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Abstract

Measurement of NO2 at low concentrations is non-trivial. A variety of techniques exist,

with the conversion of NO2 into NO followed by chemiluminescent detection of NO be-

ing prevalent. Historically this conversion has used a catalytic approach (Molybdenum);

however this has been plagued with interferences. More recently, photolytic conversion5

based on UV-LED irradiation of a reaction cell has been used. Although this appears

to be robust there have been a range of observations in low NOx environments which

have measured higher NO2 concentrations than might be expected from steady state

analysis of simultaneously measured NO, O3, JNO2 etc. A range of explanations exist

in the literature most of which focus on an unknown and unmeasured “compound X ”10

that is able to convert NO to NO2 selectively. Here we explore in the laboratory the

interference on the photolytic NO2 measurements from the thermal decomposition of

peroxyacetyl nitrate (PAN) within the photolysis cell. We find that approximately 5 %

of the PAN decomposes within the instrument providing a potentially significant inter-

ference. We parameterize the decomposition in terms of the temperature of the light15

source, the ambient temperature and a mixing timescale (∼ 0.4 s for our instrument)

and expand the parametric analysis to other atmospheric compounds that decompose

readily to NO2 (HO2NO2, N2O5, CH3O2NO2, IONO2, BrONO2, Higher PANs). We ap-

ply these parameters to the output of a global atmospheric model (GEOS-Chem) to

investigate the global impact of this interference on (1) the NO2 measurements and (2)20

the NO2 : NO ratio i.e. the Leighton relationship. We find that there are significant in-

terferences in cold regions with low NOx concentrations such as Antarctic, the remote

Southern Hemisphere and the upper troposphere. Although this interference is likely

instrument specific, it appears that the thermal decomposition of NO2 within the instru-

ment’s photolysis cell may give an explanation for the anomalously high NO2 that has25

been reported in remote regions, and would reconcile measured and modelled NO2 to

NO ratios without having to invoke novel chemistry. Better instrument characterization,

coupled to instrumental designs which reduce the heating within the cell seem likely
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to minimize the interference in the future, thus simplifying interpretation of data from

remote locations.

1 Introduction

Accurate quantification of atmospheric nitrogen oxide (NOx which is predominantly

NO + NO2 but includes small contributions from NO3, N2O5, HONO, HO2NO2 etc.)5

concentrations is crucial for many aspects of tropospheric chemistry. NOx plays a cen-

tral role in the chemistry of the troposphere, mainly through its impact on ozone (O3)

and hydroxyl (OH) radical concentrations. O3 is a climate gas (Wang et al., 1995), ad-

versely impacts human health (Mauzerall et al., 2005; Skalska et al., 2010) and leads

to ecosystem damage (Ainsworth et al., 2012; Ashmore, 2005; Hollaway et al., 2012). It10

is produced through the reaction of peroxy radicals (HO2 and RO2) with NO (Dalsøren

and Isaksen, 2006; Lelieveld et al., 2004). The OH radical is the primary oxidizing

agent in the atmosphere (Crutzen, 1979; Levy II, 1972) as it controls the concentration

of other key atmospheric constituents such as methane (CH4), carbon monoxide (CO)

and volatile organic compounds (VOCs). It is both produced through the reaction of15

NO with HO2 and is lost by its reaction with NO2. NO2 itself poses a public health risk

(Stieb et al., 2002). Thus understanding the sources, sinks and distribution of NOx is

of central importance to understanding the composition of the troposphere.

During the daytime there is fast cycling between NO and NO2, due to the rapid

photolysis of NO2 and the reaction NO and O3 to form NO2 (Kley et al., 1981).20

NO2 +hv(< 410nm) → NO+O(3P) (R1)

O2 +O(3P)+M → O3 +M (R2)

O3 +NO → O2 +NO2 (R3)
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Placing NO2 into steady state and assuming that these three reactions are the only

chemistry occurring leads to the Leighton relationship, φ (Leighton, 1961), in Eq. (1).

1 =
k1 [NO]

[

O3

]

jNO2
[NO2]

=φ (1)

The quantities in the relationship are readily measured and deviations from unity have

been interpreted to signify missing (i.e. non ozone) oxidants of NO. These perturbations5

have been used to infer the existence of oxidants such as peroxy radicals, or halogen

oxides in the atmosphere (Bauguitte et al., 2012; Cantrell et al., 2003; Frey et al., 2015).

The concentration of NOx varies from> 100 ppb (parts per billion) next to roads

(Carslaw, 2005; Pandey et al., 2008) to low ppt (parts per trillion) in the remote at-

mosphere (Lee et al., 2009). Direct transport of NOx from polluted to remote regions is10

not efficient, because NOx is removed from the atmosphere on a timescale of around

a day by the reaction of NO2 with OH and the hydrolysis of N2O5 on aerosol surfaces

(Brown et al., 2004; Dentener and Crutzen, 1993; Riemer et al., 2003). Instead, reser-

voir species such as peroxy-acetyl nitrate are made in polluted regions (which are high

in both NOx and peroxy-acetyl precursors such as acetaldehyde) and are subsequently15

transported to remote regions where they thermally breakdown to release the NOx.

CH3CHO+OH•
+O2 → CH3C(O)OO•

+H2O (R4)

CH3C(O)OO•
+NO2 +M⇄CH3C(O)O2NO2 +M (R5)

The equilibrium between peroxy-acetyl radicals, NO2 and PAN (Reactions R4 and R5)

is highly temperature sensitive. Thus the PAN lifetime changes from 30 min at 25
◦
C20

(Bridier et al., 1991) to 5.36 years at −26
◦
C (Kleindienst, 1994).

Measurements of NOx species in the remote atmosphere have been made over the

last 40 years. Multiple in-situ techniques are available such as LIF (Matsumoto and

Kajii, 2003), Cavity Ring Down (Osthoff et al., 2006), and QCL – Quantum Cascade

Laser (Tuzson et al., 2013). However, probably the most extensively used approach25

has been based on the chemiluminescent reaction between NO and O3. This exploits
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the reaction between NO and O3 (Reaction R6) which generates a vibrationally ex-

cited NO2 molecule which decays into its ground state through the release of a photon

(Reaction R7) (Clyne et al., 1964).

NO+O3 → NO∗
2

(R6)

NO∗
2
→ NO2 +hv (> 600nm) (R7)5

This forms the basis of the chemiluminescence analysis of NO (Drummond et al., 1985;

Fontijn et al., 1970; Kelly et al., 1980; Peterson and Honrath, 1999). The number of

photons emitted by the decay of excited NO
∗
2 to NO2 is proportional to the NO present

before reaction with O3 (Drummond et al., 1985). The photons emitted are detected by

a cooled photomultiplier tube (PMT) with the sample under low pressure (to maximize10

the fluorescence lifetime of the NO
∗
2), to yield a signal which is linearly proportional to

the number density of NO in the sample gas (Fontijn et al., 1970).

With NO chemiluminescence analysers it is also possible to analyse NO2 if it is first

converted to NO, either catalytically (typically heated Molybdenum) as in Reaction (R8)

(Villena et al., 2012), or by converting NO2 into NO photolytically (Ryerson et al., 2000),15

exploiting Reaction (R1).

Mo+3NO2 → MoO3 +3NO (R8)

To measure NO and NO2, the sample flows through the NO2 to NO converter (of either

type) to the reaction chamber where the NO+O3 reaction occurs and the decay of

NO
∗
2 to NO2 allows the concentration of NO+NO2 in the air to be measured. Then,20

the sample flow is switched to bypass the NO2 to NO converter. Now, only NO present

in the sample is detected in the chemiluminescence reaction. The NO signal is then

subtracted from the NO+NO2 (NOx) signal giving the NO2 signal.

Measurements of NO and NO2 have been successfully made in a range locations

using the chemiluminescence technique (Huntrieser et al., 2007; Lee et al., 2009; Pe-25

terson and Honrath, 1999; Zhang et al., 2008). However, measurements made in re-

mote (low NOx) locations, such as Antarctica and in the open ocean have at times
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identified an unexplained imbalance in the Leighton relationship (Cantrell et al., 1997;

Hosaynali Beygi et al., 2011). Measured NO2 concentrations are higher than would

be expected from the observed NO, O3, JNO2 along with reasonable concentrations

of other oxidants (peroxy radicals, halogen oxides). Various explanations have been

posited in order to overcome the apparent oxidation gap, typically relying on a mystery5

unmeasured oxidant, or pushing known chemistry into theoretical realms by theorizing

high turnover of short-lived species which may only have been measured in trace quan-

tities (Cantrell et al., 2003; Frey et al., 2013, 2015; Hosaynali Beygi et al., 2011). An

alternative explanation would be an unknown interference on the NO2 measurement

increasing its apparent concentration.10

Here we explore the potential of PAN to interfere with chemiluminescence NO2 mea-

surements. In Sect. 2 we provide some details of the experimental studies undertaken.

In Sect. 3 we describe the results of experiments introducing differing concentrations

of PAN into NO2 converter/chemiluminescence systems. In Sect. 4 we analyse the

potential for errors with different NOx systems to investigate the interference on the15

measurement of NO2 from PAN. In Sect. 5 we evaluate the impact of this interference

on NO2 measurements and on the Leighton relationship through the use of a global

model and provide conclusions in Sect. 6.

2 Experimental details

In Sect. 2.1 we describe the two chemiluminescence instruments used for the analy-20

sis. The NO2 converters are described in Sect. 2.2. In Sect. 2.3 and the LIF instrument

used to provide a reference analysis is described. We describe our protocol for pro-

duction of PAN by acetone photolysis in Sect. 2.4. We provide details of the zero air

generation in Sect. 2.5. Then in Sect. 2.6 we describe the experimental methodology

of PAN interference tests and residence time tests in Sect. 2.7.25
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2.1 Instrumentation

Chemiluminescent measurements were performed using dual channel Air Quality De-

sign Inc. (Golden, Colorado, USA) instruments equipped with UV-LED based pho-

tolytic NO2 converters – commonly referred to as Blue Light Converters (BLCs). Two

similar instruments were employed; the “laboratory” NOx analyser (Sect. 2.1.1) – on5

which the majority of the experiments were performed and the “aircraft” NOx analyser

(Sect. 2.1.2) on which only temperature controlled BLC experiments were performed.

Both instruments feature independent mass flow controlled sample flows on each

channel (NO and NOx). The wetted surfaces of the instrument are constructed of 1/4

inch PFA tubing, with the exception of 316 stainless steel unions/MFC internals.10

Both instruments are calibrated for NO by internal, automatic standard addition. Cal-

ibration for NO2 converter efficiency is by internal automatic gas phase titration of NO

with O3 to form NO2 with the NO signal measured with the BLC lamps active and in-

active as described by (Lee et al., 2009). Artefacts in both NO and NO2 are measured

whilst sampling zero air.15

2.1.1 Laboratory NOx analyser

The laboratory NOx analyser from Air Quality Design, Inc. (AQD) is a custom dual

channel instrument designed for fast response and very low limit of detection (LOD).

The dual channel design means that there are effectively two separate NO chemilumi-

nescence instruments working in parallel. Both channels have identical flow paths and20

share identical duplicate equipment; ozonizers, MFCs, PMTs etc. Both channels share

the same vacuum pump – an Edwards XDS 35i. One channel is equipped with a BLC

immediately in front of the MFC flow control/low pressure side of the system. It is possi-

ble to analyse NO with one channel, and NOx with the other to provide a constant, fast

measurement (1 Hz) of NO and NO2. Alternatively, a single channel can be used with25

the BLC in a switching mode so that it is active for only 40 % of the duty cycle to provide

NO and NO2 measurement – the other 60 % of the duty cycle is devoted to NO (40 %)

28705
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and to measuring zero (20 %). In this case the second channel might be used for NOy

by connection of a catalytic converter to the inlet as is the set-up at the Cape Verde

Atmospheric Observatory GAW station (Lee et al., 2009). In these experiments both

modes were used in order to replicate different instrument designs; a switching mode

with 40 % duty cycle of the NO2 converter and a total sample flow of 1 standard L min
−1

,5

and a parallel mode with 100 % duty cycle of the NO2 converter with a total sample flow

of 2 standard L min
−1

.

The nominal sensitivity of the instrument is 3.5 and 4.0 cpsppt
−1

on channel 1 (NO)

and channel 2 (NO and NOx) respectively. The 1 min LOD is ∼ 2.5 pptv.

2.1.2 Aircraft NOx analyser10

The aircraft NOx analyser, also from AQD, operates similarly to the lab NOx analyser

with some alterations to make it suited to aircraft operation but which do not affect its

use on the ground. It can therefore be considered analogous to the lab NOx analyser

with the exception of the BLC which is of a non-standard design in that it uses six more

powerful UV-diodes which require active Peltier/forced air-cooling controlled by a PID in15

order to maintain an operating temperature close to ambient. The special requirements

for this NO2 converter are primarily because of the high sample flow rates needed to

measure NOx fluxes on an airborne platform at reduced pressure. However, in this

study the sample flow rate was a constant 1 standard L min
−1

per channel at ambient

temperature and pressure.20

The nominal sensitivity of the instrument is 8.3 and 11.6 cpsppt
−1

on channel 1 (NO)

and channel 2 (NOx) respectively. The 1 min LOD is ∼ 1.0 pptv.

2.2 NO2 converters

Photolytic converters for the two chemiluminescent systems were supplied by Air

Quality Design and manufactured according to their proprietary standards (Buhr,25

2004, 2007). Systems have also been developed subsequently (Pollack et al., 2011;
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Sadanaga et al., 2010) with variations implementation, though similar operation and re-

sults. Experiments with either NO2 converter were carried out at ambient temperature

and pressure; 20
◦
C, 1 atm.

Photolytic converters employ Reaction (R1) to convert NO2 to NO over a narrow

wavelength band, thus providing a more selective NO2 measurement to that provided5

by molybdenum catalysts (Ridley et al., 1988; Ryerson et al., 2000). The conversion

efficiency is determined by Eq. (2) where t is the residence time within the photolysis

cell. Here k[Ox] is the concentration and rate constant of any oxidant that reacts with

NO to form NO2 (Ryerson et al., 2000).

CE =

[

jt

jt+k [Ox]t

]

[

1−exp(jt−k[Ox]t)
]

(2)10

The rate constant of photolysis of NO2 (j ), and so, the rate of production of additional

NO beyond that in the original sample is given in Eq. (3).

j (T ) =

λmax
∫

λmin

F (λ)σ (λ, T )φ (λ, T )dλ (3)

In Eq. (3) j is the rate constant (s
−1

), F is the spectral photon flux

(photonscm
−2

s
−1

nm
−1

), σ is the absorption cross section of NO2 (cm
2
), φ is the quan-15

tum yield (dimensionless) of NO2 photo-dissociation, and T is the temperature (Sander

et al., 2011). The j value of the converter is practically determined by the irradiant

photolysis power of the UV emitting elements and how efficiently the power is used.

2.2.1 Standard BLC

Standard BLCs consist of two ends housing the UV-LEDs (1 W, 395 nm, UV Hex, Norlux20

Corp) within a heat sink to which is attached a cooling fan. The ends are bolted to

a central section with rubber gaskets forming an air-tight seal. Within the centre section
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a propriety Teflon-like material block is housed which serves as a highly UV reflective (>
0.95) cavity thought which the sample gas flows (Buhr, 2007). On two of the opposing

sides of the centre section are 1/4 inch Swagelok fittings acting as an inlet and outlet

for the sample gas.

The volume of this illuminated sample chamber is 16 mL which, with a standard flow5

rate of 1 standard L min
−1

, gives a sample residence time of 0.96 s. Additional lamp end

units were also supplied by AQD.

The conversion efficiency of the standard BLC with a sample flow of

1 standard L min
−1

was 22 to 42 % (j = 0.2...0.6 s
−1

) depending on the combination

of lamp units used whilst the external temperature of the converter was typically 34 to10

45
◦
C. All experiments were carried out at with sample gas at ambient temperature and

pressure; 20
◦
C, 1 atm.

2.2.2 High power BLC

The high power BLC of the aircraft instrument is designed to operate at a higher flow

rate (1.5 standard L min
−1

), lower pressure (∼ 300 Torr) and therefore lower residence15

time, to that of the standard BLC to allow fast time resolution measurements from an

aircraft. For this reason a greater number (six) of more powerful UV-LEDs [2 W, 395 nm,

Nichia Corp] are used in order that the conversion efficiency be acceptable under these

conditions. The lamps are placed evenly along two sides of a cylindrical cavity of the

same highly UV reflective Teflon with inlets at opposing ends. The high power BLC20

lamps are actively (Peltier) cooled to 47
◦
C and without Peltier cooling reach 77

◦
C. It

was therefore possible to control the internal temperature of the BLC by varying the

power supplied to the Peltier elements via the temperature controller.

The volume of this illuminated sample chamber is 10 mL which, with a standard

flow rate of 1 standard L min
−1

, gives a sample residence time of 0.60 s resulting in25

a conversion efficiency of 93 % (j = 6.5s
−1

).
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2.3 TD-LIF analyser

Laser induced fluorescence (LIF) provides a direct NO2 measurement, as opposed to

chemiluminescence with conversion. A direct method of NO2 determination to compare

with the BLC NO2 converters is desirable in order to properly know the source of any

“artefact” NO2 signal.5

The Thermal Dissociation Laser Induced Fluorescence (TD-LIF) system is a cus-

tom instrument developed for aircraft and ground-based observations of NO2,
∑

PNs,
∑

ANs, and HNO3. A detailed description of the TD-LIF instrument can be found in

Di Carlo et al. (2013), with a short description given here. It uses laser induced flu-

orescence (LIF) to detect NO2 concentrations directly (Dari-Salisburgo et al., 2009;10

Matsumoto and Kajii, 2003; Matsumoto et al., 2001; Thornton et al., 2000) and, cou-

pled with a thermal dissociation inlet system, allows measurement of peroxy nitrates

(
∑

PNs), alkyl nitrates (
∑

ANs), and HNO3 after conversion into NO2 (Day et al., 2002).

The TD-LIF comprises four main parts: the laser source, the detection cells system,

the inlet system and the pumps. The laser source is a Nd:YAG pulse doubled laser15

(Spectra-Physics, model Navigator I) that emits light at 532 nm with a power of 3.8 W,

a repetition rate of 15 kHz and 20 ns pulse-width. The detection cells system com-

prises four identical cells, one for each compound class, to allow simultaneous mea-

surements. Each cell is formed by a cube and two arms where the laser beam passes

through the sample air flow in the centre of the cell. Perpendicular to both (laser beam20

and air flow) there is the detector that is a gated photomultiplier with lens and long

pass filters to optimize the fluorescence detection, minimizing the non-fluorescence

light that reaches the detector (Di Carlo et al., 2013; Dari-Salisburgo et al., 2009). The

pump system includes a roots blower coupled to a rotary vane pump to maintain a flow

of 6 Lmin
−1

. The common inlet system is split in four channels: one at ambient temper-25

ature to measure NO2, and the last three heated at 200, 400 and 550
◦
C, to thermally

dissociate
∑

PNs,
∑

ANs, and HNO3 respectively into NO2 (Di Carlo et al., 2013). To

minimize quenching due to atmospheric molecules, and therefore increase the sen-
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sitivity of the TD-LIF, each cell is kept at low pressure (3–4 Torr). This increases the

fluorescence lifetime and facilitates the time-gating of the photomultiplier to further re-

duce the background (Dari-Salisburgo et al., 2009). The TD-LIF is routinely checked for

background by an over-flow of zero air in the detection cells; and calibrated by standard

addition of known amount of NO2 from a cylinder (NIST traceable) diluted in zero air5

– the flow of both zero air and NO2 being MFC controlled. The time resolution of the

measurements is 10 Hz and the detection limits are: 9.8, 18.4, 28.1, and 49.7 pptv (1 s,

S/N = 2) for NO2,
∑

PNs,
∑

ANs, and HNO3 cells, respectively (Di Carlo et al., 2013).

2.4 PAN preparation

In order to test the sensitivity of the instrument to peroxy-acetyl nitrate interferences10

it was prepared by the photolysis in air of acetone and NO as described by (Meyrahn

et al., 1987) and later by (Warneck and Zerbach, 1992; Zellweger et al., 2000). Re-

actions (R9)–(R11) describe the mechanism by which PAN is formed from acetone

photolysis.

(CH3)2CO+O2 +hv → CH3C(O)O•
2
+CH•

3
(R9)15

CH3C(O)O•
2
+NO → CH3C(O)O•

+NO2 (R10)

CH3C(O)O•
2
+NO2 → CH3C(O)O2NO2 (R11)

Here NO2 reacts stoichiometrically with the acyl radical to form PAN. In practice, an

excess of acetone is used to ensure that NO reacts completely. A minor product also

found in the photolysis of acetone is methyl nitrate, MeONO2, which is typically ap-20

proximately 1 % of the total yield (Mills et al., 2007). The proposed origin of the methyl

nitrate is shown in Reactions (R12)–(R16). Methyl nitrate is also found in the atmo-

sphere through oceanic emission (Moore and Blough, 2002) and as a product of the

thermal decomposition of PAN (Fischer and Nwankwoala, 1995; Roumelis and Glavas,

1992; Warneck and Zerbach, 1992). Reactions (R15), (R17) (Fischer and Nwankwoala,25

1995) show that the formation of nitro-methane and HONO is also possible from PAN
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synthesis by acetone photolysis.

2CH3C(O)O•
2
→ 2CH3CO•

2
+O2 (R12)

CH3CO•
2
→ CH•

3
+CO2 (R13)

CH•
3
+CH3C(O)O•

2
→ CH3O•

+CH3CO•
2

(R14)

(CH•
3
+NO2 → CH3NO2) (R15)5

CH3O•
+NO2 → CH3ONO2 (R16)

(CH3O•
+NO2 → HCHO+HONO) (R17)

A dedicated “PAN generator”, as used by Whalley et al. (2004), was employed to pro-

duce a consistent source of PAN. The generator consists of: flow control elements for

the NO standard gas, the acetone flow, and the zero air diluent flow; an acetone per-10

meation oven consisting of a reservoir of HPLC grade acetone (ACS grade, Acros)

with a silicone permeation tube placed in the headspace through which zero air flows,

all thermo-stated at 30
◦
C; and a Pyrex glass photolysis cell illuminated by UV light

centred at 285 nm (Pen-Ray mercury lamp, UVP). The Pyrex functions to filter wave-

lengths below 290 nm within the photolysis cell thus minimizing PAN photolysis (Mills15

et al., 2007).

All flow rates within the PAN generator were calibrated using a Gilian Gilibrator-2 Air

Flow Calibrator (Sensidyne). The PAN generator is capable of continuously producing

0.1–20.0 ppbv PAN. Linearity and mixing ratio of the PAN output was confirmed by PAN-

GC equipped with an ECD detector as described by Whalley et al. (2004), and also by20

complete reduction back to NO using a heated (325
◦
C) molybdenum catalyst (Thermo

Environmental). A Laser Induced Fluorescence instrument, described in Sect. 2.2.3,

was used to find if any NO2 produced directly in the PAN generator with the results

presented in Sect. 2.4.1.
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2.5 Zero air

Zero air was generated from dried (−40
◦
C dew point) compressed air by subsequent

filtering through a cartridge of molecular sieve (13×, Sigma Aldrich) to ensure a con-

sistent humidity throughout all experiments and was regenerated by heating to 250
◦
C

for 24 h when necessary. A second filter cartridge placed after the molecular sieve was5

packed with Sofnofil (Molecular Products) and activated charcoal (Sigma Aldrich) in

order to remove ozone, NOx and volatile organic compounds (VOC) which may be

present in the compressed air. Zero air generated from the compressed air and filter

cartridges system and zero air from an Eco Physics AG PAG 003 pure air generator

(the industry standard) were both sampled by the NO chemiluminescence analyser.10

No difference in the counts of the NO analyser was observed between the two sources

of zero air. Thus the NO content of both sources of zero air was considered to be

comparably low.

The NO2 content of any zero air used is critical (more so than NO) in this study.

In order to determine the NO2 content of the zero air sources a direct measurement15

of NO2 was required in order to avoid biasing the experimental procedure. The LIF

instrument described in Sect. 2.2.3 was used to compare the zero air sources (Table 1).

Zero air from both PAG 003 and filter stack was sampled by the NO2 LIF analyser.

Additionally, high grade bottled zero air (BTCA 178, BOC Specialty Gasses) was an-

alyzed for NO2. Table 1 shows the photomultiplier counts per second whilst sampling20

1.5 standard L min
−1

of zero air. The dark counts of the PMT in the absence of laser

light are typically less than 3 countss
−1

. The counts recorded are therefore the sum of

any NO2 fluorescence and scattered laser light. It is clear that the Sofnofil/Carbon filter

system has an advantage over both the PAG 003 and BTCA 178 zero air sources in

that a lower signal for NO2 fluorescence was observed. Typical sensitivity of the LIF25

NO2 channel was ∼ 180 cpsppb
−1

, thus a 4–4.5 cps improvement in zero background

equates to 22–25 ppts improvement in accuracy. Consequently, all dilution, zeroing,

and PAN generation utilized the Sofnofil/Carbon filter system.
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2.6 Experimental procedure

The NOx analysers were first calibrated for sensitivity/converter efficiency and sampling

zero air by overflowing the inlet from the internal source prior to the experiment for at

least 2 h. This is because the PAN from the generator is in zero air which has a very

low dew point and the sensitivity of the NOx analyser is reduced by high humidity5

in the sample. This means that switching the NOx analyser from sampling ambient

(humid) air to zero air causes the sensitivity to rise slowly and the humidity inside

of the reaction cell to decrease. After establishing an NO flow (4.78 ppm NO in N2,

BOC specialty gases) of 0.5 mLmin
−1

into the PAN generator, the acetone flow was

then adjusted to ∼ 10 mLmin
−1

and the diluent flow of zero air adjusted to achieve the10

desired output mixing ratio. The internal zero air of the NOx analyser was then shut

off so that the NOx analyser was sampling zero air from the PAN generator. Note that

the total flow from the PAN generator always exceeded the sample requirements of

the NOx analyser with excess flow vented to the atmosphere. The system was then

allowed to stabilize until a stable NO value was recorded on the NOx analyser. Next,15

the acetone photolysis lamp of the PAN generator was switched on so that acetone

was photolysed in the presence of NO to form PAN. Complete NO conversion to PAN

was indicated by the fact that in all cases the NO signal measured by the NOx analyser

fell to ∼ 0 ppbv after the acetone/NO mixture was illuminated by the photolysis lamp.

The diluent flow from the PAN generator was then varied to achieve PAN mixing ratios20

of between 0.2 to 1.3 ppbv. The corresponding NO2 signal was recorded once stable.

This procedure was repeated for various combinations of BLC lamps/assemblies and

analyser operation modes.

In order to investigate any interference from unreacted acetone, the NOx analyser

was allowed to sample the output of the PAN generator with the photolysis lamp off i.e.25

a flow of acetone and NO gas. No additional signal relative to zero air during the NO or

NO2 measurement cycle was observed during these experiments at any mixing ratio.
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To investigate any interference from unreacted peroxy radicals left over from photol-

ysis of excess acetone, produced in Reaction (R6), the NOx analyser was allowed to

sample acetone that had been photolysed within the PAN generator in the absence of

NO. NO was added downstream of the photolysis cell also. No additional signal over

zero air during the NO or NO2 measurement cycle was observed in either case, photol-5

ysed acetone with or without nitric oxide addition. Thus, it was concluded that acetone

does not interfere within the BLC and that peroxy radicals do not exist outside of the

broadband photolysis cell of the PAN generator. It should be noted that sampling ace-

tone does cause an increase in the zero count of the NOx analyser as acetone does

react with ozone; this chemiluminescence interference is known (Dunlea et al., 2007)10

and is accounted for in the measurements.

To test whether the PAN generator produced any NO2 directly (i.e. rather than as

a consequence of conversion of PAN to NO2), a direct measurement of NO2 was em-

ployed using the TD-LIF described in Sect. 2.2.3. The measured signal relative to pure

zero air was measured in the LIF NO2 channel when sampling various mixing ratios of15

PAN from the generator as shown in Fig. 1. It is evident that the NO2 signal observed

while sampling PAN from the generator lies within the noise of the zero signal measure-

ment. In this case each point represents a 10 min average as does the zero measure-

ment. With an averaging time of 10 min the theoretical limit of detection is estimated to

be less than 0.1 pptv – taking a 10 Hz LOD of 9.8 pptv, and averaging 6000 points (i.e.20

10 min) the precision improves by a factor of approximately 1/n where n is the number

of points averaged (Lee et al., 2009). It is therefore conservatively estimated that less

than 1 ppt NO2 at 1000 ppt PAN (0.1 %) is produced by the PAN generator. This is less

than previously estimated (Mills et al., 2007), albeit at higher PAN mixing ratios and

lower residence times within the acetone photolysis cell with the same generator.25

It was therefore determined that only PAN could be an interfering species in the

BLC from the PAN generator. The small percentage of methyl nitrate which may be

produced is discounted due to it being less thermally labile that PAN itself. Addition-

ally, the percentage interference observed is significantly greater than any expected or

28714



ACPD

15, 28699–28747, 2015

Interferences in

photolytic NO2

measurements

C. Reed et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

reported methyl nitrate yield from PAN synthesis by acetone photolysis i.e. 1 % (Mills

et al., 2007). In the following discussion we address the possibility of photolytic and

thermal dissociation of PAN or methyl nitrate to NO2 and subsequently NO within the

photolytic convertor.

2.7 Residence time5

The residence time of PAN in the 2.7 m PFA inlet linking the PAN generator to the NOx

analyser was varied by varying the flow rate. This was achieved by altering the sample

flows through the each of the NOx analyser channels (which share a common inlet).

3 Impact of PAN on NO2 measurements

In this section we discuss experiments investigating the potential impact of PAN on the10

two NO2 instruments. In Sect. 3.1 and 3.2 we explore the interference in the laboratory

instrument with a range of BLC convertors, eliminating any possibility for inlet effects in

Sect. 3.3, and in Sect. 3.4 we explore the interference in the aircraft instrument which

has an active cooling of the convertor. In Sect. 3.5 we investigate whether photolytic

decomposition of PAN could lead to the interferences and in Sect. 3.6 we investigate15

whether thermal decomposition could be the source.

3.1 Standard BLC and laboratory NOx analyser in constant mode

PAN was introduced to the NOx analyser, equipped with a BLC as described in

Sect. 2.2.1, diluted in zero air through a range of mixing ratios. The resulting mixing

ratio recorded by the analyser was recorded and is presented in the following sections.20

Figure 2 shows that the NO2 signal is proportional to increasing PAN mixing ratios. The

measured mixing ratios of NO2 were 8–25 % of the initial PAN mixing ratio.
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The percentage conversion of PAN to NO2 is on average highest at the lowest con-

verter efficiency and vice versa. Potential reasons for this effect are addressed in

Sect. 3.6.

3.2 Standard BLC and laboratory NOx analyser in switching mode

Figure 3 shows the NO2 signal resulting from the same three BLC units operated in5

switching mode (40 % duty cycle). The percentage PAN conversion observed is lower in

all cases than in the corresponding constant mode. This is likely due to the lower lamp

temperature as a result of operating only 40 % of the time. The relationship between

conversion efficiency and signal are not as clearly evident here as for constant mode

operation (Fig. 2). It is possible that the greater variation in the measurement due to10

the lower amounts of NO2 produced obscured any trend, however it is clear that there

is still a significant proportion of PAN measured as NO2; an average of 5.8 %.

3.3 Inlet residence time effects

It is not clear from either Fig. 2 or 3 whether the PAN decomposition occurs within

the BLC exclusively or within the inlet of the system, as has been claimed previously15

(Fehsenfeld et al., 1987). Previous studies (Fehsenfeld et al., 1990; Ridley et al., 1988;

Sadanaga et al., 2010) have also reported a small PAN interference with photolytic con-

verters, while some found the contribution to the NO2 signal from PAN to be negligible

(Ryerson et al., 2000). Others (Val Martin et al., 2008) acknowledge the possibility for

an interference and estimate a small (2 to 4 pptv) positive bias. The photolytic converter20

designs in the aforementioned studies vary greatly in their implementation and do not

have the same ubiquity as BLCs used here, i.e. within the GAW network (Penkett et al.,

2011).

Table 2 demonstrates that the residence time of PAN within the inlet does not affect

the signal arising from PAN decomposition in our system. This rules out any significant25

contribution from the inlet to PAN decomposition. The inlet in this case consists of ca.
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2.7 m 1/4 inch PFA tubing shielded from light and held at 20
◦
C. In other applications,

for example if the inlet is heated, contaminated, or has a very long residence time, it is

quite possible that significant PAN decomposition occurs.

From these experiments it is evident that a significant NO2 signal is observed when

sampling PAN diluted in zero air. The signal seen corresponds to around 5 to 25 % of5

the PAN supplied which represents a significant interference. The possibility of thermal

decomposition within the inlet was ruled out.

3.4 High powered and actively cooled photolytic NO2 converter

Figure 4 shows the difference in NO2 signal between the cooled and uncooled high

powered BLC described in Sect. 2.2.2. In all of the cooled cases the NO2 measured10

was significantly lower than in the uncooled case; this accounts for any increased arte-

fact (the signal recorded when sampling zero air) in the uncooled case. The conversion

efficiency was 93 % for NO2 →NO.

The effect of actively cooling the BLC lamps is significant as apparent in the much

lower NO2 concentrations measured whilst sampling a range of PAN mixing ratios15

(Fig. 4). It is therefore plainly evident that there is a significant effect of cooling the

UV-LEDs which acts to mitigate any signal arising from PAN.

3.5 Possible photolytic interferences of BLCs

Spectral radiograms of the UV-LED elements of standard BLCs were obtained using

an Ocean Optics QE65000 spectral radiometer coupled to a 2π quartz collector. The20

spectrometer and collector optics were calibrated using an NIST traceable light source

(OL FEL-A, Gooch and Housego) and ultra-linear power supply (OL 83A, Gooch and

Housego). The light source is a 1000 W quartz-halogen tungsten coiled-coil filament

lamp with spectral irradiance standard F-1128. The lamp was operated at 8 Amps DC

(125 V), with the lamp-collector distance fixed at 50 cm. Calibration was carried out in25
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a light sealed chamber. Spectra of the BLC UV-LED lamps were taken within the same

light-proof chamber with the same distance between the lamp and collector.

Figure 5 shows the spectral emission of six different BLC UV-LED units. These units

ranged in age from new to nearing the end of their service life i.e. the conversion ef-

ficiency of the whole BLC unit had fallen below acceptable limits. As the LED units5

age, the relative intensity of their outputs declines, this decrease in intensity can be

due to dimming of the overall output, or failure of individual array elements determined

by visual inspection during operation. It should be pointed out however, that the light

intensity of the UV-LEDs is not directly proportional to the NO2 conversion efficiency of

the complete whole BLC. Rather, the conversion efficiency is strongly dictated by the10

condition of the reflective Teflon-like cavity. For example, disabling one of the two lamps

in a BLC does not reduce the conversion efficiency by half, but by a much smaller per-

centage. Additionally, replacing the UV-LED elements of a converter whose conversion

efficiency has dropped below 30 % with new lamps will not lead to a recovery of the

conversion. Scrupulous cleaning of the reflective cavity with solvent and mild abrasion15

of the surface will however recover the conversion efficiency considerably.

Figure 6 depicts the absorption cross sections of atmospheric nitrogen compounds

against the measured spectral output of UG5 UV-passing filter glass (Schott, 1997)

used in lamp-type PCL optics e.g. Eco Physics PCL 762, and the averaged measured

spectral output of six individual BLC UV-LED arrays of varying running hours. Also20

shown is the NO2 quantum yield (Gardner, 1987; Koepke et al., 2010). It can be dis-

cerned that the UV-LED output overlaps fully with the NO2 absorption band and the

NO2 quantum yield and is therefore photon efficient. It is also shown that there in min-

imal overlap with HONO and no overlap in the spectrum at all with PAN. It has been

shown (Carbajo and Orr-Ewing, 2010; Talukdar et al., 1997) that there is no overlap25

either with methyl, ethyl or isopropyl nitrate – methyl nitrate being a minor impurity in

PAN synthesis. There is only very minor overlap in the PCL optics spectrum with PAN,

methyl ethyl, and isopropyl nitrate. There is a great deal of overlap with HONO which
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the UV-LEDs do not possess however. Both systems suffer some overlap with NO3

radicals and BrONO2, more so in the case of PCL optics than for UV-LEDs.

3.6 Possible thermal interferences in BLCs

The thermal and electronic characteristics of the standard BLC lamps were ascertained

in bench tests and are summarized in Table 3. Each lamp was run constantly on the5

bench whilst recording the surface temperature and power draw of the light emitting

element. The surface temperature was recorded once a stable maximum had been

reached and maintained for at least 10 min – representative of using a BLC in constant

mode. The ambient temperature during the experiments was 20
◦
C.

Table 3 details the power draw and surface temperature of three BLC UV-LED lamp10

pairs measured during tests, along with their NO2 → NO convertor efficiencies when

assembled as a complete BLC. The surface temperature of the individual lamps corre-

late positively with the power drawn by each lamp (R2
= 0.96) and indeed with output

intensity (Fig. 2), but with each lamp pair there is only weak correlation (R2
= 0.43)

between converter efficiency and temperature. It is worth noting that the power con-15

sumption is a combination of the light output, heat dissipation, and power to the cooling

fan. It is clear however that the temperature experienced by the sample gas within the

NO2 converter is significantly above ambient. In fact, the entire NO2 conversion cavity

is heated by the lamps leading to external temperatures of the converter of between 34

and 45
◦
C.20

It is known that the major product from thermal decomposition of PAN is NO2; Re-

action (R18) (Roumelis and Glavas, 1992; Tuazon et al., 1991). The NO2 produced

thermally within the converter may then be photolysed to NO and thus be measured as

NOx and attributed to atmospheric NO2.

CH3C(O)OONO2 ⇋ CH3C(O)OO•
+NO2 (R18)25

A model of the thermal decomposition of PAN over a range of temperatures within the

BLC with a residence time of 0.96 s is shown in Fig. 7. The model run was conducted
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in Facsimile using rate constants from IUPAC Evaluated Kinetic Data (Atkinson et al.,

2006).

The model output indicates that measureable PAN decomposition to NO2 occurs

above ca. 50
◦
C. At the maximum LED surface temperature recorded (80

◦
C) the

model predicts ca. 30 % decomposition of PAN to NO2. However, as only the two UV-5

LED lamps are at such an elevated temperature we can expect a temperature gradi-

ent/heating rate within the BLC so that the average temperature seen by the sample

gas over the 0.96 s residence is somewhat lower. Also, it is expected that in a switching

mode with only 40 % duty cycle of the lamps, their surface temperature would be lower

also. This is borne out when using the external surface temperature of the BLC as10

a proxy – the temperature was lower in switching mode than in constant mode for the

same conversion efficiency. It is shown more clearly in the inset that an average tem-

perature of 60
◦
C would cause a 4.6 % decomposition of PAN and account for the NO2

measured during experiments with the standard BLCs. Therefore, together with the

spectral measurements reported in Sect. 3.5, it seems highly unlikely that the source15

of the artefact signal is through direct photolysis of PAN, leaving thermal decomposition

modelled in Fig. 7 the remaining explanation.

In Sect. 3.1 the percentage conversion of PAN to NO2 was found to be, on average,

highest at the lowest converter efficiency and vice versa. The fact that the convertor

temperatures are very similar at different convertor efficiencies (Table 3) suggests that20

the percentage of PAN thermally dissociated in each case is similar. Explanation for

the inverse relationship between percentage conversion of PAN to NO and conversion

efficiency (Fig. 2) lies in the way that the NO2 concentration is derived, which is an

inverse function of the assumed conversion efficiency as in Eq. (2) where converter

efficiency is expressed fractionally. If in fact the conversion efficiency of PAN to NO25

in the convertor was not related to the measured NO2 to NO conversion efficiency but

instead a constant value, then the apparent relationship between CE and % conversion

would disappear. This explanation is consistent with the fact that when the average

conversion percentage in Fig. 2 is normalized to conversion efficiency, the percentage
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for the three BLCs is remarkably similar (Table 4) with the average PAN decomposition

of 4.6 % needed to produce the spurious signal observed.

Above a threshold temperature of 25
◦
C, the NO2 formed in Reaction (R18) may

be excited through the dissipating of internal energy from the parent PAN molecule

(Mazely et al., 1995), this NO
∗
2 is then more readily photolysed to NO within the BLC5

than ground state NO2. The discussion above suggests that a similar proportion of the

NO2 evolved from thermal dissociation of PAN is converted to NO within the BLC lead-

ing to the apparent inverse correlation between conversion efficiency and PAN “arte-

fact”. Consequently, the lower NO2 → NO conversion efficiency of a BLC, the greater

the positive error in NO2 when PAN is present.10

4 Atmospheric implications

We have shown that a significant proportion of PAN can be decomposed under the

normal operating conditions of a BLC equipped NO chemiluminescence instrument

leading to a spurious increase in measured NO2 of 5 to 20 % of the PAN supplied. The

UV-LED light source employed by was found to reach a temperature of 56 to 80
◦
C in15

normal operation with the surface temperature correlating positively with power draw

and output intensity.

The positive bias in NO2 measurements by NO chemiluminescence using BLCs has

implications for data in both remote background sites and polluted areas. Figure 8

shows the thermal decomposition profiles of many common NOy species. Whereas20

only a small fraction of PAN is found to convert to NO2 at the operating temperatures

(∼ 5 % at 60
◦
C) of the instrument, a number of more thermally labile compounds exist

which become more important at higher latitudes and altitudes.

The degree of thermal decomposition within the instrument will depend upon the

thermal profile of the air (T (t)) as it passes through the instrument. This can be param-25

eterized as a relaxation timescale (τ s) for temperature from the ambient temperature
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(T0) to that of the BLC (TBLC) as in Eq. (4).

T (t) = T0 + (TBLC − T0)exp

(

−
t

τ

)

(4)

The rate at which thermal equilibrium is reached within the cell, τ, is calculated as

0.42 s from the observed PAN decomposition of 4.6 % (from which T (t) is derived),

at 20
◦
C ambient temperature, a BLC temperature of 75

◦
C and a 1 s residence time.5

This allows a calculation of the potential interference from other thermally labile NOy

compounds.

Given a 1st order loss of the PAN like compound and a temperature profile within in

the instrument as described in 4 we have 5:

d[PAN]

dt
= −k(T )[PAN] = −k(t)[PAN] (5)10

Given the laboratory observations of the temperature dependence of the rate constant

(typically k(T ) = Aexp(−B/T )), and the parameterized temperature within the instru-

ment (T (t)), the fraction of the compounds that will have decomposed can be found by

numerical integration.

Figure 9 uses output from the GEOS-Chem model (version 9.3, http://www.15

geos-chem.org, Bey et al., 2001) run at 2
◦
×2.5

◦
resolution, plus updates described

in Sherwen et al. (2015), to provide an estimate of the interference on NO2 from the

decomposition of NOy species within a BLC photolytic converter. The species used

for this analysis are: PAN; MPAN; PPN; IONO2; BrONO2; ClONO2; N2O5; CH3O2NO2,

HO2NO2. Thermal decomposition information are taken from IUPAC evaluated kinetic20

data (Atkinson et al., 2003, 2006, 2007). Interferences are calculated for each month

of a one year simulation and the maximum value shown. The estimate assumes a BLC

conversion efficiency of 100 % NO2 → NO and thus does not include the extra signal

from the photolysis of NO
∗
2 → NO with converters where conversion is less than unity

– in this case a multiplying factor exists.25
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Figure 9 shows that in extreme circumstances NO2 may be over-reported by many

hundreds of percent. These are in regions that typically have low NOx concentrations

and are cold (polar), and in the upper troposphere. Here, compounds such as PAN

and HO2NO2 are in high concentrations compared to NOx and it is not surprising that

thermal decomposition can have an impact. Upper tropospheric over estimates of NO25

concentrations could be as high as 150 pptv.

The NO2 bias shown in Fig. 9 impacts the modelled Leighton ratio. In Fig. 10 the

model is sampled every daylight hour for every surface grid box for the month of March.

The calculation shown in red is the Leighton ratio calculated from the modelled con-

centrations of NO, NO2, jNO2, O3, T, HO2, RO2, BrO and IO. The model value is in10

general close to 1. In the blue the same calculation is performed but including the inter-

ferences on the NO2 channel from the instrumental decomposition of a range of BLC

lamp temperatures between 60 and 105
◦
C (described by τ of 0.42 s and a residency

time of 1 s). Here there are significant interferences.

As shown in Fig. 10 the Leighton ratio can be extremely perturbed from what would15

be predicted by all available measurements given the NO2 bias we have shown ex-

ists with photolytic NO2 converters which operate above ambient temperature. This is

especially true in low NOx environments. This has led to either hypothesizing (a) an un-

known, unmeasured, selective oxidant “compound X ” or, (b) theoretical mechanisms

by which NO is converted to NO2 (Bauguitte et al., 2012; Cantrell et al., 2003; Frey20

et al., 2013, 2015; Hosaynali Beygi et al., 2011).

As a practical example with an analogous system to that used in this study, the NOx

observations of Hosaynali Beygi et al. (2011) taken in the South Atlantic during the

“OOMPH” project (Ocean Organics Modifying Particles in both Hemispheres) serve

as a case study. During this cruise a BLC photolytic NO2 converter (Droplet Mea-25

surement Technologies, Colorado, USA), with a residence time of 1 s, as described

in this study – coupled to an NO chemiluminescence analyser was deployed aboard

the French research vessel Marion Dufresne II. The cruise track covered the South
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Atlantic Ocean from Cape Town, South Africa to Punta Arenas, Chile, reaching 60
◦
S

during March 2007.

The results presented by Hosaynali Beygi et al. (2011) show an NO2 : NO ratio which

is a factor c.a. 7 greater than can be explained given the available supporting observa-

tions of O3, CO, OH, HO2, ROx (RO+RO2 +HOx), i.e. measured NO2 is much greater5

than the Leighton relationship would predict. This apparent Leighton ratio is attributed

by the author to an “unknown oxidant” which selectively converts NO to NO2.

The authors estimate a minimal photolytic interference from atmospheric nitrates us-

ing their BLC, consistent with our analysis (Sect. 3.5 and Fig. 6). Only PAN decomposi-

tion within the inlet line is considered as a potential interference, but is estimated to be10

minimal (< 7 ppt) due to the low ambient temperature range of 3 to 11
◦
C. Our results

have shown that thermal, rather than photolytic decomposition of atmospheric NOy

species with the converter itself is the major source of over-reporting in NO2 measure-

ments made with BLCs. Indeed, our model study predicts interference of 50 to 100 %

in the region of the cruise, assuming an NO2 converter efficiency of 100 %, whereas in15

the OOMPH observations the efficiency was 59 % thus, a multiplying factor may apply

to any PAN interference of ∼ 1.7.

Presented in Fig. 4 of Hosaynali Beygis’ paper on page 8503 (Hosaynali Beygi et al.,

2011) is the Leighton ratio calculated from their NO2 data and ancilarry measurments.

The ratio in the pristine background appears to be significantly biased towards NO2,20

exceeding what the authors are able to explain given their measurments of HOx, ROx

and OH. Their values fit well within the modelled Leighton ratios shown in Fig. 10

when an instrumental bias is included however. This is suggestive of an instrumental

NO2 bias cause by a BLC with a lamp temperature of around 90
◦
C, however does not

include any multiplying effect of having an NO2 conversion efficiency less than unity.25

As the efficiency is 59 % the actual temperature would not necessarily be so high as

90
◦
C. Eliminating this NO2 over-reporting closes the oxidative balance implied by their

other data and removes the need to invoke any compound X or mystery oxidant.

28724



ACPD

15, 28699–28747, 2015

Interferences in

photolytic NO2

measurements

C. Reed et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

5 Conclusions

Measurements of NO2 collected using photolytic converters and chemiluminescence

systems may be significantly biased in low NOx environments. Thermal decomposition

of NOy species within the NO2 converter produces spuriously high readings; this is

especially true in pristine environments and at high elevations where the NOy to NOx5

ratio may be high. Over-reporting of NO2 has been shown to lead to apparent gaps in

oxidation chemistry which cannot be explained with any available measurements. This

has led to theorization of an unknown “compound X ” which selectively oxidizes NO to

NO2, however this is likely anomalous and simply due to error in the NO2 determination.

In order to mitigate this overestimation of the NO2 mixing ratio by the dissociation10

of PAN and other compounds it is desirable to have the highest possible NO2 → NO

conversion efficiency, i.e. unity, to mitigate the multiplying effect of having lower con-

version efficiencies. High conversion efficiency is now achievable thanks to advance-

ments in the power density of UV-LEDs currently available; new generation BLCs have

a CE> 95 % for example. Additionally, actively cooling the UV emitting elements or15

separating them from the gas stream is essential in order that the sample gas should

not contact any surface which is above ambient temperature. Failure to achieve this

may result in spuriously high NO2 observations.
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Table 1. Comparison of the NO2 signal observed from measurement of three zero air sources.

(Eco Physics AG PAG 003, BOC Specialty Gasses BTCA 178, and Sofnofil/Carbon/13× molec-

ular sieve filters) by LIF. The average of ten 1 min averages is shown in raw PMT counts per

second as well as the standard deviation of those averages.

PAG 003 BTCA 178 Sofnofil/Carbon

Signal (cps) 88.10 88.66 83.95

Standard Deviation 1.64 1.56 1.81
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Table 2. Effect of varying the residence time of PAN (1.0 ppb) within a 2.7 m PFA inlet on

measured NO2 concentrations.

Inlet residence time (s
−1

)

0.84 1.05 1.40 2.10

NO2 (ppt) 60.2 61.3 60.6 61.5

NO2 (%) 5.4 5.4 5.2 5.3
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Table 3. Peak surface temperature and current drawn by BLC lamps in a bench test at 20.0

◦
C

showing converter efficiency, current, and surface temperature.

Lamp Converter BLC Lamp Surface Current

No. efficiency Temperature (
◦
C) Draw (A)

(%) ±1 ±0.05 ±0.0005

1 41 79.8 0.969

2 75.3 0.953

3 35 77.6 0.933

4 74.0 0.931

5 22 76.2 0.916

6 56.4 0.567
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Table 4. The average percentage conversion of PAN to NO2 measured, and normalized to the

converter efficiency of each BLC.

Converter

efficiency (%) ±1

42 33 22

Measured % 10.8 15.9 19.6

Normalized % 4.4 5.2 4.3
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Figure 1. The average raw counts per second recorded by a LIF instrument when sampling

various mixing ratios of PAN (in red) and zero air (black). The variance of the zero air signal is

also shown (dashed black). The average signal while sampling PAN falls within the noise of the

zero signal.
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Figure 2. The measured absolute NO2 signal (left panel) of the supplied PAN mixing ratio, and

as a percentage (right panel), for three BLC units operating in constant mode. Green= 41 %

CE, Red= 35 % CE, Blue= 22 % CE.
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Figure 3. The measured absolute NO2 signal as a function of the supplied PAN mixing ratio

(left panel), and as a percentage (right panel), for three BLC units operating in switching mode.

Green= 41 % CE, Red= 35 % CE, Blue= 22 % CE.
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Figure 4. The measured NO2 signal as a function of the supplied PAN mixing ratio (left panel),

and as a percentage (right panel), for the cooled (blue) and uncooled (red) high powered BLC.
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Figure 5. Shown is the spectral output vs. wavelength of two new, previously unused BLC

lamps No. 1 (solid) and 2 (dashed) in green, two used lamps No. 3 (solid) and 4 (dashed)

in red; still within acceptable conversion efficiency, and two which fall below acceptable limits

No. 5 (solid) and 6 (dashed) in blue. The NO2 quantum yield is shown in black.
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Figure 6. Absorption cross section (red) and quantum yield (dashed black) of NO2, presented

with the spectral output of UG5 optical filtering (purple) and an average of the six BLC lamps

used in this study output (dark blue). Shown are interfering species; NO3 radicals (green),

HONO (light blue), BrONO2 (lilac) which are overlapped significantly by the UG5 optics – com-

pletely in the case of HONO, whilst much less overlap is exhibited by the UV-LEDs of the

BLC. Also shown is PAN (gold), which clearly is not overlapped by either UG5 or BLC light

sources. Additional non-interfering species; ClONO2 (triangles), N2O5 (squares), HO2NO2 (cir-

cles), HNO3 (diamonds) shown for reference.
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Figure 7. Model of thermal decomposition of PAN to NO2 with a residence time of 0.96 s at

temperatures between 0 to 150
◦
C. Inset is detail of 30 to 90

◦
C.

28744



ACPD

15, 28699–28747, 2015

Interferences in

photolytic NO2

measurements

C. Reed et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Figure 8. Thermal decomposition profiles of IONO2 �; BrONO2 ©; ClONO2 ◮; HO2NO2 •;

N2O5 ◭; C2H5O2NO2 ⋄; CH3C(O)CH2O2NO2 �; MPAN �; PAN N; PPN H. Calculated from

IUPAC recommended kinetic data using FACSIMILE software based on 1 s residence time.

Note CH3O2NO2 is not shown but has the same profile as HO2NO2.
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Figure 9. GEOS-Chem model showing the monthly maximum percentage over-reporting of

NO2 (a) zonally and (b) by altitude in any month of a 1 year simulation. Panels (c) and (d)

show the same in absolute pptv values. Note; the area over the Amazon in plot (c) is over

the maximum range of the colour scale. Surface values are the maximum over-reporting in any

month, zonal values are the maximum over reporting in any month and in any of the longitudinal

grid boxes.
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Figure 10. Leighton ratio calculated for each model grid-box for each daylight hour for March

by the model as a function of the grid box NO2 concentration. The instrument interference is

characterized by a numerical solution of Eq. (5) with τ = 0.42 s and a residence time of 1 s.

Red shows the values calculated without the interference on the NO2 concentration and the

blue indicated the values calculated with the interference. The interferences are calculated for

different lamp temperatures, 65 to 105
◦
C.
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