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Abstract  
In this paper an incompressible Smoothed Particle Hydrodynamics (ISPH) method is 

applied to investigate the flow motion in and around the porous structure. In order to describe 
in a simple and effective way the flow through the interface between the porous region and 
pure fluid region within the SPH framework, a heuristic boundary treatment method has been 
proposed. The ISPH model is first verified against a theoretical model of wave propagation 
over a porous bed and then further validated by comparing the predicted wave surface 
profiles and flow velocity fields with the experiment data for a typical case of flow motion 
around and inside a submerged porous structure. The good agreement has demonstrated that 
the improved ISPH model developed in this work is capable of modelling wave interaction 
with porous structures. 

Keyword: ISPH; Porous structure; Porous interface; Wave-structure interaction; Boundary 
condition. 

 

1 Introduction 
 
 Porous structures such as rubble-mound breakwater are widely used to protect coastal 

infrastructures and beaches from the wave attack. Unlike impermeable structures, the 
interactions between the waves and porous structure take place both outside and inside of the 
structure. When reaching the porous structure the waves are usually partially reflected and 
some of the incoming wave energies dissipate outside the porous structure. However, inside 
the porous structure, the flow in the pores can induce the friction drag and loss of wave 
energy and even affect the stability of armour stones. Therefore, an accurate quantification of 
the flow motion in and around the porous structure is vital to understanding the risks of 
structure instability under the wave actions. 
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Sollitt and Cross (1972) developed one of the earliest models for describing the flow 
through permeable structures by adding the inertial and nonlinear resistance forces into the 
momentum equations to account for the effect exerted on the porous flow by the solid 
skeletons. Since then many improved models have been proposed to investigate a wide range 
of wave propagation problems, including wave transmission, reflection and dissipation 
around and through arbitrarily-shaped breakwaters with porous layers. These include the 
models based on the potential flow theory (Sulisz, 1985; Yu and Chwang, 1994), mild-slope 
equation (Rojanakamthorn et al., 1989) and shallow-water equations (Kobayashi and 
Wurjanto, 1990; Wurjanto and Kobayashi, 1993). Unfortunately, the predictive capability of 
these simplified models are very restricted as they are unable to account for some essential 
flow processes such as the nonlinearity (mild-slope equation), frequency dispersion (shallow-
water equation) and wave breaking (potential flow equations). 

In recent years, more general and rigorous models have been developed based on van 
Gent’s (1995) Reynolds-averaged Navier-Stokes (RANS) equations, also including those by 
Huang et al. (2003) and Liu et al. (1999). Huang et al. (2003) coupled the unsteady laminar 
NS equation model and another NS-type model to separately solve the flows outside and 
inside the porous structure for a solitary wave interaction with submerged porous breakwater. 
Liu et al. (1999) derived the RANS equations to study wave overtopping on a breakwater 
with protective porous armour layer. To solve the governing equations, they employed the 
resistance force formulas proposed by van Gent (1995) and calibrated the linear coefficient 
against simple physical experiments, while keeping the inertial and original nonlinear 
frictional coefficients unchanged. Similarly Hsu et al. (2002) used the Volume-Averaged 
RANS (VARANS) equations to describe the flow motion around the porous structure, and 
Karunarathna and Lin (2006) applied their VARANS model to study wave damping over a 
porous seabed. Garcia et al. (2004) and Lara et al. (2006) used the numerical model of Liu et 
al. (1999) to investigate wave interactions with a low-crested permeable breakwater and 
validated their models with the laboratory measurements. Also, the contribution of del Jesus 
et al. (2012) was to derive a new set of VARANS equations with different turbulence models. 
Ma et al. (2014) developed a non-hydrostatic model based on the model equation of Hsu et al. 
(2002), and Wu et al. (2014) proposed a 3-D Large Eddy Simulation (LES) model for the 
porous flows based on the model equation of Hu et al. (2012). One of the major differences 
among these models is the use of different turbulence closure models. 

All of the above-mentioned models are based on the Eulerian approach. In situations 
with large free surface deformation, it requires an explicit surface-capturing scheme to 
determine the wave profile, which is not a trivial task. In comparison, the Lagrangian SPH 
model is much more advantageous as it can determine the free surface profiles simply by 
tracing the particle positions. In this field, Zhu et al. (1999) developed a SPH model for the 
low-Reynolds number incompressible flow inside the porous media and imposed a periodic 
porous boundary condition on both ends of the computational domain. The porous solid 
skeleton was discretized and represented by the fixed SPH particles. Tartakovsky and Meakin 
(2006) applied the SPH method to simulate pore-scale flow transportations and analysed the 
effects of fluid wetting behaviour and surface tension. Herrera et al. (2009) derived a new 
SPH formulation for the simulation of advective-dispersive solute transport in an 
heterogeneous porous media. Using the micro-CT images of rock samples, Ovaysi and Piri 
(2010) modelled the incompressible viscous flow inside a porous rock by Moving Particle 
Semi-implicit (MPS) method. Then Ovaysi and Piri (2012) employed the GPU acceleration 
technology to reduce the computational load of their MPS model. Although the above 
modelling efforts resolve the flow at the pore scale and can reveal very detailed information 
of the flow motion, they are extremely computationally expensive even with the use of the 
GPU, thus not yet practical for the engineering purpose. 
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The first ISPH model for wave interactions with porous media in the large scale was 
proposed by Shao (2010). The model solves the spatially-averaged flow field of the porous 
region without considering the details of the pore flow. The effect of solid skeletons in the 
porous structure was determined by adding the frictional terms into the momentum equations. 
Under the same assumption, Akbari and Namin (2013) improved the ISPH approach by 
introducing a refined background mesh with porosity information to treat the interface 
boundary. Different particle sizes were also used in the pure fluid zone and porous zone, 
respectively. Then Akbari (2014) further considered the particle density change within the 
porous media and validated the improved model via simulating dam-break flow through a 
porous zone and wave overtopping over a caisson breakwater. More recently, Ren et al. 
(2014) proposed an improved weakly compressible SPH (WCSPH) model, in which the 
tangential velocities were averaged near the porous interface so that almost continuous 
pressure fields can be obtained. Other significant progresses in the ISPH model development 
can be found in Khayyer et al. (2008), Lind et al. (2012) and Gotoh et al. (2014). 

In this study, another simple and straightforward treatment is proposed to deal with the 
interface boundary between the pure fluid and porous regions, in which an interface zone is 
specified around the interface line and the particle pressure is averaged within this zone by 
using the SPH kernel function. In order to verify the proposed boundary treatment, the ISPH 
model is first applied to the wave damping over a porous bed and the numerical results are 
compared with the theoretical solutions of Packwood and Peregrine (1980). Then the model 
is applied to investigate the main features of the flow field, such as velocity and pressure, 
around and inside a submerged porous breakwater under the action of waves. Comparisons of 
the wave surface profiles and velocity fields with the experimental data of Wu and Hsiao 
(2013) are carried out to evaluate the capacity of ISPH model in the porous flow simulations. 

 

2 Governing equations 
 
When considering large-scale porous flows, the governing equations for the flow inside 

and outside of the porous media are different. del Jesus et al. (2012) analysed the two main 
sets of governing equations for the porous flow and revealed that there is no universal 
equation either due to the frictional term or due to the closure model used in the momentum 
equations. In this work, the unsteady 2D NS equations in the Lagrangian form are used for 
solving the flow outside of porous media. The NS-type equations, originally proposed by 
Huang et al. (2003) for porous flow in the Eulerian form, are recast in the Lagrangian form 
for solving the flow inside porous media. 

2.1 Equations for flow outside porous media 

Following Huang et al. (2003) and Shao (2010), the flow outside of the porous media is 
considered as laminar and can be solved by the two-dimensional unsteady Navier-Stokes 
equations. The Lagrangian form of these equations is expressed as 

1
0w

dȡ
ȡ dt

 u            (1) 

21w
w

d
P Ȟ

dt ȡ
     

u
g u                   (2) 
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where ȡ  density; t  time; wu  flow velocity outside of porous structure; P  pressure; 

g  gravitational acceleration; and Ȟ  laminar viscosity.  
It should be mentioned that the turbulence model is not considered in Eq. (2), similar to 

the approach taken by Huang et al. (2003), in order to simplify the interface boundary 
conditions. Higuera et al. (2013) commented that the inclusion of turbulence model could 
greatly improve the breaking wave simulations. Thus the case studies selected in this paper 
are limited to the non-breaking situations. 

2.2 Equations for flow inside porous media 

Again by following Huang et al. (2003) and Shao (2010), for the flow inside of the 
porous media the NS equations with added linear and nonlinear drag force terms are used, 
which are 

  
1

0p

dȡ
ȡ dt

 u                                       (3) 

2
21p f ww

p p p p
P P

d C nȞn
P Ȟ

dt ȡ K K
       

u
g u u u u                    (4) 

where wn  porosity of the porous media; PK  intrinsic permeability; and fC  nonlinear 

resistance coefficient. Here pu  is the discharge velocity, which equals to the seepage velocity 

multiplied by the porosity of the porous media. Discharge velocity is also referred to as the 
apparent velocity in various porous flow literatures. Since the particle velocity is used as the 
apparent velocity in the governing equations, no further velocity treatment is required to 
satisfy the Beavers and Joseph boundary conditions (Ren et al., 2014). This is a distinct 
advantage of the particle approach in simulating wave interactions with the porous structures. 

The left-hand-side of Eq. (4) is in the form of a full derivative. Comparing Eq. (4) with 
the counterpart in Huang et al. (2003), it can be seen that if the inertia coefficient equals to 
unity, the LHS of the momentum equation can be written as a full derivative of the particle 
velocity. The inertial coefficient denotes the added mass effect for accelerating the fluids in 
porous media (Liu et al., 1999), whose value is generally known for an isolated simple body 
but unclear for the random and densely packed materials. Therefore, many researchers, such 
as Huang et al. (2003, 2008), Akbari and Namin (2013) and Ren et al. (2014) simply 
neglected the effect of inertia coefficient in their studies.  

The last two terms on the RHS of the momentum Eq. (4) represent the effect of fixed 
porous solid skeleton, with the linear term representing the low Reynolds number flow and 
nonlinear term representing the high Reynolds number flow, respectively, by following 
Huang et al. (2003; 2008). Karunarathna and Lin (2006) had also derived various nonlinear 
frictional forces for the high Reynolds number flows. According to Huang et al. (2003; 2008), 
if the porosity wn  and stone size d  of the porous materials are known, the intrinsic 

permeability PK  can be determined by the following empirical formula as 

 

1 57 3
7 50

02
0

1 643 10       0 01m
1

.

w
P

w

d n
K . , d .

d n
  

   
 

                (5) 

and the nonlinear resistance coefficient can be evaluated by using the formula given by 
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K


  
       

                    (6) 

3 Solution procedure 
 
By using the fractional steps, the Navier-Stokes equations are solved by a prediction–

correction procedure in the incompressible SPH approach. The first step -- the prediction step 
is an explicit integration in the time, based on the laminar and gravitational forces as well as 
the linear and nonlinear drag forces. So the intermediate particle velocity and position are 
calculated from the momentum equation without the pressure gradient term as: 

      
2

2 f ww

P P t

C nȞnȞ t
K K

 
        

 
*u g u u u u                               (7) 

    t * *u u u                 (8) 

    t t  * *r r u                 (9) 

where  *u changed particle velocity during the prediction step;  t time increment; tu  

and tr particle velocity and position at time t ; and *u and *r intermediate particle velocity 

and position, respectively. The subscript p in pu  has been dropped for the simplicity. 

The pressure is calculated by the classical pressure Poisson equation based on the 
relative density variance as follows (Shao and Lo, 2003): 

0
1 2

0

1
t

ȡ ȡ
P

ȡ ȡ t





  
     

        (10) 

where 0ȡ  initial constant particle density;  ȡ intermediate particle density after the 

prediction step; and 1 tP particle pressure at time 1t  . In our previous studies, it has been 

found that the above density-invariant source term formulation could cause non-physical 
particle and pressure noises in some wave applications. However, this method generally 
performs quite well for the solitary wave condition due to its ordered motion of the fluid 
particles during the single wave event. For the periodic waves, however, other types of 
models or more advanced source term treatments should be considered, such as documented 
by Hu and Adams (2007), Xu et al. (2009) and Khayyer and Gotoh (2011).  

Then in the second step -- the correction step, the pressure gradient term is incorporated 
into the momentum equations to enforce the incompressibility. Once being solved in a fully 
implicit way, the pressure is used to correct the particle velocity in the following way 

1

1
tP t

ȡ**u 


                                       (11) 

        1t  + * **u u u            (12) 
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where  **u changed particle velocity during the correction step. Finally, the new particle 

positions are time-centred by following Eq. (13) 

        1
1 2

t t
t t t


  +

+

u u
r r                  (13) 

where 1t+u  and 1 t+r particle velocity and position at time 1t  , respectively. As mentioned 

by Akbari and Namin (2013) and Ren et al. (2014), the solved particle velocity from the 
porous flow equations is the apparent velocity, which is equal to the particle velocity of the 
pure fluid flow. Therefore, the proposed momentum Eqs. (2) and (4) can be solved 
simultaneously in the entire domain by setting the frictional terms to be zero for the fluid 
zone. 
 

4 SPH methodology 
 

4.1 SPH formulas 

The key feature of the SPH is that it is an interpolation method, which allows the 
physical quantity and any function of interest to be obtained by summation of relevant 
physical quantities and functions (Monaghan, 1992). The summation usually can be 
expressed in terms of the values at a set of disordered points within the range of the support 
domain. The value of any field function  A r  at point r  can be expressed as 

      A A W ,h d' ' 'r r r r r      (14) 

where  W ,h'r r  is the interpolating kernel function; and h  is the smoothing length. In 

SPH numerical simulations, the integral interpolant is calculated by a summation interpolant 
in the discrete notation as 

   
 b

a b ab
b b

A
A m W

ȡ
r

r                                               (15) 

where a  and b  denote the reference particle and its neighbour; abW  is the kernel function 

value between the two particles; and bm  and bȡ  are the mass and density of neighbouring 

particle b , respectively. As a result, the density of particle a  is expressed as 

   a b ab
b

mW                    (16) 

In order to ensure the linear and angular momentum conservation, the following 
asymmetric pressure gradient term is used in this study  

2 2

1 a b
b a ab

b a ba

P P
P m W

  
     

   
  

            (17) 
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where a abW  is the gradient of the kernel function taken with respect to the position of 

particle a . Similarly the divergence of vector u  at a given particle a  can also be estimated 
by 

  
2 2

a b
a a b a ab

b a b

m W
 

    
 

 u u
u 

 
                   (18) 

The viscous force terms in Eqs. 2 and 4 can be formulated by combining the above 
gradient and divergence operators as 

22
2

0

)(2
)(










 
ab

abaabab

b ba

ba
ba

W
m

r

ru
u        (19) 

where   is a small number to keep the denominator non-zero and commonly set to 0 1. h. 
Due to the high sensitivity of pressure to the particle disorders, the Laplacian in the 

pressure Poisson equation is formulated through a hybrid of the standard SPH first-order 
derivative plus a first-order finite difference scheme as (Shao and Lo, 2003)  

   
 2 2 2

1 8 ab ab a ab
b

ba a b ab

P W
P m

  
   

  
 r

r   
              (20) 

where ab a bP P P   and ab a b r r r .  

4.2 Kernel function 

The cubic spline kernel function developed by Monaghan (1992) has been used to solve 
many kinds of hydrodynamic problems, and it has the following form 

     

2 3
2

3

2

10 3 3
1 0 1

7 2 4

10
2 1 2

28

0 2

q q q
h

W r ,h q q
h

q

        
    

 




               (21) 

where r separation distance between the reference particle and neighbouring particle; and 
rq h  is the relative distance. The radius of the kernel influence is set to be twice of the 

smoothing length. Here it should be noted that nowadays the so-called Wendland kernel 
(1995) has been found to offer much more satisfactory performance in some SPH 
applications. 
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5 Boundary conditions 
 

5.1 Free surface boundary 

As for the free surface particles, the number of their neighbouring particles is 
significantly less than that of the inner fluid particles, since no particle exists in the outer 
region of the free surface. So the free surface particles can be easily identified by the particle 
density that drops sharply (Shao and Lo, 2003) due to the truncated support zone of the 
kernel. According to common computational experience, if the density drop of a particle is 
below 1% ~ 10% of the reference value, it can be regarded as a surface particle. A zero 
pressure shall be applied to the surface particles as known conditions in the PPE solution. 

5.2 Solid boundary 

Solid walls are represented by the fixed wall particles with the same particle distance as 
the inner fluid particles. The wall particles balance the pressure of the inner fluid particles 
and keep them at appropriate distance from the solid wall, neither penetrating nor going far 
away. The velocity boundary conditions are set as the non-slip boundaries in all of the 
following studies. Since the kernel compact support zone is truncated for a particle near the 
wall, the dummy particles are added to implement the Dirichlet boundary for the velocity and 
Neumann boundary for the pressure. Several lines of the dummy particles are used in order to 
keep the fluid density near the wall consistent with that of the inner fluids. The wall particles 
are also included in the pressure solution process, during which the Neumann boundary 
conditions are imposed on the wall and dummy particles. 

5.3 Wave maker boundary 

In our study, the solitary waves will be used to verify and validate the proposed model, 
because the solitary wave is frequently considered to have certain characteristics of tsunamis, 
storm surges and other long period waves, which are of great importance in the coastal 
engineering. The mathematical solution of a solitary wave is a function of distance x and time 
t, derived from the Boussinesq equations (Lee et al., 1982) as below 

   2
3

3

4

 
  

 

AȘ x,t Asec h x ct
d

        (22) 

where Ș water surface elevation; A wave amplitude or wave height; d water depth; and 
the speed of wave c  is given by 

  c g d A             (23) 

To generate the numerical solitary wave, a solid wave paddle is put on one side of the 
water flume and the displacement of the wave paddle follows (Lee et al., 1982) 

          P P

A
X t tanh k X t ct

kd
                      (24) 

where 3

3

4

A
k

d
 . 
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5.4 Wave absorbing boundary 

By adopting a long enough distance on the downstream side of the numerical water tank, 
the wave reflection from concerned areas can be reduced. Sometimes this is not practical, as 
when the simulation domain is large, a large number of particles would be required to achieve 
the computational accuracy at heavy CPU cost. Some effective ways have been proposed to 
solve the problem of wave reflections. For instance, Xu (2010) and Li et al. (2012) set up a 
damping zone to absorb the wave reflection in a way widely used in the Boussinesq models 
and they demonstrated that this method is also quite effective in the SPH modelling.  

In the present paper the similar damping zone approach is used. In the damping zone, the 
fluid particle velocity is a function of the distance from the end side of the water tank, and the 
damping process is achieved by using 

                                                     0dU U f x                                 (25) 

where dU  is the dampened velocity; and 0U  is the particle velocity at the start line ( 0x x ) 

of the damping zone. As for the damping function, it has the following form as 

     01 dȕ L x x
f x e

                   (26) 

According to Xu (2010) and Li et al. (2012), a value of 2.0 can be used for ȕ . dL  is the total 

length of the damping zone that is related to the simulated wave length.  

5.5 Interface boundary 

The most difficult issue to treat in a porous flow is the flow exchange across the interface 
boundary between the pure fluid flow and porous flow regions. Since SPH is a Lagrangian 
particle method, the flow exchange means that the fluid particles near the interface should be 
allowed to move across the porous interface and relocate in different flow media regions 
freely at each computational time step. The physical boundary conditions at the interface are 
the continuity of the velocities and continuity of the normal and tangential stresses (Beavers 
and Joseph, 1967), expressed as 

 w w pnu u                                      (27) 

   i ij j i ij jw p
nı n n ı n                     (28) 

   i ij j i ij jw p
Ĳ ı n Ĳ ı n                       (29) 

where the subscript w denotes the physical variable in the water region, while p denotes that 
in the porous region; ijı  are the stress tensors; and iĲ  and in  denote the tangential and 

normal unit vector to the interface, respectively.  
These interface boundary conditions have been simplified into a two-dimensional form 

by Huang et al. (2003) in simulating a solitary wave propagation over a submerged porous 
breakwater. In order to implement such similar boundary conditions in ISPH, an imaginary 
grid line was used by Shao (2010) at the interface between the two flow regions. The 
computation of each flow region was carried out separately. Unfortunately this method is 
complicated to use and also not entirely consistent with the Lagrangian nature of the SPH, as 
pointed out by Akbari and Namin (2013). By assuming that the porous interface is not a sharp 
line but encompassing a transitional zone, Akbari and Namin (2013) proposed a novel 
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boundary treatment method by introducing a finer background mesh with porosity 
information for both the porous and pure fluid regions. This method allows more detailed 
porosity information to be obtained for the computations near the interface. By adopting 
similar idea, in the present work a more straightforward but equally effective interface 
treatment method is proposed for the ISPH applications in the wave interaction with porous 
structures. Instead of only using a single interface line, an interface zone is placed between 
the two flow regions with the interface line being located at the centre of the zone, as shown 
in Fig. 1. Therefore, two areas are separated on both sides of the interface boundary line, the 
fluid part and the porous part each with a width 2D0, where D0 is the distance between the 
particles. 

By using the proposed ISPH interface model, at each computational time step the fluid 
pressures of the particles within the interface zone are averaged by the SPH kernel function 
after solving the pressure Poisson equation. Only the neighbouring particles located within 
the interface zone are included in the summations. Meanwhile, the interface boundary 
conditions can automatically meet the continuities of the normal and tangential stresses due 
to the particle velocity being the apparent velocity in the governing equations (Ren et al., 
2014). Then the velocity and position of interface zone particles are updated by using this 
revised pressure field, which has already included the influence of flow exchanges at the 
interface. With this treatment, more continuous velocity and pressure fields are achieved in 
the vicinity of the interface between the outside and porous flows. This approach could be 
considered to be better than the interface boundary treatment proposed by Ren et al. (2014), 
since the tangential velocity across the porous interface is generally not continuous, thus it 
should be physically unrealistic to average out these velocity differences. 

 

6 Case I: Solitary wave attenuation over a porous bed 
 

6.1 Description of model setup 

The accuracy of the improved ISPH flow model for porous structures is firstly verified 
by comparing the numerical results of solitary wave damping over a porous bed with the 
theoretical solutions of Packwood and Peregrine (1980). After the model is verified, it will be 
used to investigate the main features of flow field around and inside a submerged porous 
breakwater in the next section. A schematic diagram of the model setup is shown in Fig. 2. 
The computational zone includes both the water region and the porous region. A solitary 
wave is generated on the left side of the numerical flume with the initial wave height iH . The 

still water depth is 0h , and the depth of the porous bed is ph  with porosity wn . As shown in 

Fig. 2, the intersection of the left boundary and the flume bottom is defined as (x, z) = (0, 0). 
The wave tank is 46.0 m long and 0.52 m high. The starting point of the porous bed is 

sX 3.0 m away from the coordinate origin of the computational domain. 0S  is the stroke of 

the wave paddle. 

 

6.2 Comparisons of wave height attenuation 

Packwood and Peregrine (1980) gave the theoretical wave height damping function for 
solitary wave propagating over a porous bed with finite depth as 
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                      (30) 

where x  is the distance travelled by the solitary wave; and 

  0 00 4s h pC . K C h h                       (31) 

 0 0 01 2iC gh H h                       (32) 

where hK  represents the hydraulic conductivity of the porous media and can be expressed as  

h pK K g ȣ                         (33) 

where ȣ kinematic viscosity of the fluid. 
The computational parameters used are: water depth 0h  = 0.4 m, ratio of depth of porous 

bed to still water 0/ hhp  = 1.0, porosity of bed 0 39wn .  and incident solitary wave height 

iH  = 0.11 m. The mean diameter of porous materials is 50 0 55 cmd . so the intrinsic 

permeability coefficient is 7 20 102 10  mpK .    according to Eq. (5), and the nonlinear 

resistance force coefficient is 0 51fC . as per Eq. (6). The particle spacing is D0 = 0.04 m 

and about 24 K particles are used in the simulation. 
Fig. 3 compares the wave height ratios obtained from the ISPH computations and 

theoretical solutions of Packwood and Peregrine (1980). The green line with circles 
represents the theoretical wave attenuation ratios with the increase of the travel distance, 
while the red line with upper triangular denotes the ISPH results by using the proposed 
interface boundary treatment and the blue line with diamonds denotes the ISPH results 
without using the interface treatment. It can be seen that even with this small degree of 
permeability 7 20 102 10  mpK .   , the wave height ratio iH H  could decrease to 0.745 after 

travelling a distance of 28 m. It can also be seen that, compared with the theoretical solutions, 
the ISPH computations with the interface boundary treatment have shown much better 
agreement. As for the discrepancy between the numerical and theoretical results, it could be 
caused by the numerical errors in the free surface detection with some particles splashing out. 
The reason for the numerical results being generally lower than the theoretical ones is most 
likely due to the energy dissipations caused by the friction over bed, as explained by Huang 
et al. (2008). 

 

6.3 Pressure continuity at the interface 

In order to further test the interface boundary treatment, the pressure continuities at the 
interface are checked by comparing the pressures at the same point of the interface but 
calculated from different sides of the flow zone. Table 1 presents the coordinates of six 
pressure measurement points that are in three pairs, i.e. P1 and P2, P3 and P4, P5 and P6. 
Each pair of the points has the same x coordinate but a very tiny difference in the z 
coordinate, so that they can be considered to be at the same position. z = 0.001 m means that 
the location is in the pure water area, while z = -0.001 m means that the location is in the 
porous area. For illustration, these measurement points are also shown in Fig. 2. 

Fig. 4 shows the time histories of dynamic pressure at these six measurement points. As 
can be seen from the pressure curves, each pair of the pressure points matches its counterpart 
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(i.e. P1 to P2, P3 to P4, P5 to P6) quite well throughout the simulation time, including all the 
peak values as well as the pressure fluctuations. This has demonstrated the effectiveness of 
the proposed interface boundary treatment to achieve good pressure continuities. 

 

7 Case II : Solitary wave interaction with a submerged porous breakwater 
 

7.1 Description of numerical modelling 

A numerical simulation was carried out using the proposed ISPH model to reproduce the 
experiment of Wu and Hsiao (2013). The physical experiment was conducted in a 2D narrow 
wave flume that was 25 m long, 0.5 m wide and 0.6 m high. The left hand side of the flume 
was equipped with a piston-type wave-maker to generate the solitary wave and a gravel beach 
was installed on the right side of the flume to dissipate wave energy and reduce wave 
reflection (Wu and Hsiao, 2013). The flume bottom was a solid boundary and the right side 
of the computational domain was an absorbing boundary. A permeable cuboid structure was 
mounted on the bottom in the middle of the wave flume, which was composed of uniform-
sized spheres with a constant diameter 50d  = 1.5 cm and 13 cm long, 6.5 cm high and 50 cm 

wide with a porosity of 0.52. As shown in Fig. 5 for the computational model, the time 
histories of free surface elevation were obtained by two wave gauges located in front of (x = 
−1.8 m, WG1) and behind (x = +1.8 m, WG2) the porous breakwater. The velocity field was 
measured by a particle image velocimetry (PIV) in the vicinity of the permeable breakwater 
in the experiment, which is also used here for validating the numerical model. The constant 
water depth was 0.106 m, with the wave height to water depth ratio of 0.45. More details 
about the experiment can be found in Wu and Hsiao (2013). 

As the porous breakwater in the experiment fully occupied the wave flume in the lateral 
direction, this can be regarded as a 2D problem in the macroscopic scale. As shown in Fig. 5, 
the intersection of the weather side of the porous breakwater and flume bottom is defined as 
(x, z) = (0, 0). The numerical wave tank is 8.0 m long and 0.2 m high, with a porous region in 
the middle of the wave tank, which is shorter than the experimental flume. The weather side 
of the breakwater is 4.0 m away from the left side of the computation domain. Since the 
length of the computational domain is shorter than the experimental wave flume (25 m) due 
to the CPU constrains, instead of imposing the experimental wave height, the numerical 
incident wave height 0.477 m was determined by matching the numerical wave height at 
reference wave gauge WG1 with the experimentally-measured one through the trials-and-
errors. The downstream boundary was a wave absorbing boundary to prevent wave 
reflections. The bottom of the wave tank was treated as non-slip velocity boundary. The 
particle spacing is 0.005 m, with about 36 K particles in the simulation. The particle spacing 
in the porous region is the same as that in the fluid area. This setup can ensure both 
computational efficiency and accuracy as only about 3.5 hours were needed for 8 s 
simulations by using a computer of CPU 3.33 GHz. 

 

7.2 Comparisons between model results and experimental data 

Fig. 6 shows the comparison of time series of free surface elevation between present 
ISPH model results and experimental data of Wu and Hsiao (2013). As can be seen the wave 
curve at reference point x = -1.8 m fits fairly well with the experimental measurement, 
especially for the incident wave as shown in Fig. 6 (a). This means the numerically-generated 
incident wave is a close representation of the laboratory wave. The incident wave is partially 
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reflected by the submerged porous breakwater after 4 s. The reflected wave propagates in the 
opposite direction towards the wave gauge point x = -1.8m, resulting in a waveform similar to 
the sine wave shape. There exist some kinds of free surface fluctuations, which could be 
attributed to our extraction of the free surface by averaging three particles in the 
neighbourhood. Averaging more particles could lead to much smoother results but may 
comprise the numerical accuracy in capturing the peak values. Likewise, Fig. 6 (b) shows the 
numerical predictions of wave time series at x = 1.8 m, which also match well with the 
experimental measurements. It is noted that there is a slight overestimation of the wave 
surface at the wave trough in the numerical results and this may be due to the friction caused 
by the porous structure on the flow being slightly underestimated by the model. 

Fig. 7 (a) ~ (e) shows the comparisons of flow velocity field between model results 
(right) and experiment (left) at five different instantaneous time t = 1.45 s, 1.65 s, 1.85 s, 2.05 
s and 2.25 s, respectively. These representative times were chosen to show the flow features 
around and inside the submerged porous breakwater at five wave evolution phases of interest, 
from wave approaching the porous breakwater until leaving it. The different colours in each 
velocity vector field represent the instantaneous pressures. 

As it can be seen from Fig. 7 (a), the free surface elevations, as well as the flow patterns, 
are accurately predicted by the model. When the leading wave front approaches the weather 
side of the porous breakwater at t = 1.45 s, the particle velocity directions are changed due to 
the impediment of the breakwater, resulting in the flow separation at the top of the obstacle 
and generation of a small vortex on the upper left face of the structure. Although the velocity 
is small, the flow is seen to penetrate the porous breakwater and flows from the lee side to the 
pure fluid zone. Despite the general agreement, slightly disturbed velocities can be observed 
on the lee side of the obstacle in the experimental measurement as shown in the left image of 
Fig. 7 (a). This is because the breakwater is composed of regularly-spaced spheres with 
uniform size in the experiment and therefore the flow can only pass through the gaps among 
the spheres with no flow flux on the sphere face. However, in the ISPH model the porous 
region was treated as being spatially-averaged and macroscopically-homogeneous and thus 
the fluid particles could penetrate the lee face of the breakwater at every point. 

As shown in Fig. 7 (b) (t = 1.65 s) and (c) (t = 1.85 s), with the increase in time, a large 
vortex is generated on the lee side of the breakwater, which is strengthened by the shear 
layers due to the flow convection and wave-structure interactions. After that, it starts to move 
upward to the free surface as shown in Fig. 7 (d) (t = 2.05 s), causing it to bulge slightly near 
the free surface in the experiment. When the wave has completely passed by the breakwater, 
the main vortex nearly reaches the free surface as shown in Fig. 7 (e) (t = 2.25 s), and the 
velocity disturbance occurs beneath the surface just above the vortex. Generally speaking, the 
ISPH model has simulated fairly well the locations of the centroid of the vortex as well as its 
dimension and entire evolution process. The noise-free pressure fields demonstrate the stable 
numerical simulations even across the interface boundary. However, it should also be realized 
that the distribution of some of the free-surface particles still does not seem to be physically 
realistic. This could be partly attributed to the inadequate spatial resolutions and the lack of 
turbulence modelling. 

Fig. 8 (a) ~ (e) shows the velocity profiles at seven different sections in the x direction. 
Table 2 presents the coordinates of these velocity measurement points. It should be noted that 
the coordinates of point V6 and V7 are different at t = 1.45 s and other times (t = 1.65, 1.85, 
2.05 and 2.25 s). In all the figures, the circle denotes the experimental velocity, and the red 
solid line denotes the horizontal velocity distribution and the green one denotes the vertical 
velocity distribution along the z direction, respectively, for the ISPH results. 

The measured and modelled results are generally in good agreement, as shown in Fig. 8 
(a) ~ (e), especially for the vertical velocity distributions, thus justifying the 2D numerical 



 

14 
 

modelling approach. The differences between the numerical and experimental horizontal 
velocity distributions most happen around the circulation zone at x = 0.16 m after the solitary 
wave passes over the porous breakwater. The interface boundary treatment is seen to perform 
quite well as fairly good match at all of the measuring sections near the porous structure has 
been achieved. For the comparison of horizontal velocity profiles, the numerical predictions 
for the location around the main vortex, i.e., x = 0.16 m, showed unsatisfactory agreement 
with the measurement, as shown in Fig. 8 (b) ~ (e). The ISPH results show a mostly uniform 
profile whereas the measured results are distorted due to the presence of vortex despite the 
fact some previous studies compared with the same dataset have showed quite satisfactory 
agreement on the velocity and even the turbulence properties (Ma et al., 2014; Wu and Hsiao, 
2013; Wu et al., 2014). The reasons could be attributed to the over-simplified way of drag 
force being added into the momentum equations or could be due to the deficiencies in the 
interface boundary treatment. Further refining the spatial resolution of the model could help 
improve the model performance but can only be achieved at heavy CPU expenses. 

As the leading wave front of the solitary wave approaches the weather side of the 
breakwater, the experimental results show a small horizontal velocity perturbation on the lee 
side of the obstacle at x = 0.14 m, whereas the ISPH results show a uniform velocity profile, 
as shown in Fig. 8 (a). This feature is consistent with the velocity field shown in Fig. 7 (a), 
with the reasons being explained before. So we can realize that the flow was affected by the 
local geometry of the breakwater and the flow features could largely depend on the x 
coordinate of the measurement sections. The velocity differences as shown in Fig. 8 (a) occur 
in the initial stage of the formation of the primary vortex. As the solitary wave further 
propagates towards the lee edge of the obstacle, this velocity difference between the 
measured and calculated results also shifts to the location x = 0.16 m as shown in Fig. 8 (b). 
Besides, they appear in both the horizontal and vertical velocity profiles at this location. With 
the increase of time from t = 1.85 s to 2.25 s, the horizontal velocity differences continue to 
exist, whereas the vertical velocity differences gradually reduce until a satisfactory agreement 
with the experimental data is obtained. This is demonstrated at both x = 0.16 m and 0.20 m in 
Fig. 8 (c) ~ (e). This indicates that the model can well predict the vertical velocity profiles for 
most of the measuring sections. As the interface boundary between the porous and outside 
flow regions is located at z = 0.065 m and x = 0.0 m and 0.13 m in the computational domain, 
the velocity profiles in Fig. 8 demonstrated that the proposed ISPH interface flow model can 
satisfactorily reproduce the flow velocity changes near the important areas of the interface. 

 
7.3     Sensitivity study of model convergence and interface boundary treatment  

To check the convergence of the ISPH porous flow model, two additional computations 
have been made with a coarser and finer particle spacing of 0.0065 m and 0.0035 m, as 
compared with the original run using particle spacing of 0.005 m. The computed horizontal 
and vertical velocity distributions along the depth on both sides of the porous breakwater, are 
shown in Fig. 9 (a) and (b), respectively, for the location of x = -0.04 m and 0.08 m at 
selected time t = 2.05 s. The comparisons showed very little differences among the three 
numerical runs indicating the convergence of the model results. We can also find out that the 
most refined computations using particle size 3.5 mm seem to agree best with the 
experimental data of Wu and Hsiao (2013). Nonetheless, it has been found that the 
convergence property of the model is not as good as expected for the vertical velocity above 
the porous breakwater as shown in Fig. 9 (b). This is most likely due to our use of the low-
order solitary wave theory to generate the numerical waves, which caused more discrepancies 
in the velocity profile. 
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To further demonstrate the improvement of the interface boundary treatment as described 
in Section 5.5, we have also made another control run to compare the numerical results 
obtained with and without the proposed interface model. Fig. 10 shows the horizontal and 
vertical velocity distributions at x = 0.0 m at time t = 1.45 s, when the solitary wave crest is 
approaching the weather side of the breakwater. In the figure, the circles represent the 
experimental data of Wu and Hsiao (2013), and the solid and dotted lines represent the ISPH 
numerical results computed with and without the use of the interface model. It is obvious that 
the improved model provides more accurate predictions of the velocity profiles especially for 
the vertical velocity, for which a sharper velocity gradient has been captured near the location 
of the interface between the outside and porous flow regions.  

 

8 Conclusion 
 
An incompressible SPH model has been developed for investigating the wave 

interactions with porous structure to explore the flow motions inside and around the structure. 
An improved interface boundary treatment has been proposed between the porous and outside 
mean flows by interpolating and averaging the computed particle pressures within the 
interface boundary zone using SPH kernel functions. 

The improved model was first verified by comparing the numerical wave damping ratio 
against the theoretical solution for the case of solitary wave propagation over a porous bed. 
As a way of checking the continuity of interface flow variables, the time histories of 
computed dynamic pressures were compared at three pairs of the measurement point located 
on both sides of the interface that is close to each other. As a practical application and further 
evaluation of the model, very detailed investigations have been conducted to explore the flow 
motions induced by a solitary wave passing through a submerged porous breakwater. The 
time histories of the free surface and horizontal and vertical velocity profiles at a number of 
the measuring sections were compared between the ISPH numerical simulations and the 
experimental data. Again a good agreement is obtained for all of the wave parameters of 
interest. Although some kinds of discrepancy were found in the flow circulation zone on the 
lee side of the breakwater, the satisfactory agreement near the interface boundaries provided a 
strong indication that the improved interface treatment model is more effective to solve the 
problems of wave interaction with porous structures. Furthermore, model convergence has 
been checked by using three different particle sizes and almost identical numerical results 
have been obtained while the most refined computations agreed best with the measured data.  
Another two control runs have also been carried out by using the ISPH model with and 
without the improved interface boundary treatment. The computed wave damping height and 
two velocity distributions along the depth clearly demonstrated that the proposed interface 
model significantly improved the modelling accuracy and obtained better agreements with 
the experimental data. We would expect that the inclusion of turbulence model (e.g. Gotoh et 
al., 2001) and further refinement of the particle spatial resolutions could better improve the 
performance of the model. 
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Table 1. The coordinates of pressure measurement points 

Measurement 
points 

P1 P2 P3 P4 P5 P6 

x (m) 10 15 20 

z (m) 0.001 -0.001 0.001 -0.001 0.001 -0.001 
 
 
 

 

 

 

 

 

Table 2. The coordinates of velocity measurement points 

Measurement 
points 

V1 V2 V3 V4 V5 V6 V7 

x (m) 
t = 1.45 s -0.04 0.00 0.04 0.08 0.12 0.14 0.16 

t = other -0.04 0.00 0.04 0.08 0.12 0.16 0.20 
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Fig. 1 Schematic diagram of interface zone (space between the two red lines) along the 
interface boundary line 

 

 

 
 

 

 

Fig. 2 Schematic diagram of solitary wave propagating over a porous bed 
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Fig. 3 Comparisons of ISPH and theoretical wave attenuation heights for solitary wave 
propagating over a porous bed 
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Fig. 4 Time series of dynamic pressure computed at different measurement points 

 
 
 

 

 
 

 

 

Fig. 5 Schematic diagram of solitary wave propagating over a submerged porous breakwater 
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Fig. 6 Comparison of time series of free surface elevation between ISPH model results and 
experimental data of Wu and Hsiao (2013) at (a) x = -1.8 m and (b) x = 1.8 m 
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Fig. 7 (a) Comparison of velocity field between model results (right) and experiment (left) at 
t = 1.45 s 
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Fig. 7 (b) Comparison of velocity field between model results (right) and experiment (left) at 
t = 1.65 s 

 

 

 

Fig. 7 (c) Comparison of velocity field between model results (right) and experiment (left) at 
t = 1.85 s 

 

Fig. 7 (d) Comparison of velocity field between model results (right) and experiment (left) at 
t = 2.05 s 
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Fig. 7 (e) Comparison of velocity field between model results (right) and experiment (left) at 
t = 2.25 s 
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Fig. 8 (a) Horizontal and vertical velocity profiles comparison between model results and 
experiment at t = 1.45 s. Circle: experiment; Solid line: ISPH results (red: horizontal velocity, 

green: vertical velocity)  
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Fig. 8 (b) Horizontal and vertical velocity profiles comparison between model results and 
experiment at t = 1.65 s. Circle: experiment; Solid line: ISPH results (red: horizontal velocity, 

green: vertical velocity)  
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Fig. 8 (c) Horizontal and vertical velocity profiles comparison between model results and 
experiment at t = 1.85 s. Circle: experiment; Solid line: ISPH results (red: horizontal velocity, 

green: vertical velocity)  
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Fig. 8 (d) Horizontal and vertical velocity profiles comparison between model results and 
experiment at t = 2.05 s. Circle: experiment; Solid line: ISPH results (red: horizontal velocity, 

green: vertical velocity)  
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Fig. 8 (e) Horizontal and vertical velocity profiles comparison between model results and 
experiment at t = 2.25 s. Circle: experiment; Solid line: ISPH results (red: horizontal velocity, 

green: vertical velocity)  
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Fig. 9 Convergence analysis of ISPH model computations for horizontal (left) and 

vertical (right) velocity distributions at (a) x = -0.04 m and (b) x = 0.08 m 
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Fig. 10 Horizontal (left) and vertical (right) velocity distributions along depth on weather 
side of breakwater (Solid line: with interface model; Dotted line: without)   

 


