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In support of national and international policies to address climate change, local government actors across
Europe and Asia are committed to reducing greenhouse gas emissions. Many recognise the contribution that
decentralised renewable electricity production can bring towards reducing emissionswhilst also generating rev-
enue.However, these actors are often subject to significantfinancial pressures,meaning a reliable and compelling
business case is needed to justify upfront investment. This article develops a method for rapid comparison of
initial project viability formultiple city sites and installation options using data fromwind and solar resource pre-
diction techniques. In doing so, detailed resource assessments grounded in academic research are made accessi-
ble and useful for city practitioners.
Long term average wind speeds are predicted using a logarithmic vertical wind profile. This employs detailed
three-dimensional building data to estimate aerodynamic parameters for the complex urban surface. Solar re-
source is modelled using a Geographical Information System-based methodology. This establishes the location
and geometry of roof structures to estimate insolation, whilst accounting for shading effects from other buildings
and terrain features. Project viability for potential installations is assessed in terms of the net present value over
the lifespanof the technology and associated Feed-in Tariff incentive. Discounted return on investment is also cal-
culated for all sites. Themethodology is demonstrated for a case study of 6794 sites owned by Leeds City Council,
UK. Results suggest significant potential for small-scale wind and solar power generation across council assets. A
number of sites present a persuasive business case for investment, and in all cases, using the generated electricity
on site improvesfinancial viability. This indicates that initial installations should be sited at assets with high elec-
tricity demands. Overall, the work establishes a methodology that enables large city-level asset holders to make
strategic investment decisions across their entire portfolio, which are based on financial assessment of wind and
solar generation potential accurate to the individual asset scale. Such tools could facilitate strategic planning
within cities and help to ensure that investment in renewable energy is focused at the most viable sites. In addi-
tion, themethodology can assistwith assetmanagement at the city scale by identifying siteswith a highermarket
value as a result of their potential for renewable energy generation than otherwise might be estimated.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cities that are actively engaged in strategic energy management
have the potential to contribute towards achieving national energy pol-
icy goals, resulting in reduced carbon emissions and increased revenue
generation (Allman et al., 2004; Platt et al., 2014). To facilitate such
strategic engagement, rather than the implementation of piecemeal
“fund-chasing” projects, organisations require access to comprehensive,
. This is an open access article under
jurisdiction-wide data, detailing the potential energy value of their
assets (land and buildings). This paper describes methods for rapid
high-level scoping of potential project viability across a city. We apply
these methods to a case study in the city of Leeds, UK. The wind and
solar resource available across the city-wide study area is first evaluated
and then applied to annual power generation calculations.

Net present value (NPV) and discounted return on investment (ROI)
are calculated for all site and installation options across the asset portfo-
lio using user-defined inputs for financial conditions. Different options
can therefore be rapidly calculated and compared. This novel approach
enables organisations to make initial strategic investment and energy
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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management decisions across their whole asset base without recourse
to individual site analysis performed on a one by one basis.

The paper is structured as follows. First, a contextual background for
the work is provided. The methodology describes the hierarchical pro-
cesses used to estimate the city's wind and solar resource, followed by
the financial models and assumptions used to assess potential sites for
their financial viability. Estimations of the city-wide technical potential
and financial calculations are then presented independently. In the dis-
cussion, we consider the effects of variations in model input parameters
on the predicted NPV, and the implications both generally and for policy
implementation at local and national government levels. Finally, conclu-
sions are drawn regarding the potential of integrated resource
assessment models to enable strategic energy management at the city
scale.

2. Context

Cities have a role to play in the development of distributed renew-
able energy generation, and there are examples of progressive cities
worldwide that have taken steps to deploy renewable energy technolo-
gies including wind and solar (International Energy Agency, 2009).
Since our case study city is based in the UK, we briefly examine the con-
text of UK local authority (LA) engagement in distributed generation,
whilst also noting where common policies and approaches can be
found elsewhere.

2.1. Local energy governance

Localism, or increased local governance, is a current policy within the
UK (DCLG, 2010) and seeks to empower cities to “do things in their own
way”. Though localism is much broader than local energy supply and se-
curity, greater decentralisation of energy generation, as envisaged in the
2011 White Paper (DECC, 2011), relies on increasing strategic planning
at the city level (Johnston, 2011). Nevertheless, research estimates that
just 30% of UK LAs are actively involved in strategic energy management
(Hawkey et al., 2014). In their report, Hawkey et al. map our case study
city of Leeds as an “energy leader” (p. 8), with “multiple activities in ener-
gy developments” (p. 9). Despite this, significant challenges remain be-
fore truly strategic approaches can be adopted within cities. Current
energy projects by Leeds City Council (LCC) are linked to available funding
opportunities rather than as a result of a long-term strategy; a situation
that LCC is actively seeking to improve (Bale et al., 2012).

Recent UK government publications (DECC, 2014a, 2014b) demon-
strate an expectation that LAs will take a lead in the development of
local energy generation, through support to local communities, invest-
ment in local energy schemes, or more targeted approaches for specific
subsets of public buildings, e.g. schools. Furthermore, as ongoing budget
restrictions are imposed on local government, LAs are considering a
range of revenue raising and efficiency saving options including sale of
property and land, and generation of alternative income streams. This
study provides a means of assessing the value of these assets in terms
of energy generation potential, and the associated ongoing revenue
streams. Income may be derived either from investment in renewable
generation on sites that may have otherwise have been sold, or through
rental income from independent generators using the sites.

Distributed generation in the UK is supported by Feed-in Tariff (FiT)
schemes, a policy measure which provides payment for every kilowatt
hour of renewable electricity generated. FiT schemes have been deter-
mined to be the most efficient means of encouraging the deployment
of renewable technologies (Couture andGagnon, 2010). The UK scheme
is structured as a market-independent policy, with planned digression
linked to deployment rates.

A number of other countries also have FiT policies, meaning that
methodologies for supporting strategic investment in city-scale renew-
able technologies are of value beyond the UK. In light of the topic of this
special issue concerning energy and climate change mitigation across
Europe and Asian cities, here we highlight some policies that are rele-
vant in Asia, as described by Chen, Kim and Yamaguchi (2014). In
Japan, a market-independent model is applied, with a fixed price for
purchasing renewable energy. SouthKorea, althoughhavingnonational
FiT scheme (discontinued due to the financial burden), still has local FiT
schemes implemented at city-level in some jurisdictions. In Taiwan, FiT
rates are adjusted by government in response to the cost of generating
renewable electricity.

2.2. Barriers to investment in local energy

The barriers to investment in renewable technology arewell known,
and apply tomany cities worldwide. For UK city authorities, barriers in-
clude the complex subsidy mechanisms and contract set-ups for selling
electricity from large-scale distributed generation developments. In ad-
dition, lack of investment capital, complex organisational structures
within local government, frequently changing national policy, and a
lack of knowledge of the energy value of assets have all been cited as po-
tential barriers (Allman et al., 2004; Kelly and Pollitt, 2011). A feature of
the latter is the difficulty associated with the assessment of city-wide
energy resources without resorting to multiple individual site studies.
The need for affordable technological and financial advice at an early
planning stage has been identified as a key component for the develop-
ment of renewable energy schemes (Bale et al., 2012).

2.3. Resource assessment methods

To date, urban solar resource assessment has receivedmore attention
than urbanwindwithin the literature. Early assessments used large-scale,
low-resolution insolation estimates in conjunctionwith land and building
classification methods to assess national (Šúri et al., 2007) and regional
(Izquierdo et al., 2008) photovoltaic (PV) generation potential.

Since these earlier studies, theuse of GISmethods to estimate available
roof area for PV generation has becomemore established, opening uppos-
sibilities for city-scale assessments. Bergamasco and Asinari (2011a) ana-
lyse vector maps to calculate building footprint area, however their final
estimates for solar energy potential remain aggregated to the municipal
scale. Kodysh et al. (2013) and Brito et al. (2012) use Light Detection
and Ranging (LiDAR) data to estimate available roof area for PV installa-
tion. Both of thesemethods develop insolationmaps clipped to individual
building areas. Kodysh et al. identify the opportunity to use insolation
maps for estimating potential electricity yield, and Brito et al. actually es-
timate a yield. Other studies focus on improving generation predictions
through refined techniques for roof-area estimation (Bergamasco and
Asinari, 2011b; Jacques et al., 2014).However, noneof thesemethods con-
sider financial aspects of realising the identified potential.

Urban wind speed estimation techniques are far fewer in number.
Peacock et al. (2008) state that methods to predict wind energy had
thus far not been suitable for predicting output in an urban environ-
ment, and tended to over predict wind resource. Subsequently a num-
ber of studies have presented methods for calculating wind resource
in the complex urban environment, using LiDAR data to estimate
aerodynamic parameters based on detailed building characteristics
over cities (Millward-Hopkins et al., 2013b; Weekes and Tomlin,
2013). However, there are few studies which address city-wide
wind resource assessments. One such study (Millward-Hopkins
et al., 2013a), highlighted the potential capacity of energy generation
from building mounted wind turbines across Leeds, suggesting a sig-
nificant urban wind resource if locations were carefully selected. As
with the solar literature, no assessment of the financial viability of
these sites is given.

Financial feasibility is dependent on multiple factors including:
resource potential; installation size; capital and operational costs;
electricity prices; and incentive scheme tariff rates and restrictions
(Kelleher and Ringwood, 2009). Since the size and type of technology
installed at a site can potentially affect its financial viability, a rapid
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assessment of multiple possibilities is desirable. In addition, knowledge
of the resilience of strategic plans to changes in policy is an invaluable
tool for the planning organisation. While resource assessment is well
represented in the literature, few studies consider the financial aspects
of installing technology to utilise the identified resources. Two exam-
ples are: Li et al. (2014) who considered the NPV of optimised schemes
in Ireland, based on various combinations of solar PV and micro-wind
technology; and Sun et al. (2013), who determined both the technical
potential of the nine prefecture cities in Fujian Province, China, and a
broader assessment of generation costs and NPVs across the region
using a grid cell approach under two FiT scenarios. In neither case
does the analysis extend to comparisons between individual sites.

As both resource assessment and GIS techniques have developed, so
has the availability of tools to inform communities of the local energy
resource (Bristol City Council, 2012; Van Hoesen and Letendre, 2010).
These tools do not however, provide a platform for financial analysis
which is required for strategic decision making.

This paper outlines a method to produce reasonably accurate yet
rapidly available estimates of financial feasibility that are spatially refer-
enced to individual buildings within a large asset base. All analysis was
completed using only two software programmes, Esri ArcGIS andMatlab,
both of which are widely used in academia and industry. The method re-
quires digital surface models (DSM) and digital terrain models (DTM);
both generated from LiDAR data, and building footprint (shapefile) data.
Open source GIS and numerical computation packages such as GRASS
GIS and GnuOctave could be used to achieve the same results.

3. Research methodology

This study uses hierarchicalmethods to enable rapid scoping of project
viability at 6794 potential renewable generation sites across Leeds. In a
novel addition to existing analyses,financial assessment ofmultiple instal-
lation scenarios at each individual site is undertaken. The stages of the
methodology are shown in Fig. 1. anddescribed indetail in the subsequent
text. The case study considers LCC assets, including used and unused land
and buildings which lie within the extent of the available LiDAR data.

The underlying resource assessments are based on high resolution
data describing building and vegetation geometries across the city. GIS
tools are used both for resource assessment and presentation of
outcomes, demonstrating the potential to provide a rapid overview of
resources with a spatial reference. The methods described can be
applied to any region for which high resolution LiDAR, reference clima-
tology and land use data exist.

3.1. Wind

Development of wind turbines specifically designed with low start-
up speeds and lower rated power means it is increasingly possible to
produce significant energy from wind within an urban environment
(Millward-Hopkins et al., 2013b). However, despite a number of bene-
fits such as demand reduction, decreasing transmission losses and
allowing individuals to take more responsibility for their energy use,
wind resource in the urban environment remains underexploited.
Addressing this underexploitation, Millward-Hopkins et al. (2013b)
ascertained the potential for building-mounted turbines within the
urban environment. This study assesses the potential for installing larg-
er ground-mounted turbines at suitable locationswithin the city region.

3.2. Theoretical potential

A large variety of wind turbines are available in the UK, varying sig-
nificantly in size and rated power output. In this work all wind turbines
between 15 and 45 kW, certified under the UKMicrogeneration Certifi-
cation Scheme (MCS) are included, as they are suitable for the land
available within an urban region and are eligible for FiT payments
(Microgeneration Certification Scheme, 2014). Furthermore, varying
the size of the turbines allows the economic potential of turbines with
different capacities and capital costs to be investigated. The hub-
height of a mounted turbine significantly affects power output, since
wind varies approximately logarithmically with height (Eq. 1) and
power is proportional to wind speed cubed. Different hub-heights
were therefore considered for each turbine, subject to options available
from themanufacturer. These would in reality also be affected by struc-
tural and planning considerations. Table 1 details the selected wind tur-
bines and hub-heights, and estimates of installation costs obtained
through correspondence with individual manufacturers.

Annual average wind speeds across the city were calculated using
themethod developed byMillward-Hopkins et al. (2013b), with the re-
sults previously validated against measured data from 21 anemometers
across 5 UK cities. The validation showed that the mean absolute error
for sites not sheltered by nearby buildings (as is the case in this study)
was less than 0.3 ms−1. The method provides a vertical scaling of long
term average wind speed data from a UK wide reference climatology
database, in this case NOABL (2014), to account for the frictional effects
of the urban surface. As a first step, the reference wind speed is scaled
from its reference height of 10 m, up to a height where interference
from the urban environment is deemed to be negligible; the top of the
urban boundary layer. The wind speed is then scaled down in a two-
step process to predict wind speed at the turbine hub-height using the
standard logarithmic profile (Millward-Hopkins et al., 2013b):

u ¼ u�

k

� �
ln

z−d
z0

� �
ð1Þ

where z0 and d are the aerodynamic roughness length and displacement
height respectively, u* is friction velocity, k is the Von Kármán constant
(≈0.4), and z is height above the ground. z0 is a parameterisation of the
drag force exerted on the flow due to the roughness of the surface
(Weekes and Tomlin, 2013). The scaling is particularly sensitive to the
parameterisation of z0 and d. In particular, Millward-Hopkins et al.
(2013b) highlighted the need to account for building height variability
within morphometric models used to estimate these parameters. Thus
the aerodynamic parameters used in this work are estimated from a de-
tailed digital surfacemodel that is used to appraise the geometry and ar-
rangement of buildings and vegetation within the city. Following the
approach of Millward-Hopkins et al. (2011); Millward-Hopkins et al.
(2013b) this is achieved using detailed LiDAR data describing surface
heights with a horizontal resolution of 2 m.

The first step of the down-scaling process involves scaling the wind
speed to an appropriate blending height, taken as the top of the rough-
ness sub-layer (Kastner-Klein and Rotach, 2004). Above this height the
wind profile is more greatly affected by an area extending 5 kmupwind
of the location, known as the upwind fetch; whilst below it the profile is
more strongly influenced by the local geometry. The second step uses
aerodynamic parameters specific to more localised 250 × 250 m grid-
squares to estimate the wind speed at appropriate hub-heights.

The scaling calculations are carried out for each 250 × 250 m area
across the city, for eight wind directions. Long term average wind
speeds are then calculated byweighting the predictions by the frequen-
cy distribution of thewind directionmeasured at a local referencemea-
surement site as detailed in Millward-Hopkins et al. (2013b). The
predicted mean wind speeds can be presented as a city-wide map,
with an example across Leeds, 10 m above the average building height
within each grid square, shown in Fig. 2.

3.3. Restricted potential

The following practical and technical criteria were used to create ex-
clusion zones where a wind turbine would be inappropriate:

• Council sites beyond thewindmap boundary (the region not covered
by LiDAR).

• Polygons assigned to highways and housing departments.



Fig. 1. Indicative methodology showing the separation of resource calculations and city-wide technical and financial calculations.

48 K. Adam et al. / Cities 54 (2016) 45–56



Table 1
Details of the turbines chosen for assessment and the cost of installation; a cost estimates
from sales team, b cost estimate from website (Ampair, 2012).

Turbine Rated power (kW) Hub-height (m) Initial cost (£)

WindEn 45 45 18 £180,000a

30
36

CF20 20 15 £81,000a

20
CF15 15 15 £75,000a

20
Ampair 20

20
15 £68,500b

18 £72,000b

22 £75,000b

Kingspan 15 15 15 £73,000a

20
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• Polygons with areas b20,000 m2, accounting for the necessity of
locating turbines a suitable distance from nearby dwellings to avoid
nuisance from noise or flicker. It is possible that wind turbines could
be installed in smaller areas, but this limit was used to investigate op-
timal positioning.

• Areaswith amean annualwind speed b 5ms−1 at 20m above ground
level to account for the lower likelihood of a suitable financial return
due to inefficient turbine operation. This is a somewhat more conser-
vative value than that used by Millward-Hopkins et al. (2013a) but
given possible uncertainties in wind speed predictions, a conservative
approach was deemed to be appropriate.

3.4. Technical potential

The expected power output for each individual site was calculated
for the selected turbines in Table 1 based on the predicted long term av-
erage wind speed and power curves giving the energy output of a tur-
bine over a range of wind speeds under test conditions. These were
acquired from the manufacturer for the CF15, CF20 and Ampair 20
(Ampair, 2012; C and F Green Energy, 2013a, 2013b) and estimated
by Better Generation for the Kingspan 15 and WindEn 45 (Better
Generation, 2012a, 2012b).

The use of power curves should be based not on the long term aver-
age wind speed, but on the frequency distribution of wind speeds. The
Weibull distribution has been shown to give a good fit to measured
Fig. 2. Predictedmeanwind speed across Leeds at 10m above the average building height.
© Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service.
wind speed data (Seguro and Lambert, 2000) and is used here. This dis-
tribution f(u) is a function of the shape parameter, β, and the scale pa-
rameter, η:

f uð Þ ¼ β
η

u
η

� �β−1

e−
u
η

� �β

ð2Þ

where u refers to the wind speed, β = 1.8, as defined in Best et al.
(2008)), and η is given by:

η ¼ u

Γ 1þ 1
β

� � ð3Þ

where ū is the long term average wind speed and Γ refers to the gamma
function.

The annual energy output can then be calculated using:

Annual Electricity kWhð Þ ¼
Xn

u¼1
p uð Þ f uð Þ � 365� 24ð ÞXn

u¼1
f uð Þ

ð4Þ

where p(u) is a the expected power output from the turbine at a given
wind speed u, and f(u) is the frequency with which wind speed u is
expected to occur based on the Weibull distribution. The summation
is evaluated for u from 1 ms−1 to 25 ms−1 at intervals of 1 ms−1.
After applying the exclusion criteria, 51 individual sites across Leeds
were identified for further investigation as shown in Fig. 3.

3.5. Solar PV

Use of existing infrastructure for solar PV installation enables exten-
sive deployment of distributed generation without changing land use.
“Permitted development” allows installation of smaller rooftop schemes
without planning permission, and new UK government strategies are
encouraging PV development at mid-range capacities (DECC, 2014b).
Here we evaluate the viable resource for existing urban rooftops and
land areas in Leeds.

3.6. Theoretical potential

Digital surface model (DSM) data obtained from Landmap (2014)
was used for the physical analysis. The DSM file is generated from
LiDAR points detailing ground height above sea level at 2 m resolution,
and 0.15m vertical accuracy. A raster map showing annual insolation at
the same resolution was produced using the Area Solar Radiation
Fig. 3. Location of potential wind sites identified across Leeds showing their distribution
around the city perimeter. © Crown Copyright/database right 2014. An Ordnance Sur-
vey/EDINA supplied service.



Table 2
Surface criteria used to reduce the original surface raster to determine suitable areas for
solar installations.

Assessment type Slope criteria Aspect criteria

Rooftop 0° to 60° 90° (E) to 270° (W)
Land 0° to 5° Not restricted
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function in the ArcGIS Solar Radiation toolset, licenced by Esri (2014)
and originally developed by Fu and Rich (1999):

• Upward looking hemispherical viewsheds are created using the sur-
rounding topography for each point on the raster surface.

• These are overlaid with sun- (direct) and sky-maps (diffuse sunlight)
for each cell.

• The total radiation (direct plus diffuse) arriving at the cell surface in a
specified time period is calculated (in this case one year).

• The process is repeated for all cells in the raster.

Default values for transmittivity (0.5) and diffuse fraction (0.3) were
used.

Validation of the approachwas carried out for selected sites by com-
parisonwith data taken from interactivemaps based on the PVGIS data-
base for Europe (JRC European Commission, 2014; Šúri et al., 2005). The
sites were chosen via analysis of the insolation raster to obtain the loca-
tions of the three highest estimates at 10° slope intervals from 0 to 50°
for each of E, SE, S, SW and W aspects. Sixty-nine such locations were
found to exist within the LCC assets considered. These locations were
comparedwith annual insolation estimates fromPVGIS for the same lat-
itude and longitude, slope and aspect.

At all 69 data points, the highest values computed using the Area
Solar Radiation tool were lower than those taken from the PVGIS data-
base. This can be partly attributed to the shading effects captured by
the viewshed technique in Solar Analyst. Differences between the
estimates are larger at lower insolation levels, as shown in Fig. 4. Refine-
ment of the irradiance model could improve estimates at the individual
building scale, but for the purposes of this study a conservative estimate
provides a useful basis for analysis.

3.7. Restricted potential

LCC data was used to create two shapefiles showing the footprints of
all buildings and boundaries of land areas respectively. Any shapefile
polygon co-located with a listed building data point from English
Heritage (2014) was excluded from the resource assessment due to ad-
ditional planning and structural limitations at such sites.

Restrictions were applied to the original surface raster using condi-
tional criteria shown in Table 2. Rooftop slope and aspect criteria were
chosen to reflect best practise as determined through a review of
existing literature (Melius et al., 2013). Land slopes were limited to 5°
as this was considered shallow enough to enable installation of solar
Fig. 4. Comparison of mean annual insolation predicted by PVGIS and Esri models for 69
locations across the city of Leeds with the same slope and aspect inputs at each individual
location.
panels facing any aspectwithminimal groundworks. Overlaying the in-
solation raster with the reduced surface raster enabled mean insolation
values to be extracted for cells meeting the surface criteria. LCC sites for
assessment were identified by combining the reduced insolation raster
and shapefiles. Mean annual insolation and total suitable area were cal-
culated and recorded for these sites.

3.8. Technical potential

Potential annual electricity generation at each site was calculated
using:

Annual Electricity kWhð Þ ¼ K � I � 0:76 ð5Þ

where K is installed capacity (kW), I is mean annual insolation
(kWhm−2) and 0.76 is a conversion factor determined from interroga-
tion of the PVGIS online maps for a hypothetical 1 kW system within
Leeds at various slopes and aspects (JRC European Commission, 2014).
For all combinations of slope and aspect, the conversion factor from
mean annual insolation (kWh m−2) to annual electricity generation
(kWh kW−1

installed) was 0.89. Further assumed system losses of 15% re-
duced the conversion factor to 0.76.

This study seeks to assess the feasibility of installations based,
in part, on FiT revenue. Each roof was assessed for installation ca-
pacities matching the upper limit of each of the UK Solar PV FiT
boundaries (OFGEM, 2014b) as shown in Table 3, until the area re-
quired for an array exceeded the property's estimated maximum
area. The maximum capacity supported was also assessed using ap-
propriate FiT rates eligible to 31st December 2014. Land was
assessed solely for the maximum possible installation size, due to
a single tariff rate for stand-alone installations.

Previous methodologies have addressed potential roof area reduc-
tions due to shading and roof furniture using reduction coefficients
based on empirical data collected by early adopters of GIS assessment
techniques (Gooding et al., 2013; Wiginton et al., 2010). Due to the
highly varying nature of the roofs assessed, and constraints such as
roof strength, this approach was not appropriate for this study. It is ac-
knowledged that as the area required for an installation approaches
the maximum suitable area on a property, obstructions and shading
may limit practical installation capacities.

3.9. Financial potential: wind and solar

The financial potential of 6794 sites was assessed; 51 wind sites,
335 land sites for ground-mounted PV and 6408 rooftop PV sites. At
each site, annual electricity generation estimates were combined
with the assumptions in Table 4 to calculate NPV and ROI over the
20-year lifetime of the FiT. Loan interest was based on 20-year an-
nuity rates from the Public Works Loan Board (United Kingdom
Debt Management Office, 2014) with repayments in equal instal-
ments. Inflation was set to 2.5%, based on the Retail Price Index to
which the FiT is linked. Electricity costs were based on correspon-
dence with LCC. Operations and maintenance (OPEX) costs for
wind are estimated based on data from larger wind turbines and
wind farms and should therefore be assumed to contain a degree
of uncertainty.



Table 3
Generation and export rates for Solar PV installations eligible for the UK FiT (OFGEM, 2014b). Figures in bold are the installation boundaries used in this study. aBased on Sunmodule Plus
SW250-270mono black (SolarWorld, 2014), bInstallations with eligibility dates between October 1st and December 31st 2014 inclusive. The PV generation tariff is split into three levels:
higher, middle and lower; the rate received varies with total installation numbers and building efficiency ratings (OFGEM, 2013).

Installation category Maximum area required (m2)a
Generation tariff rate (pkW h−1)b

Higher Middle Lower

Up to but not exceeding 4 kW 26.9 14.38 12.94 6.38
Greater than 4 kW but not exceeding 10 kW 67.2 13.03 11.73 6.38
Greater than 10 kW but not exceed 50 kW 336.0 12.13 10.92 6.38
Greater than 50 kW but not exceeding 100 kW 672.0 10.34 9.31 6.38
Greater than 100 kW but not exceeding 150 kW 1008.0 10.34 9.31 6.38
Greater than 150 kW but not exceeding 250 kW 1680.0 9.89 8.90 6.38
Greater than 250 kW N/A 6.38 6.38 6.38
Stand alone, any size N/A 6.38 6.38 6.38

Export tariff N/A 4.77
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3.10. Calculation of NPV and ROI

Calculating NPV and ROI enables direct comparison between
technologies and installation sizes. NPVswere calculated for all possible
installations at every site using:

NPV ¼ PRV−C ð6Þ

where C is capital cost (CAPEX) and PRV is the present value of the in-
stallation, calculated as:

PRV ¼
XN
t¼1

rt
1þ fð Þt−1

1þ Lð Þt ð7Þ

Here,N is FiT lifetime, f is inflation rate, L is loan interest, rt. is annual
income and t is time. Annual income is calculated using:

rt ¼ Gþ P xð Þ þ E 1−xð Þ½ � � Y 1−dð Þt−1− KMð Þ ð8Þ

where G is FiT generation rate (received for every unit generated), P is
FiT export rate (received for units exported to the local grid, determined
by the export fraction, x), E is unit electricity cost, Y is electricity gener-
ated in year one, d is degradation rate,K is installed capacity andM is an-
nual OPEX. The export fraction is assumed to be 0.5 for installations
below 30 kW, while for larger installations electricity export would be
metered.

Discounted ROI is calculated using:

ROI ¼ NPV
C

ð9Þ
Table 4
Assumptions and data sources for financial assessment; aEVO Energy (2014); GMI Energy
(2014); Solar Essence (2014), bLeeds Solar (2013), cTrading Economics (2014), dUnited
Kingdom Debt Management Office (2014), eOFGEM (2014a), fOFGEM (2014b), gStaffell
and Green (2014), hSolarWorld (2014), iEWEA (2014), and jDufton (2012).

Variable Wind Solar

Capital costs (CAPEX) Varies — see Table 1 Varies — based on
correspondence with
installers listeda, and
website datab

FiT lifetime 20 years 20 years
Inflation rate 2.5%c 2.5%c

Loan interest 3.35%d 3.35%d

FiT rates OFGEM Tablese
OFGEM Tables: Higher &
Middle ratef

Electricity cost 10 pkW h−1 10 pkW h−1

Degradation rate 1.6%g 0.7%h

Annual operation and
maintenance (OPEX)

£0.02 kW h−1 i £15 kW−1 installedj
Due to a lack of reliable information for contemporary technology,
salvage value has been excluded from all calculations. This will result
in a conservative estimate of NPV and ROI. The division of the method-
ology into two parts as shown in Fig. 1 enables straightforward alter-
ation of the inputs, e.g. FiT rates, degradation rates or loan interest, to
suit the user's specific situation.

4. Results

4.1. City-wide technical potential

The total generation potential identified across the LCC assets was
substantial. Though the vast majority of sites returned positive NPVs, a
larger percentage of solar sites were negative, in part due to the wind
speed restrictions placed on initial wind site selection. Despite this, at
least 75% of all sites returned a positive NPV in each scenario.

This large,financially viable resource provides a strong business case
for investment in city-wide distributed generation, leading to both re-
duced carbon emissions and increased revenue for the city authorities.
Table 5 and Table 6 show the city-wide total electricity generation po-
tential, installed capacity and CAPEX if a single installation of each
type specified was placed at each suitable site identified. Variations in
NPV and ROI will be discussed in the next section.

4.2. Financial calculations

The NPVs and ROIs of potential installations at each identified site
were calculated across the LCC portfolio using themethods and assump-
tions detailed above. Reference cases used input values shown in
Table 4, and an export fraction of 0.5.

4.3. Wind

Fig. 5 shows the range of NPVs and ROIs across all sites for each
turbine and hub-height using the reference case. The largest capacity
turbines in general give the greatest returns. Furthermore, returns in-
crease with hub-height for all models investigated. Therefore any tur-
bine should be installed at the maximum possible hub-height for the
location in question. Negative returns were calculated at some sites
for 15 kW turbines at a 15 m hub height.

4.4. Rooftop PV

Fig. 6 shows the range of NPVs and ROIs across all 6408 rooftop sites,
calculated for the reference case at higher and middle tariff rates. All
rooftop solar installations of 50 to 250 kW returned positive NPVs,
while some of the smaller capacity installations at some sites returned
a negative NPV. When more than 25 eligible installations are registered
to a single recipient the tariff received for the 26th site onwards is re-
duced from the higher to the middle rate (OFGEM, 2013). This reduces



Table 5
Aggregated total generation potential for wind installation options across all sites. Bracketed numbers exclude sites with negative NPV.

Make WindEn 45 Ampair 20 CF20 CF15 Kingspan 15

Hub-height 18 30 36 15 18 22 15 20 15 20 15 20
Number of sites 51 51 51 51 51 51 51 51 51

(43)
51 51

(50)
51

Total installed capacity (MW) 2.30 2.30 2.30 1.02 1.02 1.02 1.02 1.02 0.77
(0.65)

0.77 0.77
(0.75)

0.77

Annual generation potential (GWh) 3.70 5.66 6.25 1.24 1.56 1.89 1.89 2.57 1.10
(0.97)

1.56 1.21
(1.19)

1.64

Total capital cost (£m) 9.18 9.18 9.18 3.49 3.67 3.83 4.13 4.13 3.83
(3.23)

3.83 3.72
(3.65)

3.72
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the NPV of a site (Fig. 6a–c), but nevertheless the majority of sites and
sizes still return positive NPVs. Fig. 6 indicates that PV installations of
50 kWhave themost favourable ROI. However, mean ROI at 50 kW(ap-
proximately 0.7) is exceeded bymean ROI at the highest hub height for
all but one of the wind turbine models, suggesting that in terms of effi-
ciency, investments in solar installations cannot compete with larger
wind installations.

The huge variability in the maximum possible installation size be-
tween sites (capacities ranged from 0.5–1129.75 kW) resulted in a cor-
respondingly large range of NPVs (Fig. 6). This is illustrated in more
detail in Fig. 7, which shows the distribution of NPV groups for 6179
out of 6408 sites at maximum possible installation capacity, up to an
NPV of £50,000. A further 228 sites had NPVs in excess of £50,000,
and one site had a negative NPV of nearly −£45,000; these have been
excluded for clarity due to their scattered nature.

4.5. Ground-mounted PV

Ground-mounted solar installations also have a large variation in
NPV and ROI due to the large range of potential capacities across the
335 sites (7–26.8 MW).

Fig. 8 shows the number of sites in each NPV group, demonstrating
that just over 75% (253 of 335) of all ground-mounted sites return pos-
itive NPVs. Of these, 131 sites return an NPV in excess of £200,000, with
larger ground-mounted installations greatly exceeding the highest
NPVs for rooftop PV and wind options. Conversely, the maximum ROI
is lower than the majority of wind and rooftop options, indicating that
despite its higher NPVs, ground-mounted PV is the least efficient invest-
ment. This may be attributed to the structure of the FiT, in which stand-
alone systems receive a lower generation tariff than either rooftop PV or
wind installations.

For both rooftop and ground-mounted installations, returns increase
with the size of the installation. Fig. 7 is based on the middle tariff rate,
due to the fact that if solar PV were extensively deployed by a city au-
thority in the UK,most siteswould receive themiddle rate. Tomaximise
NPV for rooftop PV, initial installations should be as large as possible to
benefit from the higher tariff rate. No such restrictions apply to wind or
ground-mounted solar PV, where a single tariff rate applies at each of
the capacity intervals.
Table 6
Aggregated total energy generation potential for solar installation options across all sites. Brac

Installed capacity across all sites identifi

Max: land Max: roof 4 kW roo

Number of sites supporting specified capacity
335
(253)

6408
(4899)

4166
(3939)

Total installed capacity (MW)
529.1
(501.6)

101.4
(97.8)

16.7
(15.8)

Annual generation potential (GWh)
382.1
(366.0)

64.9
(63.0)

10.5
(10.1)

Total capital cost (£m)
489.6
(461.8)

116.2
(110.1)

25.8
(24.4)
4.6. Mapping the potential

Figs. 5 to 9 and Tables 5 and 6 provide an overview of the aggregated
renewable energy resource across Leeds. In addition, themethod devel-
oped in this work produces spatially referenced data that can facilitate
rapid comparison of the resource at individual locations. Fig. 9 presents
a section of the city-scale map of predicted NPVs for a highly localised
site comparison. Table 7 shows the associated site information attached
to the GIS shapefile. The ability tomap the capacity and financial data of
each individual site enables strategic planners to quickly visualise data
and identify the most suitable locations for investment. For example,
here a planner is able to identify that although site D has the largest
NPV, it is site B whichwould provide the greatest ROI. Similarly, the an-
nual generation potential, NPV and ROI of site C all exceed that of site A,
despite site A having a larger surface area.

5. Discussion

Estimation of the viable renewable electricity generation potential
across a city, supportedwithmapped information showing thefinancial
potential of each specific site, has the potential to provide city authori-
ties with the power to disseminate easily-understandable information
to a wide range of stakeholders. Although the information shows the
relative merit of sites, details of the sensitivity of such a tool must
also be understood to support a robust business case. In this section,
we explore the sensitivity of the Leeds results to various input vari-
ables, and discuss the implications of the results for Leeds and cities
in general.

5.1. Effect of variables on NPV

A variety of data sources and assumptions are usedwithin themeth-
odology described, and uncertainties in these could influence the pre-
dicted energy generation and financial outcomes. The sensitivity is
likely to be affected by the city in question, with UK-specific assump-
tions, particularly the FiT, among the key variables in the Leeds case
study. It is therefore crucial to assess the potential influence of input as-
sumptions on the results. Input parameters were varied to assess their
impact on the mean NPV across all sites. The percentage change, for
keted numbers exclude sites with negative NPV (middle FiT rate).

ed

f 10 kW roof 50 kW roof 100 kW roof 150 kW roof 250 kW roof

1595
(1572)

371 211 114 49

16.0
(15.7)

18.6 21.2 17.3 12.5

10.1
(10.0)

12.0 13.7 11.2 8.0

20.8
(20.4)

19.1 21.2 17.3 12.2



Fig. 5. Range of a) NPVs and b) ROIs across all 51 sites for reference wind case. Boxes show 25th, 50th and 75th percentiles; whiskers showmaximum and minimum values.
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both technologies, is expressed as a change from the mean NPV as cal-
culated in the reference cases. Fig. 10 summarises the results for the
wind analysis where meanwind speed predictions and export fractions
were varied. The figure demonstrates that the accuracy of the wind
speed predictions is the largest factor affecting the NPV of the sites con-
sidered, for all turbines and hub-heights. Installing a turbine with a
higher hub-height has the dual benefit of realising a larger NPV in the
Fig. 6.NPV ranges for reference rooftop PV cases across all identified sites: a) 4 and 10 kW; b) 50
sites (middle FiT rate). Boxes show 25th, 50th and 75th percentiles; whiskers show maximum
first place (Fig. 5), and reducing the sensitivity of the NPV to wind
speed variations and the fraction of generated electricity exported. In
all cases, decreasing the export fraction (i.e. using more electricity on
site) improves the NPV in a UK setting.

Varying the capital and operational costs and export fraction in the
solar analysis, again shows that reducing the export fraction increases
the NPV across all sizes of installation (Fig. 11). Siting to enable high
and 100 kW; c) 150 kWandmaximumpossible installation size, and d) ROI ranges for all
and minimum values.



Fig. 7.Numbers of rooftop PV sites with NPVs up to £50,000 at intervals of £1000 (middle
FiT rate).
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onsite usage rates could go some way towards offsetting a decrease in
NPV should CAPEX and OPEX costs exceed original estimates.

5.2. Implications

The variation of NPV with export fraction provides a secure ratio-
nale for deploying renewable generation installations at sites with
the greatest demand for generated electricity. In Leeds, public ser-
vice buildings owned by the city authority meet this criterion.
Schools or leisure centres for example, often have the area required
to install renewable generation, and the daytime demand to use
the electricity produced. An alternative scenario can be envisaged
in which renewable generation is combined with electric vehicle
charging, once again matching supply with demand while simulta-
neously improving the infrastructure for electric vehicles within a
city. These scenarios, and others which can be readily imagined in
other cities, have the potential to help cities meet the expectations
upon them to “take a lead” in distributed energy generation, as
discussed in the opening context, by showcasing renewable technol-
ogy in a highly visible arena.

Mapping financial potential across a city has the potential to enable
matching of viable sites with other city authority targets including
Fig. 8. a) Numbers of ground-mounted PV sites at each NPV interval o
climate change mitigation. Sites located within areas of deprivation
could be targeted as a means of reducing fuel poverty within the city;
conversely, areas of economic wealth might be targeted to try and
encourage greater numbers of private domestic dwellings to follow
suit with renewable generation. Furthermore, using mapping as the
mechanism for conveying the information is likely to increase the ac-
cessibility of the information to potentially disparate personnel
within a city authority, and can be used as a visualisation tool to en-
gage external stakeholders. Through development of a suitable inter-
face, information could be interrogated with ease for a number of
applications. With an increasing emphasis on transparency and
open access data, it could be feasible that such a tool could be de-
ployed for wider use; providing groups with the opportunity to
seek out suitable community-funded low carbon opportunities, or
highlighting opportunities for renewables developers to rent land
for their projects. This would have a dual benefit of providing a
starting point for community groups, which can struggle to identify
a suitable site for their aspirations, while at the same time reducing
the burden of implementation for local government.

5.3. Policy implications

A clear advantage of themethodology developed here is that a broad
sweep of potentially financially viable investment options can be iden-
tified in a short time with limited staff resources. This is particularly
beneficial in a policy environment where financial incentives are con-
stantly changing. In the UK, the reduction in FiT payments for solar PV
installations over 25 in number for a single asset holder is perceived
by LAs to be a significant barrier to installing PV extensively. Refining
the rules for multiple installations is one possibility for increasing de-
ployment rates within cities. However, this study demonstrates that
there remains a huge potential for revenue generation notwithstanding
the current FiT criteria.

Public support for urban wind turbines may be perceived by city
authorities as lower than that for solar PV, but the higher starting
NPV values, and single tariff rate available for unlimited installa-
tions, may provide additional evidence to support viable wind
installations.

6. Conclusions

In this paper, the energy value of land and rooftops owned by Leeds
City Council has been assessed for individual sites and installation op-
tions over a city-wide region, demonstrating the value of the method
for other cities. Estimates were achieved through the development of
f £200,000, b) associated ROI range All 335 land sites are shown.



Table 7
Technical and financial details for sites shown in Fig. 9.

Site Area
(m2)

System size
(kW)

Capital
cost (£)

Annual
generation (kWh)

Max
NPV (£)

Max ROI
(%)

A 2136 138 138,000 85,699 65,310 47
B 722 52 33,679 33,679 27,372 51
C 1861 162 104,784 104,784 81,495 50
D 2828 195 194,500 122,397 88,138 45

Fig. 10. Variation of mean NPV with input variables for all wind turbines considered.
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a novel hierarchical modelling methodology, extending previous high
resolution resource estimationmethodologies to facilitate rapid calcula-
tion, alteration and re-calculation of estimates of financial potential,
thereby providing a basis from which strategic energy investments
can be planned. Themodel enables site-level data to be aggregated, pro-
viding city-wide estimates of cost, installed capacity potential and antic-
ipated electricity generation levels, for different scenarios. The approach
facilitates the planning of future investment in climate change mitiga-
tion through renewable energy generation, and in determining the
value of city assets. The methodology is reproducible for other cities
where relevant data can be made available, and is thus applicable be-
yond the UK.

The effect of the stratified solar FiT policy in the UK was evaluated.
Though returns are reduced for all installations exceeding the multiple
installation limit, there remain large numbers of viable site across the
city. Wind installations are not subject to the same restrictions, which
may help to promote their deployment. Resilience to policy variation
in a constantly-changing environment is likely to increase the likelihood
of a scheme reaching site. The insights gained in this work provide the
opportunity to plan for such resilience, increasing deployment of low
carbon energy technologies to reduce carbon emissions while also gen-
erating local economic benefits.
Fig. 11. Variation of mean NPV with input variable for all Solar PV site capacities
considered.
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