

This is a repository copy of *Evidence for arrested succession in a liana-infested Amazonian forest.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/91279/

Version: Accepted Version

Article:

Tymen, B, Réjou-Méchain, M, Dalling, JW et al. (7 more authors) (2016) Evidence for arrested succession in a liana-infested Amazonian forest. Journal of Ecology, 104 (1). pp. 149-159. ISSN 0022-0477

https://doi.org/10.1111/1365-2745.12504

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ 1 Evidence for arrested succession in a liana-infested Amazonian forest

3	Blaise Tymen ^{*1} , Maxime Réjou-Méchain ^{1,2} , James W. Dalling ^{3,4} , Sophie Fauset ⁵ , Ted R.			
4	Feldpausch ^{5,6} , Natalia Norden ^{7,8,9} , Oliver L. Phillips ⁵ , Benjamin L. Turner ⁴ , Jérôme Viers ¹⁰			
5	andJérôme Chave ¹			
6	1- Laboratoire Evolution et Diversité Biologique UMR 5174, CNRS, Université Paul Sabatier,			
7	118 route de Narbonne, 31062 Toulouse, France.			
8	2- French Institute of Pondicherry, UMIFRE 21/USR 3330 CNRS-MAEE, Pondicherry, India			
9	3- Department of Plant Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL			
10	61801, USA			
11	4- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of			
12	Panama			
13	5- School of Geography, University of Leeds, University Road, Leeds LS2 9JT, UK.			
14	6- College of Life and Environmental Sciences, University of Exeter, EX4 4RJ, UK			
15	7- Fundación Cedrela, Diagonal 40A # 18A-09, Bogotá, Colombia			
16	8- Centro Internacional de Física, Universidad Nacional de Colombia, Cra 30 # 45-03, Bogotá,			
17	Colombia			
18	9- Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del			
19	Rosario, Bogotá, Colombia			
20				
21	10- Géosciences Environnement Toulouse UMR 5563, Université Paul Sabatier, CNRS, IRD,			
22	14 avenue Édouard Belin 31400 Toulouse, France.			

- 24 * Correspondence author. E-mail:blaise.tymen@gmail.com**Running headline:** Liana-infested
- 25 forests as an arrested succession stage

26 Summary

Empirical evidence and modelling both suggest that global changes may lead to an increased
 dominance of lianas, and thus to an increased prevalence of liana-infested forest formations in
 tropical forests. The implications for tropical forest structure and the carbon cycle remain poorly
 understood.

2. We studied the ecological processes underpinning the structure and dynamics of a liana-infested
forest in French Guiana, using a combination of long-term surveys (tree, liana, seedling and
litterfall), soil chemical analyses and remote sensing approaches (LiDAR and Landsat).

34 3. At stand scale and for adult-trees, the liana-infested forest had higher growth, recruitment, and
35 mortality rates than the neighbouring high-canopy forest. Both total seedling density and tree
36 seedling recruitment were lower in the liana-infested forest. Stand scale above-ground biomass of
37 the liana-infested forest was 58% lower than in the high-canopy forest.

4. Above-ground net primary productivity (ANPP) was comparable in the liana-infested and highcanopy forests. However, due to more abundant leaf production, the relative contribution of fast
turnover carbon pools to ANPP was larger in the liana-infested forest and the carbon residence time
was half that of the high-canopy forest.

42 5. Although soils of the liana-infested forest were richer in nutrients, soil elemental ratios suggest
43 that liana-infested forest and high-canopy forest soils both derive from the same geological
44 substrate. The higher nutrient concentration in the liana-infested forest may therefore be the result
45 of a release of nutrients from vegetation after a forest blow down.

6. Using small-footprint LiDAR campaigns, we show that the overall extent of the liana-infested
forest has remained stable from 2007 to 2012 but about 10% of the forest area changed in forest
cover type. Landsat optical imagery confirms the liana-infested forest presence in the landscape for
at least 25 years.

50 7. Synthesis: Because persistently high rates of liana infestation are maintained by the fast dynamics
51 of the liana-infested forest, liana-infested forests here appear to be the result of an arrested tropical
52 forest succession. If the prevalence of such arrested succession forests were to increase in the
53 future, this would have important implications for the carbon sink potential of Amazonian forests.

54

55 Key words: Above-ground productivity; Biomass; Carbon turnover; Determinants of plant
56 community diversity and structure; Forest dynamics; Forest structure; French Guiana; Remote
57 sensing.

58

59 Introduction

Lianas are an ecologically important plant functional group in tropical forests. They constitute less 60 61 than 10% of the forest above-ground biomass (Putz 1984a; DeWalt & Chave 2004), but represent a significant share of the plant taxonomic diversity (Gentry 1988; Schnitzer et al. 2012) and they also 62 63 play an important role in tropical forest ecosystem functioning (Wright et al. 2004; Schnitzer, 64 Bongers & Wright 2011). For instance, they represent up to 40% of leaf net primary productivity in 65 some forests (Putz 1983). Lianas may be favoured competitively by the increase in atmospheric 66 CO₂ concentration (Granados & Körner 2002; Phillips et al. 2002; Wright et al. 2004), by longterm increases in tree dynamics (Phillips & Gentry 1994), and by higher potential 67 evapotranspiration rates associated with longer and warmer dry seasons (Schnitzer 2005; Heijden & 68 69 Phillips 2008; Schnitzer & Bongers 2011). Understanding the function of lianas in tropical 70 rainforests is therefore an important challenge in community ecology and ecosystem science 71 (Schnitzer & Bongers 2002; van der Heijden & Phillips 2009; Schnitzer et al. 2014). 72 Some forest areas are currently dominated by lianas (henceforth 'liana-infested forests')

both in Central Africa and Amazonia (Caballé 1978; Pérez-Salicrup 2001). Lianas abundance

74 increases with forest disturbance (Schnitzer & Bongers 2011; Dalling et al. 2012). They respond to light availability faster than trees, and find more support for growth in secondary forests (Putz 75 76 1984a; Letcher & Chazdon 2012). In some large liana-infested treefall gaps, lianas have been 77 shown to suppress the regeneration of trees (Schnitzer & Carson 2010), to the extent that liana-78 infested forests have been interpreted as arrested stages of ecological succession after past 79 disturbance (Schnitzer et al. 2000; Foster, Townsend & Zganjar 2008). Alternatively, liana-infested 80 forests could result from some localized difference in the natural environment, notably since lianas 81 occur more frequently on more fertile soils (Schnitzer & Bongers 2002 but see Dalling et al. 2012).

However, these two scenarios are not exclusive. If a forest blow-down has occurred recently, large amounts of nutrients previously held in the living biomass should be released to the topsoil. Thus, soil nutrient content of a disturbed area may differ from that of an undisturbed forest on the same geological substrate. Unravelling causal factors in the establishment of a liana-infested forest is therefore a challenging task.

87 In the present study, we seek to identify the ecological mechanisms underpinning the origin 88 and the maintenance of liana-infested forests. To do so, we combine data on a liana-infested forest 89 patch of about 20ha from repeated field censuses of seedlings, long-term monitoring of trees and 90 lianas, extensive soil chemical analyses, litterfall surveys, and repeated airborne LiDAR coverage 91 and Landsat data. Because of competition, we expect a negative correlation between liana 92 infestation and tree growth and survival (Clark & Clark 1990; van der Heijden & Phillips 2009; 93 Ingwell et al. 2010). Litterfall rate is expected to be greater in the liana-infested forest than in the 94 high-canopy forest because lianas allocate proportionally more resources to leaves (van der Sande 95 et al. 2013). Also, we expect that liana-infested forests to be more fertile than the neighboring high-96 canopy forests. However, we propose to test whether these differences in soil fertility are caused by 97 the underlying substrate or by disturbance history. Finally, we expect that the spatial extension of 98 the liana-infested forest has remained stable over the past years if it was an arrested stage of 99 succession.

100 Material and Methods

101 STUDY SITE

The study site is a 136-ha area within the old-growth tropical moist forest of the Nouragues 102 103 Ecological Research Station, in central French Guiana, located ca. 100 km south of Cayenne (Latitude: 4° 04' 27.986" N, Longitude: 52° 40' 45.107" W). The area is part of the Nouragues 104 105 Natural Reserve, within a zone delineated for scientific research. The terrain is gently rolling with 106 small hills and with an elevation ranging between 50 and 175 m asl. Annual rainfall is typical of equatorial evergreen tropical forests with 2861 mm year⁻¹ (1992-2012 average) with a two months 107 dry season (precipitation below 100 mm month⁻¹) in September and October. High-canopy forest, 108 liana-infested forest and bamboo thickets are the three main vegetation types in the study area 109 110 (Réjou-Méchain et al. under revision). The Nouragues forest shows no obvious evidence of recent 111 anthropogenic disturbances. The presence of an Amerindian tribe consisting of less than 1000 people, called 'Nouragues' was noted in the region by maps of the 17th century, and most notably 112 113 by the writing of two priests of the Company of Jesus, Jean Grillet and François-Jean Béchamel 114 (Béchamel 1682; Coudreau 1893). Human presence is also attested by the discovery of artefacts 115 found in the vicinity of the scientific camp (Bongers et al. 2001). However, the study area is remote 116 from a major river tributary (15 km as the crow flies from the Approuague river), and neither the soil nor the topography are particularly suitable for slash-and-burn agriculture. The Nouragues 117 Amerindians had departed the area and moved further south by the mid-18th century. Subsequent 118 scattered human presence occurred during the 19th and 20th centuries (gold rushes, latex harvesting 119 120 of the 'balata' tree, Manilkara spp.) but these were limited in scale and concerned mostly the more 121 accessible areas surrounding major river tributaries. For instance, Manilkara trees show no evidence of past exploitation in or nearby our study area. 122

123 FOREST STRUCTURE AND DYNAMICS

The liana-infested forest is spatially localized and characterized by a high density of small lianas and a large number of leaning and slanting trees. It is also characterized by a lower canopy height. To compare the dynamics of the high-canopy forest and the liana-infested forest we relied on three datasets collected in the field: (i) long-term inventory for trees and lianas \geq 10 cm in diameter at breast height (DBH); (ii) long-term inventory of seedlings \leq 1 cm in diameter; (iii) quantification of litterfall using permanent collecting traps, regularly emptied and dried.

130 A large permanent sample plot of 10ha (1000 x 100 m²) was established in 1993 to study the 131 transition from high-canopy forest to the liana-infested forest (Chave, Riéra & Dubois 2001; Chave 132 et al. 2008). All trees and lianas ≥ 10 cm DBH were measured and mapped. The plot was re-133 censused for trees and lianas in 2000, then again in 2008 and 2012, following the RAINFOR 134 protocol (Phillips et al. 2010). During the 2008 census, plot limits were corrected, and all points of measurement (POM) were marked with a paint line, allowing a more accurate measurement of tree 135 136 growth between 2008 and 2012. The diameter of stilt-rooted or buttressed trees was measured 50 137 cm above the last root or buttress. Trees and lianas were individually tagged. In 1992 and 2000, 138 liana diameters were measured at 130 cm above-ground. In 2008 and 2012, they were measured at 139 four points following the recommendations of Schnitzer, DeWalt & Chave (2006): (1) the largest 140 point on the stem, devoid of such stem abnormalities as large growths, knots, fissures, or wounds; 141 (2) 20 cm along the stem from the last substantial root; (3) 130 cm from the last substantial root; 142 and (4) 130 cm above-ground (DBH). Data are available from the ForestPlots.net online database (http://www.forestplots.net/ - accessed 13 June 2013; Lopez-Gonzalez et al. 2011). For each liana 143 144 with DBH ≥ 10 cm, hereafter referred to as large lianas, the host tree was recorded and referred to 145 as an infested tree (possibly several trees were the hosts of one liana). We note that trees were 146 frequently infested by smaller lianas, so our estimate of infested trees is conservative.

147 To address potential underestimation of liana infestation, a quantification of the liana leaves 148 in tree crowns was performed during the 2012 field campaign through the use of the crown 149 occupation index (COI) (Clark & Clark 1990). This index ranks trees from 0 to 4 according to the

infestation rate of their crown: (0) no lianas leaves in the crown, (1) 1–25%, (2) 26–50%, (3) 51–
75%, and (4) >75% of the tree crown covered by liana leaves (Appendix S1). This index of liana
infestation has been shown to be accurate and repeatable at individual and plot levels (van der
Heijden et al. 2010).

Annual trunk diameter growth rate for census i $(g_i \text{ in cm year}^{-1})$ was computed for each tree 154 from the DBH measurements assuming a constant growth during the census interval. Population 155 demographic parameters were computed in 25x25-m² subplots. Mortality rate (M_i in year⁻¹) was 156 calculated as proposed by Sheil & May (1996): $M_i = -\frac{1}{\Delta t} \ln(\frac{N_i - N_{ri}}{N_{i-1}})$ with N_i being the number of 157 trees in the census i, Δt the time interval between the two censuses, and N_{ri} the number of recruits 158 159 between censuses i-1 and i. Likewise, annual recruitment (Ki in tree per hectare) was computed using the following equation (Sheil & May 1996): $K_i = M_i N_{ri} / A(1 - e^{-M_i \Delta t})$ with N_{ri} the number 160 161 of recruits at time t_i, A the plot area (in ha), and M the mortality rate. To facilitate comparison among forest types that differed in stem density, we reported annual recruitment in % year⁻¹ (see 162 Table 1). 163

164 Tree and liana seedlings were monitored in 250 plots of 1x1m² established in cluster of 2-3 plots in 100 regularly spaced locations (Fig. 1c, Norden et al. 2007, 2009). Each seedling plot was 165 166 censused at least four times between 2004 and 2013 except three of them which were removed from 167 the analyses because they experienced treefall or other problems. During each census, recruits were counted, identified whenever possible and measured. Overall, 19.5 % of the seedlings were 168 169 identified as lianas and 58.2 % as trees. The rest could not be identified with confidence. Mortality 170 and recruitment rates of seedlings were large and therefore we didn't make the assumptions made 171 for trees and estimated these rates from empirical data as follows. Seedling mortality rate (mi in year⁻¹) at census i was quantified as: $\ln(1 - m_i) = \frac{1}{\Delta t} \ln(\frac{N_i - N_{ri}}{N_{i-1}})$ and seedling recruitment (in m⁻¹) 172 ²year⁻¹) as $k_i = \frac{m_i N_{ri}}{A - A(1 - m_i)^{\Delta t}}$, with N_{ri} being again the number of recruits at time t_i and $\Delta t = t_i - t_{i-1}$ in 173 years. We then averaged the rates to obtain a 9-year average at each location (2 to 3 plots per 174 8

location). These analyses were performed for tree and liana separately and also for all seedlingstogether (including undetermined).

Litterfall was collected from 100 0.5-m² litter traps at the seedling plots locations (Fig. 1.c, Chave et al. 2008, 2010). From February 2001 to February 2003, these traps were collected twice monthly, their content separated into leaves, twigs, flowers and fruits, and the fractions oven-dried and weighed. We contrasted total litterfall and its fractions (leaf, twigs, and reproductive organs) between the high-canopy forest and the liana-infested forest.

182 Tree above-ground biomass (AGB) was estimated using a pantropical biomass equation (eq. 183 4 in Chave et al. 2014) combined with locally-adjusted height-diameter models (Réjou-Méchain et 184 al. under revision). Liana AGB was computed using the allometric equations from Schnitzer et al. 185 (2006) using the diameter measured at 130 cm from the last substantial root when available (2008 186 and 2012 censuses) or the diameter measured at 130 cm above-ground (1992 and 200 censuses). 187 Above-ground net primary productivity (ANPP) was computed as the AGB stock increment 188 induced by recruitment and growth of trees with $DBH \ge 10$ cm plus total litterfall production. Other 189 ANPP components, although they may be important (Clark et al. 2001) were not considered in the 190 present study. Residence time of carbon in the above-ground vegetation was computed as the ratio 191 AGB/ANPP.

192 AIRBORNE DATA ACQUISITION, PROCESSING, AND ANALYSES

193 Two airborne LiDAR acquisitions were conducted in 2007 and 2012 by a private contractor

194 (http://www.altoa.fr/, for more details see Appendix S4). LiDAR datasets consisted of a cloud of

195 laser echoes originating from ground and vegetation. Ground points were identified using the

196 TerraScan (TerraSolid, Helsinki) 'Ground' routine'. Based on this dataset, we constructed a 1-m

197 resolution elevation model using the "GridSurfaceCreate" procedure implemented in FUSION

198 (McGaughey 2009).

For both 2007 and 2012 cloud point datasets, 1-m and 5-m canopy models were built after outlier extraction, using the "CanopyModel" procedure implemented in FUSION. This procedure subtracts the elevation model from the height of each return and then uses the highest return value to compute the canopy surface model. A 3x3 cell median filter was applied to smooth the surface and avoid local unrealistic maxima

204 In our study zone, large areas of known liana-infested forest formations had a canopy height 205 typically ranging between 10 and 20 m, while surrounding forests had a significantly taller canopy 206 (25 to 35 m). Thus, we used the LiDAR canopy model to identify all pixels having a top-of-canopy 207 height comprised between 10 and 20 m and connected to the known liana-infested forests patches. 208 These low-canopy pixels were considered as liana-infested. A 5-m buffer around the liana-infested 209 forest class was also assigned to the liana-infested forest class, and pixels entirely surrounded by 210 liana-infested forest were included in it. In a second step, this forest classification was validated 211 using ground truthing and aerial photographs and was found to be highly accurate (Fig. 1; Appendix 212 S1). Next, we defined a 50-m transition zone surrounding the liana-infested zone (Fig. 1); this zone 213 was removed from the analyses because we assumed it to be influenced by both forest types. 214 Finally, we removed the area covered by a 1-ha bamboo thicket and a 30-m buffer zone around it 215 (total of 2.7ha, Fig. 1). Aerial photographs of the study site were taken in 2008 (Fig. 1). They were used to qualitatively check the accuracy of our delineation of the liana zone and bamboo thickets. 216

217 LiDAR-derived variables were assessed within a 50x50-m² grid based on the 1-m resolution 218 LiDAR canopy model. Gaps were defined as areas where canopy elevation was lower than 5 m, a 219 convention similar to that in Hubbell et al. (1999). We did not define any minimal area for such 220 gaps; tree-fall gaps, branch-fall gaps and other openings in the canopy are thus included in our definition of gap. From the canopy height distribution, mean and coefficient of variation (standard 221 222 deviation divided by the mean) were computed within each 50x50-m² grid cell. Grids cells were 223 assigned to the different vegetation types (liana-infested forest, transition zone, high-canopy forest) 224 when at least 50% of the grid area contained the vegetation.

225 SOIL CHEMICAL ANALYSES

226 We first tested if the soil of the liana-infested forest was more fertile than the high-canopy forest 227 soil. To do so, we used two different datasets. The first dataset was collected as part of a previous project aiming to assess the influence of environment on seedling dynamics (Norden et al. 2007, 228 2009). A total of 100 soil samples were collected in the study area and analyzed (Fig. 1.c). Of these, 229 230 eight soil samples came from the liana-infested forest and 62 from the high-canopy forest; 30 231 samples from the transition zone were removed from the analysis. Topsoil (0-10 cm depth) was 232 filtered in a 2-mm mesh sieve after removing litter and was then acid-digested. Total concentrations 233 of major elements were measured by inductively coupled plasma optical emission spectroscopy 234 (ICP-OES). In addition, concentrations of carbon and nitrogen were measured by a CHN elemental 235 analyzer (NA 2100 Protein, CE Instruments®) and soil pH was measured in a standard solution made up of one volume of soil diluted in three volumes of water (Norden et al. 2009). The second 236 237 dataset was collected in 2011 and included seven soil samples from the liana-infested forest and 21 238 from the high-canopy forest; 12 samples from the transition zone were removed from the analysis 239 (JWD and BLT, unpublished results). Exchangeable cations were measured, and metals were 240 extracted in 0.1 M BaCl₂ solution in a 1:30 soil to solution ratio for 2 hours. Detection was 241 performed by inductively-coupled plasma optical-emission spectrometry on an Optima 7300 DV 242 (Perkin-Elmer Ltd, Shelton, CT; Hendershot, Lalande & Duquette 1993; Schwertfeger & 243 Hendershot 2009). Total exchangeable bases (TEB) were calculated as the sum of the 244 concentrations of Ca, K, Mg and Na; effective cation exchange capacity (ECEC) was calculated as 245 the sum of Al, Ca, Mg, Mn, H and Na. Base saturation (BS, %), a measure of soil cation fertility was calculated as: $BS = \frac{100 \times ECEC}{TEB}$. Exchangeable phosphorus concentration was measured by 246 247 adsorption on anion-exchange resins (Turner & Romero 2009).

For both datasets, a principal component analysis (PCA) was performed on concentration values (mg kg⁻¹ of soil). Sample scores on the PCA axes were compared between high-canopy forest and liana-infested forest soils.

251 We then tested whether the occurrence of the liana-infested forest is related to the nature of 252 the bedrock. We analyzed the concentration of a range of rare elements in the soil that are tracers of 253 substrate heterogeneity at the site. Geochemical tracers are now commonly used to distinguish the 254 nature of rocks, the origin of sediments or sedimentary recycling processes (McLennan et al. 1993; 255 Lahtinen 2000) because they are sensitive to chemical reactions over geological timescales 256 (McLennan et al. 1993). Ratios of some of these tracers are useful to explore substrate homogeneity 257 since they are conserved between the source (rock) and the weathered product (soil). We collected 258 surface soil samples with an auger at six sites, two within the liana forest, and four in the highcanopy forest (Fig. 1). To measure the elemental concentrations, all samples were digested by acid 259 attack in Teflon Savillex® vessels. We also digested the samples by alkali fusion to check that all 260 261 refractory minerals have been dissolved during the acid attack digestion. In both procedures, a GA standard (granite, CRPG-CNRS Nancy, France) was included in the analyses for control. Trace 262 263 elements were analyzed on an ICP-MS (7500 ce, Agilent Technologies). After calibration, the 264 certified reference materials (SLRS-5, NRCC, Canada and ION-915, Environment Canada), together with the GA standard, were analyzed to assess the validity and the reproducibility of the 265 266 procedure. We then calculated the chemical ratios at all six sites (see Appendix S2 for further information). Ratios analyzed here are: Cr/Th, Cr/V, Zr/Y and Eu/Eu*, with Eu*= $\frac{Eu}{Eu_{ref}} \times \frac{Sm_{ref}}{Sm} \times \frac{Sm_{ref}}{Sm}$ 267

268 $\sqrt{\frac{Tb_{ref}}{Tb}}$ (McLennan et al. 1993).

269 LANDSAT DATA PROCESSING AND ANALYSES

Cloud-free 30-m resolution Landsat Thematic Mapper (TM) data were rare in the study area. We
found three high-quality images, acquired on 18 July 1988, 24 July 1990 and 8 October 2006. Geo-

- 272 referencing of the Landsat images was adjusted using the LiDAR data in Qgis 2.2-Valmiera.
- Radiometric corrections were applied to the 1990 and 1988 data relatively to the 2006 data using
 the histogram matching algorithm implemented in the 'landsat' R package.

275 We characterized the pixels of Landsat images using the tasseled-cap indices (Crist & 276 Cicone 1984). These indices are commonly used because they are scene-invariant and summarize vegetation characteristics: brightness, greenness and wetness and were used in a previous study on 277 278 liana-infested patches (Foster et al. 2008). Before any classification, a low-pass filter was applied 279 on all three Landsat images to reduce their variance following Hill (1999). Pixels of the modified 280 2006 Landsat image were classified as belonging to the liana-infested forest or not using the area 281 identified with the 2007 LiDAR dataset (see above). A Principal Component Analysis (PCA) was 282 then performed on the tasseled-cap indices values of the 2006 image (Fig. S3). To allow direct comparisons between images, the PCA scores of the pixels from the 1988 and 1990 images were 283 284 calculated using the scalar product associated to the row weightings of the PCA performed on the 285 2006 image (function 'suprow' in ade4 R package). A hierarchical classification following Ward's 286 method was performed based on the pixel's scores of the two first PCA axes. Classes of this 287 unsupervised method were mapped and compared to the liana-infested forest defined based on 288 LiDAR data.

All statistical analyses were performed with the R statistical software v3.1.1 (R Core Team 2012). Raster manipulation, spatial analyses, and hierarchical clustering were performed using the 'raster', 'maptools', 'sp', 'fields' and 'ade4' packages in R.

- 292
- 293 **Results**

294 IMPACT OF LIANA INFESTATION ON FOREST STAND STRUCTURE AND DYNAMICS 295 We first compared the stand structure parameters (Table 1). We found no significant difference in 296 tree stem density within and outside of the liana-infested forest (Wilcoxon test, P=0.78); however,

mean stand-level basal area of trees was 50% lower and above-ground biomass (AGB) stock 58%
lower in the liana-infested forest than in the high-canopy forest (Fig. S2, Table 1). Liana AGB was
slightly higher in the liana-infested forest. The liana-infested forest canopy was also more irregular
with five times more canopy gaps (Fig. 2).

Next, we contrasted stand dynamics parameters (Table 1). Both recruitment and mortality rates of trees >10 cm DBH were more than twice as high in the liana-infested forest as outside of it. Over the 1992-2012 period, the liana-infested forest lost biomass carbon with its AGB stock dropping from 185 ± 21 Mg.ha⁻¹ in 1992 to 163 ± 22 Mg.ha⁻¹ in 2012. Conversely, during the same period, the high-canopy forest gained biomass carbon with its AGB stock increasing from $386 \pm$ 21Mg.ha⁻¹ in 1992 to 438 ± 29 Mg.ha⁻¹ in 2012 (Fig. S7). In contrast, the increase in liana AGB was 1.5 times higher in the liana-infested forest than in the surrounding forest (Table 1).

Litterfall production was higher in the liana-infested forest than in the high-canopy forest (Table 1). The difference was due to leaf fall, which represented about 70% of the litterfall, while fruit and flower falls were higher in the high-canopy forest. However, above-ground net primary productivity (ANPP) was comparable between the liana-infested forest and the high-canopy forest. Owing to a lower AGB stock, the estimated residence time of carbon (i.e. the ratio of AGB to ANPP) in the liana-infested forest was therefore half that of the high-canopy forest.

Seedling mortality was consistently higher in the liana forest than in the high-canopy forest without detectable difference between lianas and trees (Table 2). However, unlike adult tree recruitment, tree seedling recruitment was lower in the liana forest while liana-seedling recruitment was similar in both forest types. Of the identified seedling recruits, 45% were lianas in the lianainfested forest versus 25% in the surrounding high-canopy forest.

319 SOIL CHEMISTRY IN THE LIANA-INFESTED FOREST

320 Soil chemistry differed substantially between the liana-infested and high-canopy forest (Table 3).

- 321 For total nutrients extracted from surface soils, liana-infested forest samples had significantly
 - 14

different PCA scores than sample from the high-canopy forest (Wilcoxon test, p=0.001 for the two first axes, Fig. S5). In the liana-infested area, surface soil was richer in macro-elements (C, Ca, K, Mg, and N) and had a higher pH than in the high-canopy area (Table 3). In addition, soil samples from the liana-infested forest had different scores than the high-canopy forest on the first axis of the PCA (Wilcoxon test, p=0.036, Table 3, and Fig. S6). Base saturation was higher in the lianainfested forest than in the high-canopy forest (Wilcoxon test, p=0.027, Table 3).

According to trace elements ratios, the underlying substrate of the Nouragues forest was typical of comparable substrates of the Guiana Shield (Fig. 3 and Appendix S3, Table S1). The samples from the liana-infested forest did not differ from those collected in the surrounding highcanopy forest (Fig. 3 & S4). These results suggest that the soils within and outside of the lianainfested forest most likely derive from a similar lithology.

333 CHANGES IN THE SPATIAL FOOTPRINT OF THE LIANA-INFESTED FOREST

Between 2007 and 2012, the liana-infested area declined by 3.4%, from 23.6 ha to 22.8 ha. In total, 21.1 ha (89.5%) remained in the liana-infested forest class while 2.5 ha (10.5%) was grown over by tall trees, and 1.7 ha was recruited as new liana-infested forest (7.5% of the 2012 liana-infested forest). Losses of liana-infested areas were due to trees outgrowing the height threshold, while gains were due to additional tree falls in the liana-infested transition area.

The unsupervised segmentation of the Landsat 2006 image produced a forest classification where a single class showed a good agreement with the liana-infested area as delineated by the 2007 LiDAR dataset (Fig. 4 & S3). The liana-infested forest was characterized by higher greenness and brightness indices and by a lower wetness index based on tasseled-cap indices (Fig. S3). Over 68% of the liana-infested forest was classified as liana-infested forest type either in the 1988 or in the 1990 Landsat scenes. Our analysis indicates a fair degree of stability of the liana-infested forest for at least 25 years (Fig. 4).

347 Discussion

348 Long-term forest monitoring allowed a detailed analysis of the structure, dynamics, and above-349 ground net production of a naturally liana-infested tropical formation. At stand level, liana 350 infestation was associated with faster forest dynamics, both in terms of demography and of carbon 351 turnover. Soils in the liana-infested forest were nutrient-poor by Amazonian standards but they were richer in nutrients than high-canopy forest soils. However, the underlying substrates were not 352 353 detectably different in their chemical composition. Finally, the extent of the liana-infested area was 354 found to be fairly stable over at least the past 25 years. Overall, these results suggest that the liana-355 infested forest is in an arrested stage of ecological succession. Below, we discuss evidence for this 356 claim and its implications.

357 INFLUENCE OF LIANAS ON FOREST DYNAMICS

We found that lianas have a profound impact on the stand-level dynamics of the liana-infested forest. They induced a faster tree dynamics than in the surrounding high-canopy forest. This was probably due to a greater proportion of fast-growing, high-mortality tree species, which are better at shedding and avoiding lianas(Putz 1984b; Schnitzer & Bongers 2002). Thus, direct competition between trees and lianas probably had a strong influence in favouring the high-turnover dynamics. Because of high tree mortality rate, we also observed more frequent gap openings which is expected to favour liana maintenance and establishment (Dalling et al. 2012; Ledo & Schnitzer 2014).

The liana-infested forest stored 2.4 times less AGB than in the high-canopy forest, a figure comparable to that described by Schnitzer et al (2014) who compared liana-infested and liana-free tree gaps. However, ANPP in the liana-infested forest was similar to that of the surrounding highcanopy forest, in spite of the very different structure and biomass. Also, litterfall production was slightly higher in the liana-infested than in the surrounding high-canopy forest and was greater than typical values for both secondary and old-growth forests (Chave et al. 2010). This was presumably due to a greater allocation of resources to leaves in lianas than in trees. As a result, carbon residence

time in the liana-infested forest was half that of the high-canopy forest. At global scales, carbon
residence time is strongly controlled by climate (Carvalhais et al. 2014). Yet our findings
demonstrate that at landscape scale the biological composition and structure of forests is a strong
determinant of carbon residence times in agreement with Malhi et al. (2004).

376 We were able to study the differential regeneration of trees and lianas in the liana-infested 377 forest, and we found a relative advantage of liana over tree seedlings. This suggests that liana 378 regeneration is promoted in the liana-infested forest environment, either through higher seed 379 availability or more suitable habitat for germination and seedling establishment. In contrast, tree 380 seedling recruitment was lower than liana seedling recruitment in the liana-infested forest (Table 2). 381 This may either be due to lower seed arrival rates, lower seed germination, or to early seedling 382 mortality (i.e. occurring between germination and the census date). In liana-infested tree-fall gaps, 383 Schnitzer & Carson (2010) showed a high seedling recruitment limitation for shade-tolerant tree 384 species but not for pioneer species. We expect the same effect in the Nouragues liana-infested forest and predict that liana infestation should enhance the recruitment of pioneer tree species thus 385 386 maintaining high forest turnover (Schnitzer & Bongers 2002). However, we were unable to assess 387 this prediction quantitatively, because too few seedlings were identified to species in our dataset.

We also found that total seedling mortality was higher in the liana-infested forest. Consistently, Norden et al. (2007) found lower seedling survival in sites with higher light availability and higher soil fertility, some conditions met in liana-infested forest as shown in our study. They interpreted this pattern as the consequence of a more intense competition in resourcerich environments. However, higher seedling mortality in the liana-infested forest could also result from the higher leaf litterfall because leaf litter cover seedling and hence lowers their emergence and increase their mortality (Guzman-Grajales & Walker 1991; Dalling & Hubbell 2002)

395 THE LIANA-INFESTED FOREST AS AN ARRESTED STAGE OF SUCCESSION

396 A most remarkable feature at Nouragues is that the liana-infested forest appears to be an arrested 397 stage of ecological succession. LiDAR surveys revealed that the liana-infested forest was spatially 398 stable during a five-year interval, with no notable net gain or loss over the surrounding high-canopy 399 forest. This result was extended by an analysis of long-term Landsat series, starting in 1988, and by 400 previous observations by Sabatier & Prévost who mentioned the presence of a liana-infested forest 401 with similar location in 1987and suggested considering this formation as 'homeostatic' (Sabatier & 402 Prévost 1990). The well-documented spatial stability of the liana-infested forest at Nouragues now 403 provides solid evidence that such forest formations can persist for decades with no apparent 404 evidence of transition towards a different structural state.

405 One possible explanation for the apparent stability of the liana-dominated forest could be the 406 association of lianas with more fertile soils as found in Asian tropical forests (reviewed in Schnitzer 407 & Bongers 2002). We confirmed that soil in the liana-infested forest was more fertile with higher 408 base saturation and phosphorus than the surrounding forest (Sollins 1998; Phillips et al. 2003; 409 Tuomisto et al. 2003). Because the liana-infested forest has lower AGB, and therefore less nutrient 410 quantities stored in live organs, the amount of nutrients available in the soil would be higher if the 411 soil had the same characteristics. Higher base saturation of the soil in the liana-infested forest than 412 in the high-canopy forest would then be due to differences in forest structure rather than differences 413 in rock weathering.

414 To disentangle the relative role of rock substrate and above-ground versus below-ground 415 nutrient storage, we used geological tracers that are typical of substrate type but are not strongly affected by the biochemical cycling over ecological time scales. While there are differences in 416 417 chemical element contents, tracer ratios, supposed to be more stable through pedogenesis, did not 418 reveal striking differences in the lithology from which the soils derive through weathering (Fig. 3 & 419 Supplementary Information 2). The similar bedrock chemical composition within and without the 420 liana-infested forest shown by tracer analyses suggest that geology is not a causal factor for liana 421 dominance in the study zone.

422 Overall, our results support the hypothesis of a release of nutrients into the soil due to a past disturbance and maintained by the fast vegetation turnover of the liana-infested forest. Such 423 424 disturbance may have been either natural (i.e., convectional storm) or human-mediated (i.e., human 425 settlement). The size of the area, its location, and previous knowledge on human settlements in this 426 area all suggest that a human cause is less likely. Surveys found no human artefacts (pottery or 427 charcoal) in the liana-infested forest (B. Hérault, M. van der Bel, S. Barthe, unpublished results). A 428 few years ago, a blow-down of a similar size caused by a micro-tornado was discovered a few km 429 north of the study area (C. Bienaimé, P. Gaucher, pers. comm.). A similar event may have also 430 triggered the establishment of our liana-infested forest. After the completion of this manuscript it 431 has come to our attention that a study conducted in the Imataca Forest Reserve in Eastern 432 Venezuela has proposed the same hypothesis for the origin of a local liana-infested forest (Lozada 433 et al. 2015).

434 Our analysis focuses on a single patch of liana forest, and therefore lacks replication. It would be useful to compare the dynamics of the liana-infested forest as reported in this study with 435 that of other liana-dominated formations of similar sizes in other parts of the Amazon. However we 436 437 suspect that many of our findings are likely to extend beyond our study site. In particular, as 438 discussed above, we suspect that the ability of lianas to significantly slow down ecological succession will hold at other sites. Alternative pathways of treefall gap regeneration caused by liana 439 440 infestation have already been detected at Barro Colorado Island in Panama. Schnitzer et al. (2000) 441 and Schnitzer & Carson (2010) have shown that liana density was positively correlated with pioneer 442 tree density and that canopy height remained low for over 13 years in those gaps. Foster et al. 443 (2008) also showed that liana-infested forests demonstrated that liana-infested patches did not 444 recover even after 14 years, and may therefore be considered as an arrested succession in the Noel 445 Kempff Mercado National Park in eastern Bolivia. Also, it is likely that nutrient-rich soils in liana 446 formations generally are a consequence of pre-liana disturbance rather than be associated to 447 geomorphology. Finally, we believe the disturbance event that resulted in lianas overtaking this area

448 was not directly related to human occupation. It seems that other liana-dominated forests are of non-449 anthropogenic origin in the Amazon, but human-induced disturbances are expected to favour lianas 450 infestation (Schnitzer & Bongers 2011). It would be important to better document the extent and 451 origins of liana-infested forests at a regional scale. We conclude by discussing the possible 452 implications of liana dominance at regional scale.

453 REGIONAL-SCALE IMPLICATIONS OF LIANA DOMINANCE

454 Our results confirm that liana infestation limits the net carbon sequestration capacity of tropical forests (Phillips et al. 2002; van der Heijden et al. 2013; Schnitzer et al. 2014). Lianas have 455 456 already been found to have increased over recent decades in dominance even in undisturbed 457 Neotropical forests, possibly due to climate or atmospheric changes (Phillips et al. 2002; Laurance 458 et al. 2014). Lianas may also be expected to benefit in coming decades, if tree mortality rates 459 continue to rise (Brienen et al. 2015), and/or if disturbances at regional scale become more frequent 460 because of warming, leading potentially to more frequent extreme events (Davidson et al. 2012). 461 These phenomena could favour the emergence of larger areas of liana-infested forest. Importantly, 462 the transition rate from high-canopy to liana-dominated forests has been understudied, since it is 463 difficult to monitor vast expanses of tropical forest as the appropriate spatial resolution (only one 464 study from Foster et al. 2008). Larger-scale airborne LiDAR surveys combined with the 465 development of new satellite Earth observation technologies may radically transform our vision for this problem. We would be able to provide a much finer-grained detail of the canopy structure and 466 467 dynamics and potentially directly detect the influence of liana infestation.

468 Currently, evidence for forest regeneration following deforestation suggests that tropical 469 forests rapidly accumulate carbon during the early stages of regeneration (Brown & Lugo 1990). 470 Typically, for forests growing in the conditions met in our study site, a recovery of 85% of the 471 carbon stock contained in the initial old-growth forest is expected in about 80 year thanks to a 472 carbon accumulation rate close to 5 Mg.ha⁻¹.year⁻¹ (Bonner et al. 2013). By contrast, in the liana-

infested forest we studied, carbon stock remained stable at c.a. 40% of the high-canopy forest
carbon stock over the past 20 years (Fig.S7). The finding that tropical forests may turn into lowAGB forests for decades is a cautionary tale for carbon cycle modellers because it could have a
dramatic impact on the carbon storage ability of these forests in the future as it was already pointed
out by van der Heijden (2013).

478

479 Acknowledgments

480 We thank V. Alt, C. Baghooa, C. Baldeck, C. Baraloto, W. Bétian, V. Bézard, L. Blanc, V. Chama 481 Moscoso, P. Châtelet, M. Delaval, J. Engel, P. Gaucher, T. Gaui, S. Icho, G. Lopez-Gonzalez, A. 482 Monteagudo, P. Pétronelli, G. Pickavance, and J. Ricardo for field data collection and curation. We 483 gratefully acknowledge financial support from CNES (postdoctoral grant to MRM, and TOSCA 484 programme), and from "Investissement d'Avenir" grants managed by Agence Nationale de la 485 Recherche (CEBA, ref. ANR-10-LABX-25-01; TULIP: ANR-10-LABX-0041; ANAEE-France: ANR-11-INBS-0001) and the Gordon and Betty Moore Foundation and NERC Consortium Grants 486 'AMAZONICA' (NE/F005806/1) who supported the RAINFOR project. O.L.P. is supported by an 487 488 ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. Finally, we thank the 489 US Geological Survey for providing access to the Landsat data. Contributions: BT, MRM and JC 490 designed the study and wrote the paper. BT, MRM, JV and JC analyzed the data. All authors 491 contributed to acquiring the field data and provided input on draft manuscripts. The authors declare 492 no conflict of interest.

494 **References:**

- Asner, G.P. & Martin, R.E. (2012) Contrasting leaf chemical traits in tropical lianas and trees:
 implications for future forest composition. Ecology Letters, 15, 1001–1007.
- Bongers, F., Charles-Dominique, P., Forget, P.-M., Théry, M. (2001) Nouragues: Dynamics and
 Plant-Animal Interactions in a Neotropical Rainforest. Klüwer Academic Publishers,
 Dordrecht, The Netherlands.
- Bonner, M.T., Schmidt, S. & Shoo, L. P. (2013) A meta-analytical global comparison of above ground biomass accumulation between tropical secondary forests and monoculture
 plantations. Forest Ecology and Management, 291, 73-86.
- 503 Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., G. Lopez-Gonzalez, A. Monteagudo-Mendoza, Y. Malhi, S. L. Lewis, R. Vásquez Martinez, M. 504 505 Alexiades, E. Álvarez Dávila, P. Alvarez-Loayza, A. Andrade, L. E. O. C. Aragão, A. 506 Araujo-Murakami, E. J. M. M. Arets, L. Arroyo, G. A. Aymard C., O. S. Bánki, C. Baraloto, J. Barroso, D. Bonal, R. G. A. Boot, J. L. C. Camargo, C. V. Castilho, V. Chama, K. J. Chao, 507 508 J. Chave, J. A. Comiskey, F. Cornejo Valverde, L. da Costa, E. A. de Oliveira, A. Di Fiore, 509 T. L. Erwin, S. Fauset, M. Forsthofer, D. R. Galbraith, E. S. Grahame, N. Groot, B. Hérault, 510 N. Higuchi, E. N. Honorio Coronado, H. Keeling, T. J. Killeen, W. F. Laurance, S. 511 Laurance, J. Licona, W. E. Magnussen, B. S. Marimon, B. H. Marimon-Junior, C. Mendoza, 512 D. A. Neill, E. M. Nogueira, P. Núñez, N. C. Pallqui Camacho, A. Parada, G. Pardo-Molina, 513 J. Peacock, M. Peña-Claros, G. C. Pickavance, N. C. A. Pitman, L. Poorter, A. Prieto, C. A. 514 Quesada, F. Ramírez, H. Ramírez-Angulo, Z. Restrepo, A. Roopsind, A. Rudas, R. P. 515 Salomão, M. Schwarz, N. Silva, J. E. Silva-Espejo, M. Silveira, J. Stropp, J. Talbot, H. ter Steege, J. Teran-Aguilar, J. Terborgh, R. Thomas-Caesar, M. Toledo, M. Torello-Raventos, 516 R. K. Umetsu, G. M. F. van der Heijden, P. van der Hout, I. C. Guimarães Vieira, S. A. 517 518 Vieira, E. Vilanova, V. A. Vos & R. J. Zagt (2015). Long-term decline of the Amazon 519 carbon sink. Nature, **519** (7543), 344-348.
- 520
- 521 Brown, S. & Lugo, A.E. (1990) Tropical secondary forests. Journal of Tropical Ecology, 6, 1–32.
- 522 Caballé, G. (1978) Essai sur la géographie forestière du Gabon. Adansonia, 17, 425–440.
- Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M., Saatchi,
 S., Santoro, M., Thurner, M. & others. (2014) Global covariation of carbon turnover times
 with climate in terrestrial ecosystems. Nature. 514, 213–217.
- 526 Chave, J., Navarrete, D., Almeida, S., Alvarez, E., Aragão, L.E., Bonal, D., Châtelet, P., Silva527 Espejo, J.E., Goret, J.-Y., Hildebrand, P. von, Jimenez, E., Patiño, S., Peñuela, M.C.,
 528 Phillips, O.L., Stevenson, P. & Malhi, Y. (2010) Regional and seasonal patterns of litterfall
 529 in tropical South America. Biogeosciences, 7, 43–55.
- Chave, J., Olivier, J., Bongers, F., Châtelet, P., Forget, P.-M., van der Meer, P., Norden, N., Riéra,
 B. & Charles-Dominique, P. (2008) Above-ground biomass and productivity in a rain forest
 of eastern South America. Journal of Tropical Ecology, 24, 355–366.
- Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque,
 A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha,
 W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira,
 E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G. &

537 Vieilledent, G. (2014) Improved allometric models to estimate the above-ground biomass of 538 tropical trees. Global Change Biology, 20, 3177–3190. 539 Chave, J., Riéra, B. & Dubois, M.-A. (2001) Estimation of biomass in a Neotropical forest of 540 French Guiana: spatial and temporal variability. Journal of Tropical Ecology, 17, 79–96. 541 Clark, D.A., Brown, S., Kicklighter, D.W., Chambers, J.Q., Thomlinson, J.R. & Ni, J. (2001) 542 Measuring net primary production in forests: concepts and field methods. Ecological 543 Applications, **11**, 356–370. 544 Clark, D.B. & Clark, D.A. (1990) Distribution and effects on tree growth of lianas and woody 545 hemiepiphytes in a Costa Rican tropical wet forest. Journal of Tropical Ecology, 6, 321-331. 546 547 Coudreau, H. (1893) Chez nos Indiens- Quatre Années dans la Guyane française (1887-1891). 548 Librairie Hachette et Cie, Paris. 549 Crist, E.P. & Cicone, R.C. (1984) A physically-based transformation of thematic mapper data—The 550 TM tasseled cap. Geoscience and Remote Sensing, IEEE Transactions On, 256–263. Dalling, J.W. & Hubbell, S.P. (2002) Seed size, growth rate and gap microsite conditions as 551 552 determinants of recruitment success for pioneer species. Journal of Ecology, 90, 557–568. 553 Dalling, J.W., Schnitzer, S.A., Baldeck, C., Harms, K.E., John, R., Mangan, S.A., Lobo, E., Yavitt, 554 J.B. & Hubbell, S.P. (2012) Resource-based habitat associations in a neotropical liana community. Journal of Ecology, 100, 1174–1182. 555 556 Davidson, E.A., de Araújo, A.C., Artaxo, P., Balch, J.K., Brown, I.F., C. Bustamante, M.M., Coe, 557 M.T., DeFries, R.S., Keller, M., Longo, M., Munger, J.W., Schroeder, W., Soares-Filho, 558 B.S., Souza, C.M. & Wofsy, S.C. (2012) The Amazon basin in transition. Nature, 481, 321-559 328. 560 DeWalt, S.J. & Chave, J. (2004) Structure and biomass of four lowland Neotropical forests. 561 Biotropica, **36**, 7–19. 562 Foster, J.R., Townsend, P.A. & Zganjar, C.E. (2008) Spatial and temporal patterns of gap 563 dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sensing of Environment, **112**, 2104–2117. 564 Granados, J. & Körner, C. (2002) In deep shade, elevated CO2 increases the vigor of tropical 565 566 climbing plants. Global Change Biology, 8, 1109–1117. Guzman-Grajales, S.M. & Walker, L.R. (1991) Differential seedling responses to litter after 567 568 hurricane Hugo in the Luquillo experimental forest, Puerto Rico. Biotropica, 23, 407-413. 569 van der Heijden, G.M.F., Feldpausch, T.R., Herrero, A. de la F., van der Velden, N.K. & Phillips, 570 O.L. (2010) Calibrating the liana crown occupancy index in Amazonian forests. Forest 571 Ecology and Management, 260, 549–555. van der Heijden, G.M.F. & Phillips, O.L. (2008) What controls liana success in Neotropical forests? 572 573 Global Ecology and Biogeography, 17, 372–383. 574 van der Heijden, G.M.F. & Phillips, O.L. (2009) Liana infestation impacts tree growth in a lowland 575 tropical moist forest. Biogeosciences, 6, 2217–2226.

- van der Heijden, G.M.F., Schnitzer, S.A., Powers, J.S. & Phillips, O.L. (2013) Liana impacts on
 carbon cycling, storage and sequestration in tropical forests. Biotropica, 45, 682–692.
- Hendershot, W.H., Lalande, H. & Duquette, M. (1993) Ion exchange and exchangeable cations. Soil
 Sampling and Methods of Analysis, 19, 167–176.
- 580 Hill, R.A. (1999) Image segmentation for humid tropical forest classification in Landsat TM data.
 581 International Journal of Remote Sensing, 20, 1039–1044.
- Hubbell, S.P., Foster, R.B., O'Brien, S.T., Harms, K.E., Condit, R., Wechsler, B., Wright, S.J. &
 De Lao, S.L. (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a
 neotropical forest. Science, 283, 554–557.
- Ingwell, L.L., Wright J., S., Becklund, K.K., Hubbell, S.P. & Schnitzer, S.A. (2010) The impact of
 lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. Journal
 of Ecology, 98, 879–887.
- Lahtinen, R. (2000) Archaean–proterozoic transition: geochemistry, provenance and tectonic setting
 of metasedimentary rocks in central Fennoscandian shield, Finland. Precambrian Research,
 104, 147–174.
- Laurance, W.F., Andrade, A.S., Magrach, A., Camargo, J.L.C., Valsko, J.J., Campbell, M.,
 Fearnside, P.M., Edwards, W., Lovejoy, T.E. & Laurance, S.G. (2014) Long-term changes
 in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology, 95,
 1604–1611.
- Ledo, A. & Schnitzer, S.A. (2014) Disturbance and clonal reproduction determine liana distribution
 and maintain liana diversity in a tropical forest. Ecology, 95, 2169–2178.
- Letcher, S.G. & Chazdon, R.L. (2012) Life history traits of lianas during tropical forest succession.
 Biotropica, 44, 720–727.
- Lopez-Gonzalez, G., Lewis, S.L., Burkitt, M. & Phillips, O.L. (2011) ForestPlots. net: a web
 application and research tool to manage and analyse tropical forest plot data. Journal of
 Vegetation Science, 22, 610–613.
- Lozada, J.R., Hernández, C., Soriano, P. & Costa, M. (2015) An assessment of the floristic
 composition, structure and possible origin of a liana forest in the Guayana Shield. Plant
 Biosystems An International Journal Dealing with all Aspects of Plant Biology, 0, 1–10.
- McGaughey, R.J. (2009) FUSION/LDV: Software for LIDAR data analysis and visualization. US
 Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle,
 WA, USA, 123.
- McLennan, S.M., Hemming, S., McDaniel, D.K. & Hanson, G.N. (1993) Geochemical approaches
 to sedimentation, provenance, and tectonics. Geological Society of America Special Papers,
 284, 21–40.
- Norden, N., Chave, J., Belbenoit, P., Caubère, A., Châtelet, P., Forget, P.-M., Riéra, B., Viers, J. &
 Thébaud, C. (2009) Interspecific variation in seedling responses to seed limitation and
 habitat conditions for 14 Neotropical woody species. Journal of Ecology, 97, 186–197.

- Norden, N., Chave, J., Caubère, A., Châtelet, P., Ferroni, N., Forget, P.-M. & Thébaud, C. (2007) Is
 temporal variation of seedling communities determined by environment or by seed arrival?
 A test in a Neotropical forest. Journal of Ecology, 95, 507–516.
- Béchamel, F.-J.B. Journal du Voyage que les Pères Jean Grillet et François Béchamel ont Fait
 dans la Guyane en 1674. Claude Barbin, Paris
- 619 Pérez-Salicrup, D.R. (2001) Effect of liana cutting on tree regeneration in a liana forest in
 620 Amazonian Bolivia. Ecology, 82, 389–396.
- Phillips, O.L. & Gentry, A.H. (1994) Increasing turnover through time in tropical forests. Science,
 263, 954–958.
- Phillips, O.L., Vargas, P.N., Monteagudo, A.L., Cruz, A.P., Zans, M.-E.C., Sánchez, W.G., YliHalla, M. & Rose, S. (2003) Habitat association among Amazonian tree species: a
 landscape-scale approach. Journal of Ecology, 91, 757–775.
- Phillips, O.L., Vásquez Martínez, R., Arroyo, L., Baker, T.R., Killeen, T., Lewis, S.L., Malhi, Y.,
 Monteagudo Mendoza, A., Neill, D., Núñez Vargas, P., Alexiades, M., Cerón, C., Di Fiore,
 A., Erwin, T., Jardim, A., Palacios, W., Saldias, M. & Vinceti, B. (2002) Increasing
 dominance of large lianas in Amazonian forests. Nature, 418, 770–774.
- Putz, F.E. (1983) Liana biomass and leaf area of a "tierra firme" forest in the Rio Negro basin,
 Venezuela. Biotropica, 15, 185–189.
- Putz, F.E. (1984a) The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65,
 1713–1724.
- 634 Putz, F.E. (1984b) How trees avoid and shed lianas. Biotropica, **16**, 19–23.
- R Core Team. (2012) R: A Language and Environment for Statistical Computing. R Foundation for
 Statistical Computing, Vienna, Austria.
- van der Sande, M.T., Poorter, L., Schnitzer, S.A. & Markesteijn, L. (2013) Are lianas more
 drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and
 leaf traits. Oecologia, **172**, 961–972.
- Sabatier, D., & Prévost, M. F. (1990) Quelques données sur la composition floristique et la diversité
 des peuplements forestiers de Guyane française. Bois et Forêts des Tropiques, 219, 31-55.
- 642 Schnitzer, S.A. (2005) A mechanistic explanation for global patterns of liana abundance and
 643 distribution. American Naturalist, 166, 262–276.
- 644 Schnitzer, S.A. & Bongers, F. (2002) The ecology of lianas and their role in forests. Trends in
 645 Ecology & Evolution, 17, 223–230.
- 646 Schnitzer, S.A. & Bongers, F. (2011) Increasing liana abundance and biomass in tropical forests:
 647 emerging patterns and putative mechanisms. Ecology Letters, 14, 397–406.
- 648 Schnitzer, S.A. & Carson, W.P. (2010) Lianas suppress tree regeneration and diversity in treefall
 649 gaps. Ecology Letters, 13, 849–857.

- Schnitzer, S.A., Dalling, J.W. & Carson, W.P. (2000) The impact of lianas on tree regeneration in
 tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration.
 Journal of Ecology, 88, 655–666.
- Schnitzer, S.A., DeWalt, S.J. & Chave, J. (2006) Censusing and measuring lianas: a quantitative
 comparison of the common methods. Biotropica, 38, 581–591.
- Schnitzer, S.A., van der Heijden, G., Mascaro, J. & Carson, W.P. (2014) Lianas in gaps reduce
 carbon accumulation in a tropical forest. Ecology, **95**, 3008–3017.
- Schnitzer, S.A., Mangan, S.A., Dalling, J.W., Baldeck, C.A., Hubbell, S.P., Ledo, A., MullerLandau, H., Tobin, M.F., Aguilar, S., Brassfield, D., Hernandez, A., Lao, S., Perez, R.,
 Valdes, O. & Yorke, S.R. (2012) Liana abundance, diversity, and distribution on Barro
 Colorado Island, Panama. PLoS ONE, 7, e52114.
- Schwertfeger, D.M. & Hendershot, W.H. (2009) Determination of effective cation exchange
 capacity and exchange acidity by a one-step BaCl method. Soil Science Society of America
 Journal, 73, 737–743.
- Sheil, D. & May, R.M. (1996) Mortality and recruitment rate evaluations in heterogeneous tropical
 forests. Journal of Ecology, 84, 91–100.
- Sollins, P. (1998) Factors influencing species composition in tropical lowland rain forest: does soil
 matter? Ecology, 79, 23–30.
- Tuomisto, H., Poulsen, A.D., Ruokolainen, K., Moran, R.C., Quintana, C., Celi, J. & Cañas, G.
 (2003) Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian
 Amazonia. Ecological Applications, 13, 352–371.
- Turner, B.L. & Romero, T.E. (2009) Short-term changes in extractable inorganic nutrients during
 storage of tropical rain forest soils. Soil Science Society of America Journal, 73, 1972.
- Vanderhaeghe, O., Ledru, P., Thiéblemont, D., Egal, E., Cocherie, A., Tegyey, M. & Milési, J.-P.
 (1998) Contrasting mechanism of crustal growth: Geodynamic evolution of the
 Paleoproterozoic granite–greenstone belts of French Guiana. Precambrian Research, 92,
 165–193.
- Wright, S.J., Calderón, O., Hernandéz, A. & Paton, S. (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology, 85, 484–489
- 679

680 SUPPORTING INFORMATION

- 681
- 682 Appendix S1: Quantification of liana infestation in tree crowns
- 683 Appendix S2: Impact of liana infestation on individual tree growth
- 684 Appendix S3: Soil analyses
- 685 Appendix S4: Airborne LiDAR data acquisition processing, and analyses
- 686 **Figure S1**: Crown occupation index (COI).
- **Figure S2:** Size class distribution of trees in 2012.

Figure S3: Principal Component Analysis (PCA) performed on the tasseled-cap indices of the 2006
Landsat image.

- Figure S4: PCA of the chemical tracers in rocks of the Guiana Shield and in the available soilsample.
- 692 **Figure S5:** Total soil composition below the different forest types.
- 693 **Figure S6:** Available elements composition of the soil below the different forest types.
- **Figure S7:** Changes of above-ground biomass stocks in the study area between 1992 and 2012.
- **Table S1:** Chemical composition in trace elements of the fraction of soil sample < 2 mm.

696 Tables

697 Table 1: Demography, AGB stock and dynamics across forest types. Canopy metrics were 698 computed from a 1-m resolution LiDAR canopy model in 50x50m² subplots, 332 of which were in 699 high-canopy forest and 93 in liana-infested forest. Tree demography was inferred from 25x25 m² 700 subplots, 87 in high-canopy forest and 17 in liana-infested forest. Litterfall was measured from 100 701 litterfall traps of 0.5 m², 62 in high-canopy forest and eight in the liana-infested forest. Average 702 values \pm standard error are reported. Pairwise comparisons between high-canopy forest and liana-703 infested forest are reported throughout the table (two-sided Wilcoxon test adjusted by Bonferroni 704 correction, - p>0.0.5, * p≤0.05, ** p≤0.01, *** p≤0.001).

705**Table 2: Comparison of seedling dynamics across forest types.** Average values \pm standard errors706are provided. Tree and liana seedlings were monitored in 247 plots of $1x1m^2$ at 1.5m of the litterfall707traps (see Table 1).Results are also reported for all seedlings including undetermined (total).

708 Pairwise comparisons between high-canopy forest and liana-infested forest are reported throughout

the table (two-sided Wilcoxon test adjusted by Bonferroni correction, - p>0.05, * $p\leq0.05$, **

710 $p \le 0.01$, *** $p \le 0.001$). Average values \pm standard error are reported.

711**Table 3: Comparison of soil characteristics across forest types.** Results of a complete digestion712of the soil (Total soil content) and a chemical extraction (Soil exchangeable elements) analyses are713presented here. All results are reported in ppm unless specified otherwise. Pairwise tests between714high-canopy forest and liana-infested forest were performed only on PCA axis and Base saturation715values (two-sided Wilcoxon test adjusted by Bonferroni correction, - p>0.05, * p≤0.05, ***

716 p≤0.001).

Table 1

Variable	High-canopy forest	Liana-infested forest	Significance
Structural variables			
Mean tree density (ha ⁻¹)	486±5	482±10	-
Mean basal area $(m^2 ha^{-1})$	29.4±0.6	17.6±0.7	***
Top canopy height (m)	30.4±0.2	16.5±0.28	***
Mean canopy height (m)	31.3±0.5	18.6±0.8	***
CV of canopy height (m)	0.29±0	0.5 ± 0	***
Tree trunk AGB stock (Mg ha ⁻¹)	414±13	172±10	***
Liana AGB stock (Mg ha ⁻¹)	2.89 ± 0.45	2.93±0.66	*
New gaps in 2012 from 2007 ($m^2 ha^{-1}$)	140 ± 11.6	500±48	***
Demographics (in % year ⁻¹)			
Canopy height change	-0.42 ± 0.1	-0.28±0.16	-
Tree diameter growth rate	0.79 ± 0.01	0.93±0.01	-
Tree mortality rate	1.51±0.09	3.03±0.36	***
Tree recruitment rate	1.4±0.1	2.93±0.37	***
AGB dynamics (in Mg ha ⁻¹ year ⁻¹)			
Mortality-induced loss of ABG	4.95±0.69	5.48±0.52	-
Recruitment-induced AGB gain	0.34 ± 0.03	0.77 ± 0.06	**
Growth-induced AGB gain	7.28±0.31	3.77±0.14	**
Net tree AGB change	2.66±0.81	-0.94±0.56	*
Net liana AGB change	0.12 ± 0.08	0.17 ± 0.09	*
Leaf litterfall	6.2 ± 1.6	7.5±1.3	*
Flower litterfall	0.2±0.33	0.14 ± 0.21	-
Fruit litterfall	0.52 ± 0.46	0.12 ± 0.07	***
Twigs litterfall	2±1.3	$2.56{\pm}1.66$	-
Total litterfall	8.9±2.29	10.4 ± 2.27	-
Net primary productivity	16.5	14.9	
Carbon residence time (year)	25.2	11.7	

Table 2

Seedling variables	High-canopy forest	Liana-infested forest	Significance
Seedling density (m^{-2})	17.3±0.7	7.8±0.7	***
Proportion of lianas (%)	23±1	25±5	-
Seedling mortality (% year ⁻¹)			
Trees	12.9 ± 0.7	13.6 ± 2.3	-
Lianas	$12.4{\pm}1.2$	13.9±3.7	-
Total	19.3±0.7	26.7±3.1	*
Seedling recruitment (year ⁻¹)			
Trees	1.75 ± 0.2	0.71±0.11	***
Lianas	0.85 ± 0.15	0.95 ± 0.47	-
Total	3.54 ± 0.25	2.07 ± 0.28	**

Table 3

	High canopy forest	Liana infested forest	Difference
Total soil composition (ppm)			
Al	38.9±0.64	35.48±1.1	
Ca	0.09 ± 0.01	0.24 ± 0.03	
K	0.09 ± 0.01	0.1 ± 0.04	
Fe	46.5 ± 0.68	52.94 ± 2.29	
Mg	0.14±0	0.17 ± 0.02	
Na	-0.05 ± 0	0±0.01	
Ν	0.29 ± 0.01	0.34 ± 0.03	
С	3.48±0.13	3.5±0.36	
pH	4.83±0.04	5.33±0.11	
PCA axis 1	-0.5±0.18	0.66 ± 0.75	*
PCA axis 2	-0.4 ± 0.15	1.42 ± 0.43	***
Soil exchangeable elements(ppm)			
P	0.3 ± 0.05	0.37 ± 0.1	
Fe	0.41 ± 0.12	0.24 ± 0.16	
Al	108±11.3	58±21.3	
Ca	179±28	322±79.7	
К	27.31±9.85	31.43±15.52	
Mg	45.64±5.73	88.73±20.16	
Mn	11.32 ± 1.41	14.05 ± 2.66	
Na	5.43 ± 0.98	4.71±1.77	
pH	4.28±0.03	4.41±0.1	
TEB (cmolc kg ⁻¹)	1.36±0.19	2.44 ± 0.53	
ECEC (cmolc kg ⁻¹)	2.66 ± 0.17	3.2±0.37	
Base saturation (%)	0.71 ± 0.04	0.89 ± 0.08	*
PCA axis 1	0.84 ± 0.33	-1.16 ± 1.02	*
PCA axis 2	-0.09±0.35	0.07 ± 0.63	-

723 Figure captions

724 Figure 1: Map of the study area. Panel a: LiDAR-derived canopy height model for a 2000-ha area of the Nouragues Ecological Research Station; panel b: enhancement of panel a, zooming in the 725 focal study area of 136 ha; panel c: aerial photography of the focal study area. Thick dashed line: 726 727 zone of interest, thin dashed line: permanent plots, thin solid line: liana forest, and transition zone 728 (thick solid line) in 2007. In white: zone removed from analyses (bamboo thicket). Black triangles 729 in panel b show the site where soil was collected for trace element analysis (panel b). Circles in panel c indicate places where soil was collected for complete digestion (red) or partial digestion 730 731 (yellow). Red points also indicate positions of litterfall traps and seedling monitoring plots. Black 732 rectangle on panel c shows the position of the transect shown as an example in figure 2.

Figure 2: Transition from liana-infested to high-canopy forest. Panels a and b: photography of the liana-infested forest and of the high forest taken from the top of the neighbouring granitic outcrop (inselberg). Panels c and d: Three dimension view of the canopy model (top of canopy height) of two 64x64 m² areas in (c) and out (d) of the liana-infested forest. Panel e: Height of the canopy model in a 20x500 m² transect. Two dashed lines are drawn at the median canopy top height in each formation (16.5 and 30.4 m). Canopy gaps are defined by a top canopy height below 5m (dotted lines). Position of the transect is shown Fig.1.

Figure 3: Ratios of trace elements. Averages were calculated for liana-infested and high-canopy forest soil samples. Values were divided by the average value for all measured points (value on the left for each graphics) giving the relative plotted values. These ratios were compared to literature values for rocks present in French Guiana (open symbols ; (Vanderhaeghe et al. 1998)). Values on the left side of each graphics are averages for all soil samples.

- 745 Figure 4: Spatial dynamics of the liana-infested forest. Landsat-derived maps of vegetation,
- obtained by a unsupervised hierarchical classification (see Methods). The class 4 can be
- 747 conservatively identified to the liana-infested forest (88% accuracy, 72% precision). Solid line
- represents the extent of the liana-infested forest as defined from the 2007 LiDAR canopy model
- 749 (with the transition zone shown as a dotted line, see Fig. 1). The bamboo thicket was removed from
- 750 the classification (area masked in white).

Figure 1

Figure 2

Figure 3

