.5 mm for the most distinctive

facial landmarks. Sukno et al. (2015) is an example of recent

work in this area.

However, the role of anatomical curves in the landmark

definitions discussed within this paper also raises the pro-

spect of using these to characterise faces in a much richer

way than individual point locations. For example, the high-

lighted difficulty in defining and identifying gnathion may

be circumvented by analysis of the entire underlying mid-

line curve that expresses the shape of the whole region.

With suitable methods of statistical analysis this can provide

a rich description of the local anatomy without the need to

identify a single point as a definitive landmark.

Acknowledgements

This work was supported by Wellcome Trust grant (WT086901MA)

to the Face3D research consortium (details available at http://

www.Face3D.ac.uk). None of the authors has any conflicts of inter-

est to declare.

References

Al-Khatib AR (2010) Facial three dimensional surface imaging:

an overview. Arch Orofac Sci 1, 1–8.

Bock M, Bowman, A (2006) On the measurement and analysis of

asymmetry with applications to facial modelling. J Roy Stat

Soc Ser C-Appl Stat 55, 77–91.

Boehnen C, Flynn P (2005) Accuracy of 3d scanning technologies

in a face scanning scenario. In: 3-D Digital Imaging and

Modeling, 2005. 3DIM 2005. Fifth International Conference

on, pp. 310–317. IEEE.

Bookstein F (1991) Morphometric Tools for Landmark Data:

Geometry and Biology. Cambridge: Cambridge University Press.

C�eliktutan O, Ulukaya S, Sankur B (2013) A comparative study

of face landmarking techniques. EURASIP J Image Video Proc

2013, 13.

Dryden IL, Mardia K (1998) Statistical Shape Analysis. New York:

Wiley.

Eilers P, Marx B (1996) Flexible smoothing with b-splines and

penalties. Stat Sci 11, 89–102.

Farkas L (1994) Anthropometry of the Head and Face, 2nd edn.

New York: Raven Press.

Gupta S, Markey MK, Bovik AC (2010) Anthropometric 3d face

recognition. Int J Comp Vis 90, 331–349.

Hennessy R, Baldwin P, Browne D, Kinsella A, Waddington J

(2007) Three-dimensional laser surface imaging and geometric

morphometrics resolve frontonasal dysmorphology in

schizophrenia. Biol Psych 61, 1187–1194.

Hood C, Bock M, Hosey M, Bowman A, Ayoub A (2003) Facial

asymmetry – 3d assessment of infants with cleft lip and

palate. Int J Paed Dent 13, 404–410.

Jahanbin S, Bovik AC, Choi H (2008) Automated facial feature

detection from portrait and range images. In: Image analysis

and interpretation, 2008. SSIAI 2008. IEEE southwest sympo-

sium on, pp. 25–28. IEEE.

Koenderink J (1990) Solid Shape, Vol. 2. Cambridge: Cambridge

University Press.

Koenderink J, van Doorn A (1992) Surface shape and curvature

scales. Image vis comp 10, 557–564.

Martin R., Saller K (1957) Lehrbuch der Anthropologie in Sys-

tematischer Darstellung. Stuttgart: G. Fischerer.

Moons T, Van Gool L, Vergauwen M (2009) 3d Reconstruction

from Multiple Images: Part 1: Principles. Foundations and

Trends in Computer Graphics and Vision: 4, 287–404.

Pamplona Segundo M, Silva L, Bellon ORP, Queirolo CC (2010)

Automatic face segmentation and facial landmark detection

in range images. Syst Man Cybernet B: Cybernet IEEE Trans 40,

1319–1330.

Pears N, Liu Y, Bunting P (2012) 3D Imaging, Analysis and Appli-

cations. New York: Springer.

Peng X, Bennamoun M, Mian AS (2011) A training-free nose tip

detection method from face range images. Patt Recog 44,

544–558.

Perakis P, Passalis G, Theoharis T, Kakadiaris IA (2013) 3d facial

landmark detection under large yaw and expression varia-

tions. Patt Anal Mach Intell, IEEE Trans 35, 1552–1564.

Pinheiro JC, Bates DM (2000) Mixed-Effects Models in S and S-

PLUS. New York: Springer.

Prasad S, Katina S, Hennessy RJ, Murphy KC, Bowman AW,

Waddington JL (2015) Craniofacial dysmorphology in

22q11.2 deletion syndrome by 3d laser surface imaging and

geometric morphometrics: illuminating the developmental

relationship to risk for psychosis. Am J Med Genet 167A,

529–536.

Sansoni G, Trebeschi M, Docchio F (2009) State-of-the-art and

applications of 3d imaging sensors in industry, cultural her-

itage, medicine, and criminal investigation. Sensors 9, 568–

601.

Sukno FM, Waddington JL, Whelan Paul F (2015) 3d facial land-

mark localization with asymmetry patterns and shape regres-

sion from incomplete local features. IEEE Trans Cybernet 45,

1717–1730.

Thompson D (1963) On Growth and Form. Cambridge:

Cambridge University Press.

Weber GW, Bookstein FL (2011) Virtual Anthropology: A Guide

to a New Interdisciplinary Field. New York: Springer.

© 2015 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

Definitions of three-dimensional landmarks, S. Katina et al. 11

http://www.Face3D.ac.uk
http://www.Face3D.ac.uk

