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Abstract 

The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar 
cell is carried out using two complementary approaches: atomistic simulation of the TiO2 
nanoparticle surface is complemented by a dielectric continuum model of the solvent-
semiconductor interface. The two methods are employed to characterise the bound (excitonic) 
states formed by the interaction of the electron in the semiconductor with a positive charge 
opposite the interface. Density-functional theory calculations show that the excess electron in 
TiO2 in the presence of a counterion is not fully localised but extends laterally over a large 
region, larger than system sizes accessible to DFT calculations. The numerical description of 
the excess electron at the semiconductor-electrolyte interface based on the continuum model 
shows that the exciton is also delocalised over a large area: the exciton radius can have the 
values from tens to hundreds of Ångströms, depending on the nature of the semiconductor 
(characterised by the dielectric constant and the electron effective mass in our model). 

1. Introduction 

Excess electrons in semiconducting oxides play a role in many processes, from dye-sensitised 
solar cells (DSSC) to photocatalysis and electron transport within nanostructured films. In 
particular, DSSCs harvest solar radiation thanks to a chromophore adsorbed on the surface of 
a photoanode made of semiconductor (e.g. TiO2) nanostructures (nanoparticles or others). 
The chromophore, upon photoexcitation, injects an excess electron into the TiO2 conduction 
band (CB) (this step competes with the quenching of the excited state by thermal relaxation 
to the dye ground state or singlet-triplet conversion). The interaction of the injected electron 
with the oxidised molecule across the semiconductor surface generates a charge transfer 
exciton (CTE) [1] [2]. The CTE can subsequently dissociate into free charge carrier in the 
semiconductor and localised hole on the chromophore or otherwise recombine with the 
oxidised dye or another electron acceptor species present in solution. To generate electricity, 
the free charge carrier then migrates across the semiconductor substrate [3] to the external 
circuit, and finally reaches the counter-electrode to promote the regeneration of the active 
electrolyte species and to regenerate the photoactive component. 

Thus, a charge transfer exciton at the interface between the semiconductor and the 
electrolyte solution is one of the key structures in DSSCs: a positive dye cation is always 
present in the process of charge injection and recombination in DSSC; there is also the 
interaction between excess electrons in the semiconductor and ions in the electrolyte solution. 
Therefore knowing about their electronic states is a prerequisite for studying the interface 
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charge dynamics. Excess electrons and CTEs are also important in such applications as 
photocatalysis where photogenerated electrons and holes are transferred to donor and 
acceptor species [4] [5], and in biosensors where the semiconductor is in contact with an 
electrolyte solution [6]. In all these cases it is important to know if  there are surface trap 
states induced by the presence of the ions. 

CTEs are important beyond the semiconductor-electrolyte interfaces and can be found, for 
example, in organic photovoltaics [7]. We note that the situation is somewhat different in 
perovskite solar cells: free charge carriers rather than excitons were found to dominate in 
photoexcited perovskites [8]. The effective masses for both electron and hole in lead halide 
perovskites are very small [9], suggesting that the positive charge left on the perovskite may 
not be localised enough to sustain a charge transfer exciton. 

The interaction between excess electrons in the semiconductor and ions in solution has 
been proposed as a possible origin for shallow trap states exponentially distributed below the 
CB minimum [10]. Shallow traps were reported to occur in anatase but not in rutile [11], 
which was tentatively assigned to differences in solvent (water) adsorption on these 
polymorphs’ surfaces. Other proposed explanations for the microscopic origin of these states 
are: the presence of surface states [3], step edges [12], the effect of the material morphology 
(crystalline or nanoporous) [13]. The role of grain boundaries is also acknowledged, 
especially in ZnO based photoelectrodes, where significant differences in electron diffusion 
have been measured between nanoparticles and nanorods [14]. However, there is no 
consensus on the behaviour of grain boundaries in TiO2. Grain boundaries were dismissed as 
possible electron traps in DSSC photocurrent studies [15] [16]: electron transport was found 
to be equally fast in TiO2 nanoparticles, nanorods and single crystal rutile, suggesting that 
transport is not controlled by grain boundaries but by surface traps. On the other hand, a 
recent study [17] found a strong effect of size of TiO2 nanocrystals on electron transport and 
attributed this to the effect of grain boundaries (internal surfaces) on electron mobility. A 
recent computational study [18] also showed that grain boundaries can act as electron 
trapping sites. A study of electron transport in Nb-doped anatase [19], however, suggested 
that grain boundaries affect electron mobility only at low concentrations of excess electrons.  

The shallow trap states are typically characterised by impedance measurements of the 
whole device that give an energy interval for the trap distribution between 0.09 eV and 0.14 
eV below the CB minimum [3] [20] [21]. To a large extent, the spatial extension of these 
shallow trapped electronic states has been elusive experimentally, first because there is no 
universal consensus on their microscopic origin, and second because no direct on-site 
measurement for the photoelectrode’s surface charge has been carried out to date for a device 
in working conditions [22]. Spectroscopic studies point to two types of electron traps in 
anatase: localised deep states (Ti3+) and delocalised shallow states [11] [23]. However, 
shallow states at 0.12-0.3 eV below the conduction band minimum were also described as 
localised centres [24]. Moreover, electron paramagnetic resonance (EPR) studies suggest that 
excess electrons are localised in rutile but delocalised in anatase [25]; two types of Ti3+ sites 
were identified by EPR in anatase: localised and delocalised over several Ti atoms [26]. 
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A lot of theoretical effort has been dedicated to excess electrons in TiO2, but the majority 
of these studies addressed excess electrons caused by the presence of oxygen vacancies [27] 
[28] [29] [30] [31] [32] [33] [34] [35] [36], surface hydroxyls [29] [32] [37] or dopants, such 
as Nb, Ta [29] [38] [39] [40] [41], Ce, Zr [42], non-metal dopants such as N [43], B, C and F 
[44]. These defects were shown to give rise to deep states in the band gap, with the excess 
electrons localised near the oxygen vacancies or dopants in rutile [27] [31] [32] [42] [36]. 
Localised and delocalised arrangements are close in energy for oxygen vacancy in anatase 
[28] [29] [35] [36], and the results are very method-dependent: hybrid density-functional 
theory (DFT) of DFT+U calculations with large values of U are needed to achieve deep states 
(which agree with experiment) and localised solutions; both triplet [29] [35] and singlet [36] 
state were suggested as the lowest-energy states. Notably, qualitatively different electronic 
properties are observed in n-type rutile and anatase doped by pentavalent ions (Nb5+ and 
Ta5+): rutile remains a semiconductor, with new states placed in the gap and excess electron 
localised on Ti atoms near the dopant [39] [40] [41], while anatase becomes a conductor, with 
excess electron in delocalised CB states [40] [41] or in shallow donor states just below the 
CB [39] [40]. Although recent calculations clearly show the conducting properties of Nb- or 
Ta-doped anatase, the calculated localisation of the excess electron is different in different 
studies: electrons delocalised over all Ti atoms in a simulation cell [39] [41] or only over 4 
nearby Ti atoms [40].   

There have been fewer computational studies of the behaviour of excess electron in 
defect-free TiO2 (where typically one excess electron was added to the simulation cell, 
together with neutralising background charge) and there is less consensus on the degree of 
localisation of the electron, especially for anatase [37] [37] [45] [46] [47] [48] [49] [50]. 
Computational studies predict localisation in bulk rutile [48] and at subsurface sites in rutile 
(110) slabs [45]; localisation at either surface or subsurface sites was found favourable, 
depending on the crystallographic orientation of the surface [50]; alternatively, both localised 
(the ground state) and delocalised structures were found possible in rutile, the delocalised 
solution being in better agreement with experimental electron mobilities [46]. As for anatase, 
localisation on Ti atoms was reported in anatase bulk and in (101) slabs [37] but 
delocalisation (i.e. localisation over a large area, over 10-15 Å in diameter) was reported in 
another study [49]. Other suggestions for the location of excess electrons in stoichiometric 
TiO2 include: localisation at the edges between (101) and (100) facets of large anatase 
nanoparticles [51]; localisation at undercoordinated Ti atoms at the rutile-anatase interface in 
mixed-phase systems [52], trapping of electrons at step edges in anatase (101) [53]. Most 
relevant to the subject of semiconductor-electrolyte interface, rutile nanoparticles surrounded 
by electrolyte and by metal cations were found to have shallow surface trapping states [54]. 

In this article we investigate the structure of the charge-transfer exciton formed by excess 
electron in a semiconductor and a positive charge next to the semiconductor surface. To 
approach the study of this physical system we are going to use two complementary 
descriptions of the interface: atomistic (electronic structure calculations) and continuum 
model. In the atomistic model, a potassium ion is used as a generalised representation of a 
positive charge (i.e. both of metal cations present in the electrolyte, and positively charged 
dye molecules formed after electron injection). If  we find delocalised states with potassium 
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ion then it is likely that any larger ion or an ion further away from the surface would cause 
delocalised states. We want to find out if  slab models of computationally accessible size can 
describe correctly charge-transfer exciton near the surface.   

Explicit atomistic simulations of the TiO2 surface interacting with a positively charged 
counterion are presented in section 2. In section 3 we adopt a continuum representation with 
the electron and a point-like positive charge embedded in two dielectric media of different 
(static) dielectric constant. A numerical solution to this effective one-body quantum problem 
is discussed in section 3.3.  We show that a trap state for the excess electron can be obtained 
if  the Coulomb interaction across the interface is taken into account; our results relate well 
with the experimental energy window for a reasonable choice of model parameters and allow 
us to evaluate the spatial extension of the excess electron in the semiconductor’s CB. The two 
approaches corroborate each other’s findings and point to an excitonic trap state which is 
delocalised over a large area. 

2. DFT simulations of excess electron in TiO2 slabs  

2.1. Method 

Density-functional theory calculations of TiO2 anatase and rutile slabs containing excess 
electrons were done using CRYSTAL09 software [55] [56] with all-electron description of 
TiO2 and K, with triple valence plus polarisation basis sets for Ti, O and K (86-411(d31) 
basis for Ti, 8-411d1 for O, 86-511G for K  [57] [58] [59]), with a 221 Monkhorst-Pack 
grid of k-points, using the B3LYP hybrid density functional [60] [61]. The hybrid functional 
was used in order to avoid unphysical delocalisation of excess electron produced by pure 
DFT (generalised gradient approximantion-GGA) functionals [27] [38] and to avoid the 
uncertainty in the choice of the U value in a DFT+U scheme [34] [47] [62]. (The value of 

Hubbard parameter U in literature studies is either calculated 惇from first principles敦 [63] [47] 

or fitted to reproduce some property, such as the energy of a defect level [45] [30], or a range 
of U values can be scanned [34] [28] [45] [62] [40]. Therefore, different authors recommend 
different optimal values of U, from 4.0 to 5.8 eV [28] [45] [40], and even as low as 2-3 eV if  
energies of redox reactions are the property to be reproduced [34].) The B3LYP functional 
used here has been widely used for calculations of semiconductors, including TiO2 [28] [29] 
[37] [62]. The computational setup used in this work is similar to our earlier calculations of 
TiO2-organic adsorbate interfaces [64]. 

To describe the presence of excess electrons in the TiO2 slabs and a positive charge (such 
as a dye molecule which has lost an electron) next to the TiO2 surface, a potassium atom was 
placed above the surface of the TiO2 (anatase or rutile) slabs. This alkaline metal is expected 
to donate an electron to TiO2 and form a metal cation, K+. 

Two different slab+charge models were tested – each of them for several slab thicknesses 
for both anatase and rutile. Model 1 (non-symmetric) has a slab with a fixed bottom layer (by 
“layer” we denote a Ti2O4 repeat unit – a trilayer in rutile or 6 atomic layers in anatase) and 
with one K atom above the top layer. The K atom was either allowed to relax to adopt its 
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preferred adsorption site, or was kept fixed at a distance of 5 Å above the top surface layer. 
The latter configuration reflects the fact that in a typical DSSC dye molecule, after electron 
injection from the dye to TiO2, the dye cation’s charge is localised far from the dye’s 
adsorbing group and from the TiO2 surface. Slab with thicknesses of 3 and 4 Ti2O4 layers 
were studied. (2×3) replicated surface unit cells were used (13.12 × 8.93 Å for rutile, 11.06 × 
11.46 Å for anatase). To check if  the lateral dimensions are sufficient, a (3×4) replicated cell 
(16.59 × 15.28 Å) was also studied for a 3-layer anatase slab, and the results were very 
similar to the smaller (2×3) cell. This system has one unpaired electron and therefore was 
modelled as spin-polarised (doublet spin). 

Model 2 contains a symmetric slab with two adsorbed K atoms, one above and one below 
the slab. All atoms are allowed to relax to find their optimum positions. With this model, we 
avoid the need to fix the bottom atomic layers, and larger slab thicknesses can be explored 
thanks to the use of symmetry in CRYSTAL. Slabs with 3, 4, 5 and 6 Ti2O4 layers with (2x3) 
replicated surface unit cells were studied (we were not able to optimise slabs with 7 layers 
due to SCF convergence problems). However, the presence of two electrons donated by the 
two K atoms make the interpretation of the results more complicated. The two electrons can 
either have the same spin (triplet state) or opposite spins (singlet state); both the triplet and 
the singlet spin states were considered for each slab. The two models complement each other 
in describing large TiO2 slabs. 

Two sets of optimisation calculations were done. First, simple optimisation of all 
structures was done starting from the optimised geometries of the TiO2 slabs. Then, we 
introduced distortions to these optimised structures, in order to encourage localisation of 
electrons: we selected one Ti atom in each Ti2O4 layer (the atom with the largest eigenvector 
coefficients in each layer, according to the first set of our calculations) and distorted the 
structures by displacing the O atoms surrounding this Ti by 0.1 Å away from the Ti, and re-
optimised the geometries. Thus, for each slab we did 2, 3 or 4 additional calculations 
(depending on slab thickness and symmetry). This procedure is expected to help localise the 
excess charge in the distorted region and is similar to the procedure used in Refs. [34] [49] 
[50], we additionally had a quantitative criterion for choosing the positions of distortion (Ti 
atoms with largest eigenvector coefficients).  

These “distortion+optimisation” calculations were done for the 3-layer non-symmetric 
rutile slab, for 3-layer and large 4-layer non-symmetric anatase slabs, for 4-, 5- and 6-layer 
symmetric rutile slabs (triplet only), and all (3, 4, 5 and 6 layers) anatase slabs (all triplets 
and singlets). For the non-symmetric anatase and rutile slabs, the symmetric rutile slabs, and 
symmetric anatase slabs in the triplet state, no changes or very small changes in localisation 
of electron were observed compared to simple optimisation. One stable structure was 
obtained for each of these slabs. However, in the case of symmetric anatase slabs in the 
triplet spin state we obtained several distributions of excess electrons, as described in the next 
section.  
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2.2. Results 

2.2.1. Geometries 

After optimisation of the K on anatase structures, the K atoms were positioned 
approximately above the row of two-coordinated surface oxygen atoms (O2c) equidistant 
between two O2c atoms: 1.53-1.56 Å above the layer of O2c, with K-O2c distances of 2.53-
2.56 Å. If the K atoms were kept fixed, they were positioned 5 Å above the layer of O2c 
atoms, with K-O2c distances of 5.33-5.37 Å. 

On rutile, K atoms after optimisation were positioned above the bond connecting 6-
coordinated Ti and 3-coordinated O atoms (Ti6c-O3c bond), with K-Ti6c distances of 3.23-3.28 
Å, K-O3c distances of 2.81-2.99 Å and K-O2c distances of 2.57-2.62 Å to two equivalent O2c. 
This structure is similar to the structures (labelled as the “hollow” [65] [66] [67] or “in-
between” [68] site) found in earlier computational and experimental studies of K and Na on 
rutile (100). 

2.2.1. Electronic properties 

First, to verify that charge is indeed transferred from K to TiO2, Mulliken charges on 
atoms in the TiO2+K systems were compared to the isolated TiO2 and K. In all cases, we find 
that one electron has been transferred from each K atom to TiO2. Thus, although the TiO2 
slabs are defect-free (there are no oxygen vacancies or adsorbed hydroxyls), they contain 
excess electron charge.  

Analysis of the density of states and of the highest occupied orbitals confirms that the 
presence of K atoms leads to the formation of defect-like states in the TiO2 band gap, similar 
to what is observed in systems with electron-donating dopants, oxygen vacancies or adsorbed 
hydroxyls [27] [28] [29] [30] [31] [32] [33] [34] [37] [38] [39] [42] [44]; these gap states are 
predominantly composed of Ti 3d-orbitals.  

To investigate where this excess charge is localised (or delocalised) in the TiO2 slabs, spin 
density maps were plotted both for the systems with 1 K atom (one unpaired spin) and for the 
triplet systems with two K atoms (two unpaired spins). 

Considering model 1 (non-symmetric slabs with 1 K), both in the three-layer and in the 
four-layer anatase (101) slabs spin density is distributed across several Ti atoms, with larger 
spin density on Ti atoms in the deeper layers (on fixed Ti atoms). Spin density for a four-
layer anatase slab with a K atom 5 Å above the top layer is shown in Figure 1 (the picture is 
similar both when the K atom is fixed above the surface and when K adsorbed on the 
surface). This tendency of the spin (and, equivalently, the excess electron) to move away 
from the positive charge deep into the slab and to extend laterally within the slab is different 
from the reported results on a single excess electron in bulk anatase and in an anatase (101) 
slab (negatively charged cell with compensating background positive charge) [37], where the 
excess electron was found to localise on one Ti atom (for a slab, on one undercoordinated Ti 
atom on the surface). There is better agreement with another recent study of anatase [49] 
which found that excess electron forms a large polaron: displacements of atoms, which were 
used as a measure of polaron size, were observed within the diameter of 8.6-15.2 Å from the 
localisation site. However, our largest (3×4) extended cell is greater than this size (16.59 × 



7 

15.28 Å), and spin density is still delocalised along the whole length of the slab in the [010] 
direction (see Figure 1). Our results suggest that if  there is a positive charge next to the 
anatase (101) surface then the excess negative charge in anatase is either delocalised over the 
whole thickness of the slab in the [010] direction or is localised in a large region, and three- 
and four-layer slabs are not large enough to describe this region of localisation. 

 

 

Figure 1. Spin density plot for a 4-layer anatase (101) slab with a K atom 5 Å above the surface (isosurface 
plotted in green at 0.005 Bohr-3). Spin density is delocalised over several Ti atoms in the (001) plane 
(perpendicular to the plane of the page in the left panel, in the plane of the page in the right panel), with larger 
contributions on the deeper layers which are furthest from the positively charged K+ cation. 

 

To verify that this distribution of the charge towards the lowest layer of the slab is not 
caused by the lowest Ti atoms being fixed, the symmetric system (model 2) with two K 
atoms on the two sides of the anatase (101) slab and with no fixed atoms was analysed. 
Several distributions of excess electrons were obtained for each slab, depending on the 
distortions introduced in the system before optimisation. Structures with excess electrons 
predominantly distributed in the surface layer these were found to be the lowest-energy 
structures, followed by structures with excess electron in the subsurface layer (0.12-0.14 eV 
higher); a structure with excess electron the second subsurface layer was also found in the 5-
layer slab and was 0.33 eV above the minimum. Figure 2 shows the spin density distribution 
for the lowest-energy structure of the six-layer symmetric slab. Spin is delocalised over 
several surface 6-coordinated Ti atoms, with the largest contributions on one Ti atom at each 
surface; there are also contributions from atoms in the subsurface layer. Thus, excess electron 
is spread across the width of our slab (3 repeat units) in the [010] direction. These results are 
different from the behavior of non-symmetric slabs. Since non-symmetric slabs contain fixed 
atoms, these may create artificial low-energy states, therefore we proceed with symmetric 
slabs which do not contain any fixed atoms. The calculated spin distribution in the symmetric 
anatase slabs is similar to that reported in Ref. [47] for the surface oxygen vacancy in 
anatase, where excess electron are distributed over several surface and subsurface Ti atoms, 
predominantly those near the vacancy.  
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Figure 2. Spin density plot for a 6-layer symmetric anatase (101) slab with two K atoms adsorbed at the 
surfaces (isosurface plotted in green at 0.0005 Bohr-3). Spin density is spread over several Ti atoms, especially 
surface ones. 

 

The two excess electrons in model 2 can also have opposite spins and reside in the same 
orbital. For the closed-shell systems, it is not possible to plot spin density, but the distribution 
of coefficients of the highest occupied orbitals shows that these orbitals are spread over many 
Ti atoms. Hovever, this singlet state was found to be less stable than the triplet by 0.4-0.5 eV 
in anatase and by 0.8-1.1 eV in rutile.  

To quantify the spatial distribution of excess electron across the slab, we calculated 
inverse participation ratio (IPR) Pi for each of the systems. IPR is a way of quantifying 
localisation or delocalisation of a state [69]. It can be expressed for non-orthonormal basis 
functions as [69] [70]:  
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where 沈岫堅岻 is a single-particle wavefunction for the orbital i occupied by the additional 

electron, and r are lattice sites. In the limiting case of the wavefunction spread equally over 
all available sites, Pi tends to zero. If  the wavefunction is spread equally over L lattice sites 
(out of possible N sites) with equal amplitude then Pi = 1/L. In the other limiting case of the 
wavefunction localised on one orbital, Pi = 1 [69]. 

In the hypothetical case where the excess electron is fully delocalised over all Ti and O 
atoms of a slab, IPR (calculated as 1/N where N is the number of atoms) would be between 
0.004 and 0.014 (or 0.01-0.04 if  only Ti atoms are considered) for the system sizes used in 
our study.  
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In our non-symmetric slabs the values of IPR calculated according to equation (1) range 
from 0.19 (three-layer slab) to 0.04 (four-layer), and in symmetric slabs from 0.17 (three-
layer) to 0.27 (five- and six-layer) for triplet states or only from 0.04 to 0.02 for singlet states. 
These values are larger than a fully delocalised solution, but show that the excess electron is 
not fully localised. The IPR values for different-size slabs, together with the spin plot 
(Figures 1 and 2) show that the vertical extension of the largest (5- and 6-layer) slabs is 
sufficient to accommodate the excess electron density, but the lateral extension of the slab (3 
repeat units) is not sufficient.  

To visualise this electron distribution, we analysed the wavefunction coefficients (cij) for 
the orbitals (j) occupied by excess electrons. For each layer (l) of the slab, the sum of squares 
of wavefunction coefficients for atoms belonging to this layer was calculated as 嫌岫健岻 噺デ デ 潔沈珍態津岫鎮岻沈退怠珍 , where n(l) is the number of basis functions on atoms in each particular layer l 

and j is the HOMO (singlet state) or the two SOMOs (triplet state). Then, the fractions of 
these orbitals on each layer were calculated: 
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where N is the total number of basis functions and  is the wavefunction of the HOMO or the 
SOMO.  

These fractions, i.e. contributions of each layer to the orbitals occupied by excess 
electrons, are shown in Figure 3. The figure describes the most stable structures for each slab 
thickness; metastable structures are additionally included only for the 5-layer symmetric slab. 
The graphs in Figure 3 confirm that the singly occupied orbitals in rutile slabs have the 
largest weight on the first subsurface layer. Anatase slabs behave in different ways depending 
on their symmetry and size: in non-symmetric anatase slabs these orbitals have the largest 
weight on deeper layers away from the counterion (top left graph); in symmetric anatase 
slabs with 4 and more layers these orbitals are located predominantly on the primarily surface 
layers (top right graph). The metastable electron arrangements in anatase have the SOMOs 
primarily distributed over subsurface Ti (structure 0.12 eV above the most stable one) and 
into the second subsurface layer (structure 0.33 eV above the most stable one). 
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Figure 3. Contribution of each layer in the TiO2 slab to the orbitals which house excess electrons. Upper 
panels: anatase slabs; lower panels: rutile slabs; left panels: non-symmetric slabs (model 1), right panels: 
symmetric slabs (model 2). Only the lowest-energy structures are plotted for symmetric anatase slabs; 
metastable structures are included for illustration for one case of the 5-layer anatase slab. For rutile symmetric 
slabs, each slab has only one stable electron arrangement; singlet structures (not shown) look very similar to 
triplets. Black lines and triangles: three-layer slabs; blue lines and squares: four-layer slabs; red lines and 
diamonds: five-layer slabs; green lines and circles: six-layer slabs. In all the plots, the layers labelled with the 
largest number are the outer layers, next to adsorbed potassium ions. 

 

The situation is somewhat different in rutile (110) slabs: spin is more strongly localised. In 
the symmetric slabs (singlet and triplet state) spin is distributed over several Ti atoms, mainly 
in the first subsurface layer (on Ti atoms below surface Ti5c atoms), with one atom in the 
subsurface layer having the largest contribution (or, equivalently, two atoms in two 
subsurface layers for the symmetric systems with two excess electrons), see Figure 4. The 6-
layer rutile slab is an exception, with the excess electron residing in the surface layer, despite 

several optimization runs (see orbitals瀞 spatial distributions in Figure 3). This distribution of 

electrons is similar to the widely studied oxygen vacancy in rutile (110), where localisation 
of the two excess electrons is even stronger (the two excess electrons are entirely localised on 
two subsurface Ti atoms) [31] [33] [34] [47] [50]. In the non-symmetric slabs (3 or 4 Ti2O4 
trilayers with fixed bottom trilayer), the spin is strongly localised on one atom and to a 
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smaller extent on a second Ti atom in the first subsurface layer, again very similar to the 
oxygen vacancy in rutile (110) vacancies [31] [33] [47] [50].  

 

  

 Figure 4. Spin density plots: (a) for a 5-layer symmetric rutile (110) slab with two K atoms adsorbed at the 
surfaces, (b) for a 4-layer non-symmetric rutile(110) slab with one K atom adsorbed (isosurfaces plotted at 
0.0025 Bohr-3). Spin density is distributed over several Ti atoms, with the principal contributions of one Ti atom 
in the first subsurface layer. 

 

IPR values calculated for rutile slabs are between 0.16 and 0.33  for symmetric slabs in the 
triplet state (0.16-0.04 for singlet states), similar but slightly higher than the values for 
anatase slabs, showing that excess electron is somewhat delocalised; they rise to 0.35-0.52 
for non-symmetric rutile slabs, indicating stronger localisation. These values are in agreement 
with the fractions of the SOMO on each of the layers shown in Figure 3: localisation is 
slightly stronger in rutile than in anatase slabs, especially in the non-symmetric rutile slabs; 
there are large contributions from several atoms in the first subsurface layer and much 
smaller contributions of the deeper layers. 

In summary, DFT calculations show that the excess electron is delocalised over multiple 
Ti sites. Especially in anatase, excess electron can be described as delocalised laterally in a 
large region along the [010] direction, larger than system sizes accessible to DFT calculations 
(slabs with up to 16.6 × 15.3 Å lateral dimensions). Alternative methods capable of treating 
large system sizes, such as continuum methods, are needed for proper description of excess 
electron in TiO2. 

3. Continuum model of excess electron in  TiO2 

3.1. Description of the model 

An effective one body Hamiltonian for the excess electron in the CB is now considered, to 
reduce the number of degrees of freedom. This Hamiltonian is applicable when the electronic 
wavefunction is delocalised over a large spatial region in comparison to the crystal unit cell, 
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as also required by the effective mass approximation employed. The presence of an interface 
between the nanocrystal and the electrolyte is described using the image charge formalism 
[71] [72] [73] [74]. In cylindrical coordinates r=(, , z), this can be expressed as [75]: 

 
2 2 2

2

2 2
0 2 0

ˆ
2 16 4 ( )h

e e
H

z z z

 
    

    
 

r  (3)  

where the constants introduced are the reduced Plank’s constant │, the electron effective mass 
, the elementary charge e, the vacuum permittivity 

0
, the macroscopic dielectric constant 

for the two media, respectively: 
1 

(for the electrolyte solution) and 
2
 (for the 

semiconductor). The positive charge embedded in the first medium has been positioned at (0, 
0, −zh), as shown by the sketch Figure 5.  

The potential energy term in the Hamiltonian above comprises of two contributions, each 
of them with a distinctive symmetry. The first term is due to the image charge generated by 
the electron at the interface and depends on the coordinate along the z-axis orthogonal to the 
surface of the semiconductor, while the last term takes into account the Coulomb contribution 
arising from the positive point charge at −zh and is spherically symmetrical. The constants  

and  are related to the dielectric constants through [75]:    2 1 2 1        and 

 2 12    .    

 

 

Figure 5. (a) Sketch of the model system and cylindrical coordinate system employed. (b) Section 
plane (highlighted in red) in which the electronic wavefunction will be evaluated. The plane is 
orthogonal to the interface between the two media (in grey) and contains the point-like charge. 
Illustrative contour plot for the electron wavefunction is also shown in the section plane. 

 

The potential energy operator does not depend on the coordinate , hence eigenfunctions 

of the operator ̂zl i 

   will factorise from the overall solution, leading to a dependence on 
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the angular quantum number m. We will label the solutions obtained for different values of m 

following the practice for systems with spherical symmetry: m = 0 比 s, m = 1 比 p and so 

on. An approximate solution is found using the linear variational technique. A suitable basis 
set for the radial coordinate is given by the Landau states [72] [76]: 

  

      2 2
!

!

m
m m

l l

l
R e L

l m



   





 (4) 

where with ( )m
lL  we have indicated the generalised Laguerre polynomials defined as a 

function of the scaled variable 2

2

  , of the principal quantum number l =0, 1, 2, 那 and 

of the angular quantum number m = 0, 1, 2, 那 . For the z coordinate we employ the 

eigenfunctions of the particle in a box: 

 
2

( ) sinv

v
z z

L L

    
 

 (5) 

with L we indicate one endpoint of the domain [0, L] on which the basis set is defined; this 
definition of the domain is consistent with the boundary condition z > 0 which we assumed 
on a physical basis. The quantum number v takes non-negative integer values. We refer to the 
appendix for the explicit evaluation of the Hamiltonian matrix elements. The variational 
wavefunction can be expressed as a linear combination of the basis set elements: 

  ,
,

, ( ) ( )m
l v l v

l v

z C R z    . The parameters defining the basis set L and  have been 

defined as those minimizing of the lowest eigenvalue [77] for a given basis set size via a 
BFGS search algorithm [78]. 

3.2. Choice of the model parameters 

To completely specify the model, other quantities are required: these are the dielectric 
constants for the two media and the effective electron mass. There is a large amount of 
uncertainty concerning the value of electron effective mass in TiO2 obtained experimentally 
(typically, they are obtained from the analysis of Hall coefficients, conductivity and 
thermoelectric power): values for rutile have been reported in the range between  5 me and 13 
me [79] [80] [81] [82] and as large as 12-32 me [83]; however, it has been argued that the 
measured value is the mass of a polaron, while the mass of a bare electron is smaller, of the 
order of  3 me [80] or  6-7 me [84]. For anatase nanoparticles, the measured values are much 
smaller, ~1 me [85] or 0.71-1.26 me [86] depending on particle size. DFT calculations show 
that electron effective mass in both rutile and anatase is strongly anisotropic, between 0.6-1.2 
me for rutile [87] [88] and 0.04-0.48 for anatase [88]; optical effective mass which takes into 
account all occupied states in the conduction band has been calculated as ~0.5 me and ~4 me 
(direction-dependent) for anatase [89]. We find, by numerical differentiation of the lowest 
CB level near the ī point, the values of 2.1 me and 1.1 me for the īX and īZ directions in 
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bulk rutile and 0.9 me and  0.8 me, respectively, in bulk anatase. However, for the model we 
adopt the values based on experiment: 1.22 me consistent with anatase [86] and 10 me 
consistent with rutile [79] [81] [82] and we will discuss the effect of changing the effective 
mass on the electron localisation.  

The dielectric constant of TiO2 (2
) is also ambiguous: in crystalline rutile, it is large and 

anisotropic (170 in the c direction and 86 in the a direction at room temperature, in units of 
vacuum permittivity) [90], while in anatase the measured values vary strongly (from ~10 to 
~70) depending on film thickness, method of preparation and frequency of the applied 
electric field [91] [92]: e.g. in 90-105 nm films the dielectric constant was measured as 13-18 
[91], the value of 12  4 was suggested for anatase films consisting of 8.0  0.2 nm particles 
[82]; the latter value is used in this model. This parameter is also varied in our study, to study 
its effect on electron localisation. 

The dielectric constant for bulk acetonitrile (
1
) is non-ambiguously reported as 36.6 [93]. 

The presence of a solid interface, however, is known to affect the value of the dielectric 
constant for electrolytic solutions and it can be determined by solving the Poisson-Boltzmann 
equation for a given solute concentration. We will not pursue this approach here as it is not 
congruous with our theoretical framework and it would not be conclusive for the model 
presented as there are uncertainties on other parameters; we therefore assume that the 
behaviour shown by aqueous solutions in ref. [94] can be extended to the case of acetonitrile 
and take the value of 

1
 to be one tenth of the value in bulk, i.e. 

1 = 3.66. This approach is 

consistent with the aim of this study, which is to provide a conservative estimate of the 

exciton radius. Indeed, for big values of 
1
 (or, alternatively, small values of 

2
) the electron 

is more delocalised as the image charge interaction that binds it to the interface becomes 
repulsive for 

1 > 
2
 and the attractive Coulomb term in equation (3) is screened by the 

prefactor . 

3.3. Results 

To describe the excess electron at the TiO2/electrolyte interface, we solve the Hamiltonian 
in equation (3) for the values of dielectric constants corresponding to the TiO2 and electrolyte 
phases. Figure 6 visualises the first six states at the lowest energies: we report the contour 
plots for a section of the wavefunction in the plane  = 0 (shown in red in Figure 5b). The 
states are labelled as 1s, 1p, 2s, 1d, 2p, 3s, according to the values of their principal quantum 
number l and angular quantum number m (cf. equation (4)), with the conventional notation 

m=0 比 s, |m| =1 比 p, |m|=2 比 d. The plots in Figure 6 are obtained for a value of electron 

effective mass  = 10 me, and the dielectric constants values introduced in the previous 

section: 
1
 = 3.66, 

2 = 12; the positive charge has been positioned at 2.4 Å from the 

interface, this value is compatible with the adsorption distance of an alkaline metal ion on the 
anatase (101) surface. 
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Figure 6. Contour plot for the electronic wavefunction, their respective energies are E(1s) = −0.27 
eV, E(1p) = −0.19 eV, E(2s) = −0.16 eV, E(1d) = −0.15 eV, E(2p) = −0.13 eV, E(3s) = −0.13 eV. 
States are labelled according to the values of the principal and angular quantum numbers (l, m). 
Model parameters set as zh = 2.4 Å, 

1
 = 3.66, 

2
 = 12,  = 10 me.  

 

The impact of the effective electron mass and of the semiconductor’s dielectric constant, 
i.e. the two parameters affected by bigger experimental uncertainties, on the exciton ground 
state energy is analysed in Figure 7. The average value for the exponential trap distribution 
has been identified experimentally within −0.09 eV and −0.14 eV (with the energy zero being 
the TiO2 conduction band edge) and it is marked in Figure 7 by dashed lines. Interestingly, 

different intervals of 
2
 are compatible with the observed shallow trap energy for different 

values of the effective mass, in particular for た =1.22 me the permissible range for 
2
  

overlaps with the experimental estimate of 12  4 reported for anatase in Ref. [82]. For 
heavier values of the electron mass more closely corresponding to rutile (shown in the right 
panel of Figure 7) the ground state is far lower in energy and for values of 

2
 near 10 gives a 

trap state positioned ~0.3 eV below the conduction band edge; larger values of 
2
 = 20−30 

(though smaller than 
2
 measured for bulk rutile [90]) are needed to give shallow trap states. 

In any case these states are not as deep as those associated with oxygen vacancies (with 
trapping energy over 0.5 eV) [31] [35] [95]. 
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Figure 7. Ground state energy for the exciton obtained for zh =2.43 Å and 
1
 = 3.66 as a function 

of the other model parameters. Dashed lines represent average values for exponential trap 
distributions as found in two different experimental studies, Ref. [20] (0.16 eV below the CB 
minimum) and Ref. [3] (0.09 eV below the CB minimum) . 

 

We now evaluate the ground state exciton localisation for the two values of た considered, 
while keeping 

2
 in the permissible physical range. To better quantify the localisation of the 

electron, we define the exciton radius as the expectation value of the cubic root of the 

‘volume’ operator 2ˆ ẑ : 

 23
1 1s sR z     (6) 

where the subscript 1s identifies the ground state wavefunction; the values of R are reported 
in Table 1 together with the expectation values for the spatial coordinates and their 
uncertainties. In both cases considered here, the exciton radius is far bigger than the 
elementary cell of TiO2 anatase, in agreement with what is found from DFT simulations of 
the interface. 

In the calculations for the rutile-like system (large dielectric constant and electron 
effective mass, right column of Table 1), the depth (z value) of the exciton is smaller than for 
anatase; the lateral extension of the exciton () is also smaller than for anatase, but in both 
cases it is still much larger than the primitive cell and the size of the cell in our DFT 
computations. 
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Table 1. Exciton radius (expectation value and variance) for selected values of the semiconductor 
dielectric constant and electron effective mass. zh =2.4 Å and 

1
 =3.66. Values in Ångströms. 

 

   =1.22 me    =10.0 me 

 R  zz  R  zz

6 174.8 453  240 29.3  4.7 20 47.85 93.4  49.3 14.0  2.0 

10 218.2 586  310 34.0  5.3 25 41.94 78.1  41.2 13.7  2.3 

14 513.0 1930  1020 42  13 30 41.92 120  63 6.2  3.3 

 

 

4. Conclusions 

Two different models of the photoinjected electron in the semiconductor’s conduction band 
in the presence of a positive charge at fixed distance from the semiconductor surface have 
been presented. Atomistic (DFT) calculations show that the excess electron is either 
delocalised in TiO2 or is localised in a large region, with lateral dimensions larger than 
system sizes accessible to DFT calculations. An alternative model, based on a one-electron 
effective Hamiltonian, has been used to treat large system sizes. This model is able to 
reproduce, for a reasonable choice of the system’s parameters, the binding energies observed 
experimentally for shallow trap states in TiO2 in DSSCs, hence supporting an experimental 
conjecture [10] of excess electron-cation interaction as the origin of these shallow trap states. 
The electron delocalisation has been evaluated for these physically justified values of the 
parameters and the value of the exciton radius is comparable with the size of the TiO2 
nanoparticles used to assemble the photoanode.  

Several experimental studies [10] [12] [11] [23] [24] indicate the presence of shallow trap 
states in anatase nanoparticles. However, the nature of these states is not yet clear, as 
discussed in the Introduction. Both localised and delocalised nature of these states has been 
inferred from experiments [11] [23] [24] [25] [26]. We suggest, based on our study, that 
electrons donated by ionizable adsorbates (metal ions in this model study, and possibly also 
electron-injecting dyes in dye-sensitised solar cells) are responsible for these shallow trap 
states.  

In this model we have selected the parameters based on the available experimental 
evidence. Under many circumstances, such as for 

1
 values comparable with its solution bulk 

value or for oxidised dyes of bigger size (with the positive charge density located further 
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from the interface), the exciton binding energy can become smaller than the thermal energy 
and the existence of these states can be neglected when describing the initial state of the 
charge recombination process.  

A limitation of the model presented lies in the minimal description of the molecular 
system adsorbed on the semiconductor’s surface. This limitation restricts the applicability of 
the model, in particular since recent experimental studies have shown that depending on the 
molecular species adsorbed the charge transfer exciton was localised near the interface or 
delocalised over the whole nanoparticle [96]. To provide a complete ab initio description of 
the system it would be necessary to move beyond the mean field level of theory and 
explicitly account for many-body effects. The theoretical framework in this instance is 
provided by the Bethe-Salpeter equation, which includes not only the direct coulomb 
interaction between electron and hole forming the exciton, but also the exchange interaction 
screened by the presence of other electrons [97]. Given the high computational demands of 
this method, it is not surprising that to date it has only been applied to bulk solids. However, 
in the case of organic molecules crystals the solution of the Bethe-Salpeter equation was able 
to shed light on the nature of the charge transfer states and to relate it to the underlying 
electronic structure of these materials [98]. We believe that the application of many-body 
techniques should prove very beneficial to the study of charge transfer in heterogeneous 
systems, such as those mentioned in the introduction of this study, as a benchmark of 
effective one body models. 

This paper highlights one of the main problems in modelling photoinduced charge transfer 
processes at the interface between an inorganic material and a molecule. The elementary 
processes involve states with different degrees of localisation which are normally modelled 
with different degrees of accuracy. The excited molecular state that initiates the charge 
injection process and the molecular HOMO that is the final one-electron state after charge 
recombination are well described by electronic structure method. The injected electron 
displays a degree of delocalisation, where an effective one-electron model may be more 
accurate than an atomistic DFT calculation. The ability to combine different descriptions to 
study charge transfer processes rather than just the initial and final states is one of the main 
challenges in this field. 

 

5. Appendix A 

Here we report the explicit derivation for the Hamiltonian matrix elements evaluated over the 
basis set functions. We report the Hamiltonian as a starting point: 

2 2 2
2

2 2
0 2 0

ˆ
2 16 4 ( )h

e e
H

z z z

 
    

    
 

r  (A.1) 

where the symbols have been defined in Section 3 of the main text. Since the potential energy 
term does not depend on the angular coordinate, it is possible to factorise out the solution as 

     , , ,z z       , and therefore the eigenvalue equation can be recast as: 
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This allows us to immediately find the angular dependence in the effective one body 

wavefunction as:   1

2
ime 


  ; in order to meet periodicity requirement we must have 

m=0, 1, 2, ... . The original problem has been reduced to two dimensions, depending on the 
additional parameter m which is can be thought of as an angular quantum number [99].  

To address the variational solution for the model above, we perform a change of variable 

for the radial coordinate: 2

2

   where  is a scaling coefficient which can be obtained by 

variational minimisation of the ground state energy. The top equation in (A.2) reads:  
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 (A.3) 

This equation can be solved approximately using the variational method. We proceed with 
the evaluation of the terms containing differential operators. This is written as  
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 (A.4)  

Hence the kinetic part of the Hamiltonian matrix can be evaluated through the integral: 

| | | |ˆm m
k w T l vR K R  , with 

2 2

2
ˆ ˆ

T T

m
K D


   . This can, in turn, be decomposed according to: 

 | | | |ˆ ˆ ˆm m m mm m
k w T l v k l w v k l w z vR K R R K R R R K           (A.5) 

The matrix elements for the z part are particularly straightforward to evaluate: 
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For the radial coordinate the integral is more involved because of the change of variable to 
carry out both in the differential operator and in the integral. We give therefore an explicit 
account for the expression to compute (with m we refer to the absolute value of the angular 
quantum number) for the integrals: 
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Rearranging the previous integrals we can define two distinct contributions to the kinetic 

term  , , ,
ˆm m

k l k l k l k lR K R N T K   , where: 
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The final expression, combining the previous two, reads: 
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where we have used the shorthand notation:      
0

, ,    m m m
i jI m i j d e L L     


     and 

N is the normalisation constant. 

The potential term is more obvious and can be obtained immediately as the sum of two 
contributions: 
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Where we have implicitly defined the operators: 
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, where we indicate the position operators with the 

corresponding spatial variables with a hat sign. The abstract notation above can be recast in 
terms of its real space representation as: 

 
2

0 2 0

2 1ˆ sin sin
16

L

w v

e w v
V dz z z

L L z L
  

 
          
     (A.13) 

 

 
 

2

, 22
0

2 1ˆ  sin ( )  sin
4 2

m m m m m
k w l v k l k l

D h

e w v
R V R N d dz z e L z L

L L Lz z




     
  

           
    



 (A.14) 



21 

In the previous equation the integration domain D stands for[0, ) [0, ]L  . 
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