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Framing Factors: The Importance of Context and the Individual in

Understanding Trust in Human-Robot Interaction

David Cameron, Jonathan M. Aitken, Emily C. Collins, Luke Boorman, Adriel Chua,

Samuel Fernando, Owen McAree, Uriel Martinez-Hernandez, James Law1

Abstract— In this paper we explore the factors and method-
ologies from a range of disciplines used to investigate trust
in human-robot interaction (HRI). Our investigation highlights
a growing field, which recognises the importance of under-
standing the deployment of robots in real-world settings, but
where a lack of common definitions and experimental clarity
impedes the development of a comprehensive framework for
investigation. As a result, we propose a bottom-up approach
that emphasises context and user perspective as the foundation
for future investigations into trust in HRI.

I. INTRODUCTION

Robotics has been identified as an area with the potential

to overcome challenges ranging from caring for society’s

ageing demographic [1], to enabling the next generation

of advanced manufacturing [2]. As robots become more

prevalent, particularly in these domains but also in public

settings, there will be an increasing requirement for more

natural human-robot interaction (HRI). An important aspect,

particularly in light of common societal concerns about the

safety of “intelligent” robots, is that such systems must be

designed to engender trust in their users from the outset; both

to encourage interaction, and reduce these fears.

Trust has been identified as foundational for successful

interpersonal cooperation [3], and as a more general con-

struct underwriting social order [4]. To enable us to create

robots that can build trust in their use, we require a set of

methodologies that enable us to measure and evaluate user

trust in our creations. However, despite the ongoing effort to

define ‘trust’ it remains a vague concept because the meaning

of ‘trust’ is dependent first and foremost on the context in

which it is being discussed as has been highlighted by, for

example, Bauer [5] who frames a definition of trust around

the expectation of one agent for another agent’s behaviour

to be particular within a certain situation. The issue within

the context of HRI comes primarily from the application

of methodologies around which trust can be explored and

measured as a variable. Different agents in different contexts

will necessarily have differing starting points for the level of

trust they hold for a robot in an given scenario.
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It is, therefore, particularly important to consider method-

ologies and measures in terms of the context in which HRI

occurs. For example, methodologies to explore measures of

trust in the context of user-safety in robotic-assisted manu-

facturing [6], may differ substantially from those available

to explore trust in a robot-led way-finding HRI scenario

[7]. As a field at the intersection of many disciplines (e.g.,

engineering, computer science, psychology, sociology, etc.),

there are many methodologies to be considered.

Hancock et al. [8] provide a solid starting point for

research in this field by identifying a wide range of factors,

spanning multiple disciplines, that influence trust in HRI.

By examining existing studies into these factors we aim to

identify a range of approaches, from a variety of fields, that

when combined may provide an effective template for the

ideal human-centred study into trust in HRI. However, as

we begin to explore these ideas we discover that there is

still much ambiguity in how these factors are defined, and

that experiments often fail to isolate the effects of individual

influencing factors. Our investigations highlight the impor-

tance of careful experimental design, and within that the

importance of context when exploring factors impacting on

trust.

This paper builds on the work by Hancock et al., by

examining the variety of methodologies used to investigate

these factors as reported in some of the key papers in these

areas. Importantly, we find that the complexity of the subject

prohibits the formulation of a comprehensive approach to

studying trust in HRI, and highlights the need to maintain

focus in investigating a single aspect of trust specific to

the given context. We will demonstrate, with examples, the

difficulty in using the term trust within HRI in a generic

fashion by giving examples of experiments in which trust

has been explored, but which cannot be clearly compared

due to divergent contexts. This is not a paper about how

to adequately define trust, but rather one which aspires to

highlight the difficulties in exploring a conceptual variable

(trust) in a way that allows for the results of different studies

to ultimately be compared.

In the remainder of this paper we will review a selection

of the most prominent examples of research methodologies

applied to investigating trust in HRI (following Hancock et

al.’s factors [8]), highlight the difficulties with categorising

and isolating factors for investigation, and propose a frame-

work for further research in this area that emphasises the

subject and scenario as being fundamental to the experimen-

tal process.



II. METHODOLOGIES FOR STUDYING TRUST

Hancock et al. [8] identify 33 factors influencing trust

in HRI, grouped within 3 categories and 6 sub-categories.

The main categories (and sub-categories) are: Human-related

(ability-based, characteristics); Robot-related (performance-

based, attribute-based); and Environmental (team collabora-

tion, tasking). In Tables I-III we highlight a selection of

these factors, and describe some of the most prominent

works to have investigated them. In doing so we identify

some common issues that make defining a comprehensive

framework for investigating trust in HRI problematic.

Although these factors identify many different approaches

to understanding antecedents of trust in HRI, study proce-

dures tend to rely on the introduction of a fault or uncertainty

in automated behaviour, and explore user response through

either monitoring use of automation or surveying partici-

pants’ trust in HRI. Multiple methods or use of converging

measures are rarely used in these studies. This has implica-

tions for the confidence that the reader can ultimately have

in the studies, because it is uncertain that the study manip-

ulations chosen are solely influencing the intended studied

factors (for further discussion, see Section IV). Moreover

the studies reported by Hancock et al. all take place in lab-

like conditions that, while likely well representing HRI in

tightly controlled environments (e.g., manufacturing), offer

little in the way of ecological validity. In short, the user is

considered as another variable rather than the centre of a

human-focussed HRI design.

In a truly human-focussed design, HRI studies should not

just import constructs from social or cognitive psychology

but also seek to best understand how to explore them within

the context of HRI. Thus, HRI studies can be designed with

the user as a central focus to accommodate user interactions

in both naturalistic and theoretically meaningful situations.

We propose that multiple methods or converging measures

could be effectively used to approach this. For example, user-

robot interpersonal distance, user self-reports of liking, and

coding of user facial expressions in a single field study all

converge to indicate individual differences in the impact of

a humanoid robot’s simulated facial expressions on users’

liking of the interaction [29]. A solid evidence base and care-

ful consideration of social psychological literature enables a

human-focussed theoretical account of such findings to be

developed and explored.

III. REFLECTION ON THE META-ANALYSIS

Hancock et al. approach understanding engendering user

trust during HRI by identifying critical related factors [8].

They broadly categorise factors for trust as being Human,

Robot, or Environmental in their origin, and identify indi-

vidual factors (many itemised above) that have demonstrable

or potential influence on HRI. As the authors acknowledge,

many of these factors remain to be formally explored in

HRI scenarios. However, this meta-analysis [8] indicates

an important issue beyond that of the dearth of empirical

studies of trust during HRI. Their approach of understanding

trust in HRI by itemising relative factors draws attention

to the ambiguity involved in both defining and empirically

exploring them.

Factors identified by Hancock et al. include those that

are broad enough to encompass many others, which are

listed alongside and identified as separate. For example, a

robot’s ‘behaviour’ is identified as a factor [p.523] but the

robot’s ‘dependability’, ‘failure rates’, and ‘false alarms’ are

extracted as being factors independent from robot behaviour.

This raises the questions of what constitutes a robot’s be-

haviour, if these do not? And how, or at least in what effect

direction, does robot ‘behaviour’ impact on trust?

Ambiguity within the factoral model is also found in

the Human and Environmental themes. Within Human fac-

tors, items such as ‘self-confidence’ and ‘demographics’

are listed but without consideration for their exact impact

on trust itself. Furthermore, factor ambiguity remarkably

exists across themes: The Human factor ‘operator workload’,

shares a substantial overlap with Environmental factors ‘task

complexity’ and ‘multi-tasking requirement’, as both are

used in psychological experiments to induce workload. A

hypothetical future review based on this model is then left

with the challenge of identifying which factor(s) experiments

actually target.

In developing a series of isolated factors, the meta-analysis

presents trust as a one-way relationship of users trusting

a robot’s behaviour [8]. However, psychological studies of

human-human interactions indicate that trust is a dynamic

and evolving process, rather than a fixed one [30]. Moreover,

an individual’s trust in a partner can develop through the

process of being trusted by that partner, a phenomena termed

reciprocal trust [31]. Given the broad and informative appli-

cation of social psychological principles to HRI the study

of reciprocal trust in HRI could offer substantial progress in

understanding and fostering user trust. Exploring reciprocal

trust requires robots to identify (or have pre-programmed

recognition of) limits to their capacity to meet their goals. For

example, mobile robots may encounter obstacles or barriers,

requiring human intervention to allow the robot to progress

[7], [32], [33].

In sum, Hancock et al.’s model demonstrates that exploring

trust in HRI is a difficult endeavour. Factors can be hard

to precisely define and, critically, isolate from others in an

investigation. However, this work, in the growing field of

HRI, argues well that there is no single factor that reliably

impacts on trust in HRI. They further identify substantial

gaps in the literature, and it still remains to precisely conduct

experiments targeting many of these. They do identify areas

which have reliable impacts on user trust but these are

constructs built around the ambiguously identified factors

and subsequently may best be viewed with caution. We

address one example of the difficulty in isolating trust factors

for experimentation, below.

IV. CASE-STUDY: THE IMPORTANCE OF CONTEXT

We propose that the context of the use of a robot is

important in defining the trust that is placed in it. This



TABLE I

HUMAN TRUST FACTORS

Factor
(Subcate-
gory)

Key Papers
(Citations)

Methods for Investigating Factor

Attentional
capacity/
engagement
(Ability
based)

[9] (140) Parasuraman and Manzey [9] argue that less attentional resources directed to automation increases reliance on robots
(trust). Their review paper collects simulated scenarios of user adoption of automation e.g., space station life support.
Trust is measured in terms of uncritical acceptance of information coming from automated systems. They argue that
less attentional resources can lead to complacency and reduction in detecting errors from automation.

Operator
workload
(Ability
based)

[10] (20) Desai et al. [10] report that lower cognitive load is associated with greater trust in robots. Their scenario required
users to remote-control a semi-autonomous rescue robot around a maze; the robots reliability was manipulated across
conditions as a means of nudging users to take control. Users could alter the degree of control they held over the robot
and user trust was measured through established self-report surveys.

Prior
experiences
(Ability
based)

[11] (704)
[12] (520)

Lee and Moray [11], [12] discuss the level of experience a user has and how this impacts on their use of autonomy.
Volunteers were tasked with operating a complex dynamic system - a simulated orange juice pasteurisation plant. Faults
were injected into the system, which volunteers were required to recover from using manual, automated, or combined
forms of control whilst simultaneously being tasked to log data. Volunteers were surveyed after their operational sessions.
Results show that once the user became experienced with the system they could quickly adapt to the injection of faults,
but they rapidly lost trust in the automated systems as their performance fell. This trust then required rebuilding as the
users frame of experience with the autonomy was readjusted.

[13] (258)
[14] (1524)

Dzindolet et al. [13] investigate the performance of software to detect camouflaged soldiers within a photograph.
Participants were rewarded for accurate detection and allowed to use either the autonomous detector (accuracy
experimentally adjusted) or their own judgement. Users reported in surveys that they typically trusted their own
experience over the detector, particularly if the aid malfunctions in ways that the operator cannot explain [13], although
training on why errors arise can mitigate this effect.

Self-
confidence
(Character-
istics)

[12] (520) Lee and Moray’s study of simulated operation of an orange juice pasteurisation plant [12] found that as user self-
confidence in operation increased (measured through a self-report questionnaire), propensity to trust in automation
decreased (measured through questionnaire and participant use of available automation). As described above (for the
prior experiences factor) participants were assigned to varying conditions of plant reliability, introducing faults in either
manual or automated control at pre-determined times.

TABLE II

ENVIRONMENTAL TRUST FACTORS

Factor
(Subcate-
gory)

Key Papers
(Citations)

Methods for Investigating Factor

Communi-
cation
(Team col-
laboration)

[15] (46) It was found in [15] that when a robot’s dialogue was adapted for expert knowledge (names of tools rather than
explanations), expert participants found the robot to be more effective, more authoritative, and less patronising. This
work suggests adaptation in human-robot interaction has consequences for both task performance and social cohesion.
It also suggests that people may be more sensitive to social relations with robots when under task or time pressure.

[16] (195) Severinson-Eklundh et al. [16] reached the conclusion that for a service robot, addressing only the primary user in
service robotics is unsatisfactory, and that the focus should be on the setting, activities, and social interactions of the
group of people where the robot is to be used.

section examines previous investigations into trust factors,

and highlights potential pitfalls in taking them out of context.

Lee and Moray [11], [12] and Gao and Lee [34] describe

a valuable series of experiments conducted using a model

of an orange juice pasteurisation plant. They use a software

model through which the users can select an autonomous

controller to operate the plant or undertake the procedures

manually. These experiments identify and investigate a col-

lection of factors that play important roles in the user trusting

autonomous control systems. These include:

• Influence of load on the users - they are tasked to control

the plant whilst being required to keep an accurate log.

• Influence of failures on the users - failures of plant

equipment are randomly inserted, and the user can

choose to use either autonomous or manual control to

correct the problem. Additionally each control tech-

nique could fail to act as intended.

• The influence of feedback in the system - the operator

is exposed to varying noise levels as a part of their

decision making process. The operator then projects this

onto the perceived reliability of the control systems.

This collection of experiments covers a wide range of

factors identified as important in building trust in a system.

However, each experiment contains a range of variables on

the user that are not readily linked. For example, when the

users are tested for the influence of workload, this factor

is not isolated from the user and their personality; this is

then immediately coupled with a failure which will silently

increase user workload and their cognitive process. Varying

levels of personal experience with automation will compli-

cate the user’s response, but are not adequately mitigated.

This highlights the difficulty in experimental design, where

a series of factors are designed to be investigated within

an experiment, but where a number of extra, silent, factors

become included by accident. This modifies the response as

each factor would influence choice, without being recorded.

Figure 1 shows graphically how two distinct factors overlap

and introduce ambiguity as experimental context weakens.



TABLE III

ROBOT TRUST FACTORS

Factor
(Subcate-
gory)

Key Papers
(Citations)

Methods for Investigating Factor

Level of
Automation
(Performance-
based)

[17] (1607) Parasuraman et al. [17] define 10 levels of automation from low autonomy (level 1), where the human takes full control,
to high autonomy (level 10), where the computer decides everything, ignoring anything a human does and providing
no information. Selection of appropriate autonomy is important in engendering trust that a system, such as a robot, can
complete a task with an appropriate level of human intervention, particularly if the nature of the autonomy will change
how the operator will behave.

[18] (194)
[19] (220)

Goodrich et al. [18] experiment with how well these levels of autonomy relate to trust in a potential application. They
designed a single human-robot system which had adjustable levels of autonomy which could be selected to complete a
task. The human participant was given a secondary task, subtracting 7 from 3653, to complete which took their attention
from controlling the robot. They found significant issues surrounding how tasks were terminated. They found that the
level of autonomy could interfere with the decision making process of the operator confusing them when something
happened they had not commanded. This caused more suspicion of the autonomous systems (especially under fault
conditions). A similar effect has also been observed in an autopilot system by Parasuraman et al. [19].

[20] (132) Ruff et al. [20] used a software simulation to provide participants in a study with control over a variable-sized
fleet of Unmanned Aerial Vehicles (UAVs). These vehicles were programmed to complete various military missions
autonomously, but could be interrupted by the supervisor. A decision-based tool could detect error states and notify
the supervisor. It could take corrective action or allow the supervisor to correct the situation. Users abandoned the
automation especially in complex situations where they were required to manage large numbers of UAVs, as they did
not trust the autonomy to take corrective action.

Failure rates
(Performance-
based)

[21] (22)
[22] (1)
[23] (14)

Some studies have reported an increase in likeability and trust when errors were made [21] while others found that
user-perceived errors had a negative impact on trust [22], [23]. In Salem et al. [22] volunteers were assessed on their
compliance with a robot’s unusual task requests as a behavioural measure of trust. Tasks included a breach of privacy
(typing someone else’s password into a laptop), odd reversible actions (throwing mail into the dustbin) or irreversible
actions (pouring orange juice into a potted plant). Salem et al.[22] found that subjective measures of trust (self-reports
of perceived trustworthiness) were independent their behavioural measure of trust (compliance).

Transparency
(Performance-
based)

[23] (14) Desai et al. [23] investigated the effects of robot failures and transparency on trust. They examined trust in ‘real-time’,
where participants were asked to rate their trust on the robot every 25 seconds while controlling the robot. They found
that the post-run questionnaires were influenced by primacy-recency bias. Also, warning users of potential drops in
reliability did not negatively influence trust during the interaction.

Proximity/co-
location
(Attribute-
based)

[24] (78) Bainbridge et al. [24] found that participants interacting with an embodied robot (co-located) had more trust in it than
participants interacting with a video display (distant-located) of the same robot. They used 3 tasks as their measure of
trust: a simple task (putting books on the bookshelf), an unusual task (placing books in the garbage) and a social task
(amount of space given to the robot or screen when placing the books behind them). Participants were both more likely
to comply with unusual tasks and walk up to the robot when the robot is physically present than in a video.

[25] (3) Haring et al. [25] further use user-robot proximity as a measure of trust: participants got closer to an android robot
following repeated interactions with the robot, as they felt the robot was safer and less of a threat.

Robot
Personality
(Attribute-
based)

[8] (88)
[26] (89)

Robotic personality refers to the ability of a robot or personal computer (PC) to interact with people emotionally as well
as on a logical level. It was noted in [8] that robot attributes such as personality had less impact than performance-based
factors such as reliability. However [26] found that a serious, caring robot induced more compliance than a playful,
enjoyable robot in a task where the robot assisted people with a series of breathing and stretching routines.

Adaptability
(Attribute-
based)

[27] (40) This has connections to the personality factor, above. It was found that when a robot adapts its personality to that of the
human participant it is perceived to be more effective in assisting stroke patients with tasks [27]. The pilot experimental
results provided evidence for the effectiveness of robot behaviour adaptation to user personality and performance: users
(who were not stroke patients) both tended to prefer personality matched robot therapists, and performed more or longer
trials under the personality matched and therapy style matched conditions.

Robot type
(Attribute-
based)

[28] (8) Robot type was investigated by asking participants to rate the level of trust they felt when watching a video of someone
passing different types of robots – the human controlled wheel chair was most trusted, while a large autonomous robot
was least trusted [28]. This study demonstrates the multiple factors within “robot type” which moderate trust, e.g., both
the size and method of control of the robot had a large impact on the level of trust reported.

[25] (3) Questionnaires and a trust game are used to assess the level of trust between humans and an android robot. The study
was recognised by the authors as being limited in not having comparisons with other non-humanoid robots or humans.

Depending on the experiments chosen, their design and

specification, the experimental cutting plane will move up or

down. In the region of interference the influence of Factor

A or Factor B can not be directly separated, producing

confusion which actively influences the experiment.

The experimental cutting plane is strongly influenced by

the selection, design, and setup of the experiment which is

in turn defined by the context of the investigation. With a

strongly specified system, the context of use can be isolated;

each factor separately designed for and their interaction

strongly controlled.

Studies such as [11], [12], [34], [13], [14], [18], [19], [20]

rely on the operator taking decisions into whether to use an

autonomous, or robot system, based on their trust in that

system. The process for this decision making is underpinned

by the user trust in the system, yet making that decision

adds a cognitive load [35], an example of a silent factor,

to the operation. This is especially true when failures are

added into the mix: not only is the participant deciding

whether to use automation or not, they will also be making

decisions about the impact of failure mode on performance,

changing the level of cognitive load during the experiments

and exacerbating the silent factor.

To overcome this, the decision making process should



Fig. 1. Influence Cones with Context

be adequately explored to ensure that the experiment is

targeted at factors without having extra silent augmentation.

Techniques such as statecharts [36] play an important role in

understanding the complex interplay of factors by providing

a visual representation of the systems involved, allowing

proper exploration and definition of the process. This allows

the context to be strongly defined, and the factors understood

and recorded correctly. This is especially important in any au-

tonomous device where high levels of technology are linked

to non-prescribed, complex human interaction (potentially

with many different devices) [37].

This also stands when investigating trust for different

systems. Here the context provides a vital role in separating

the individual factors. It is important then that context is

held as foremost in experimental design, as it is this that

defines the optimum investigation. As typically seen in

optimisation problems, there is “No-Free Lunch” [38], that is

to say one technique will not solve all problems, but careful

investigation of the problem, and the context, will reveal an

appropriate technique.

V. DISCUSSION AND WAYS FORWARD

An effective human-robot team requires some level of trust

to be held between each of the agents involved: both the hu-

mans and robots. Acknowledging both the existence of these

multiple perspectives, and that engendered trust will differ

depending on which perspective is being taken, and crucially,

on the context in which it takes place, is essential to the

production of clear methodologies to explore trust in HRI. In

a previous attempt to explore trust in HRI, Hancock et al. [8]

employed a factors approach. This approach is systematic

with its handling of the concept of trust, but in attempting

to factorise this issue the model serves best to highlight the

complexity of the problem of empirically tackling trust in

HRI. We propose, alternatively, that empirical HRI studies

desiring to focus on trust should primarily consider agent

perspective and context of the human-robot interaction in

order to begin to design an experiment that tackles trust.

Factors do exist which influence trust: the behaviour of

those agents involved; where that behaviour stems from

(culture, issues of communication, etc.); the type of task;

and the physical environment in which the task takes place,

to name just a few. However, these factors do not exist in

isolation. They co-exist, and represent two – or often more

– sides of the same issue (how does one truly separate

culture and prior experience, or operator work-load and

type of task?). Due to these factor’s natures as co-existing

concepts that influence trust, it is better to couch the study

of trust in something more singular: the individual, and

then subsequently the situation in which that individual is

using a robotic tool. In sum, what we propose to solve this

issue of the complexity of exploring trust within HRI is that

researchers begin from the user – the hypothetical individual

involved in the team – and work backwards from there to

produce the most effective experiment in which to test the

precise variable of interest by framing the whole endeavour

around context from start to finish.

One way forward then, when thinking about designing the

best methodology to test trust in HRI, is to acknowledge

context from the outset. But what does this mean in practical

terms? A robot is a tool to do a job, it does that job in a

particular context, and the human or humans involved are

the tool users. Thus at the beginning of any trust-focussed

HRI experiment one of the first question asked should be,

‘What kind of person is involved?’. Acknowledging the

tool user will focus the experiment. The context comes

from secondarily acknowledging what all the agents involved

in the use of that tool - including the tool itself - are

doing. Knowing this it is possible to then decide which

agent’s perspective is to be the focus of the experimental

question. The interpretation of a factor involved in trust will

differ depending upon the perspective of the agent involved.

Clearly defining the context of the tool use and the area of

particular interest for any one experiment will provide the

necessary context from which to build a valid experiment.

Once this is known, methods that converge on a factor can

then be selected by how they would be predicted to affect

an individual in a certain context, allowing for more precise

analysis of any one given trust-based HRI scenario. The

goal of researching trust within HRI should therefore be to

disseminate this contextual way of thinking to the wider HRI

community to increase progress in the field by accepting

context driven experimentation, in place of seeking a single

definition of trust to use in all cases.

VI. CONCLUDING REMARKS

We have explored the factors and methodologies affect-

ing trust in human-robot interaction spanning a range of

disciplines. Our investigation highlights a lack of common

definitions and experimental clarity, which prohibits the

development of a comprehensive framework for investiga-

tion. As a result, we propose a bottom-up approach that

emphasises context and user perspective as the foundation

for future investigations into trust in HRI.

We appreciate that our approach describes an analysis of

trust in HRI as best undertaken in small and precise steps.

It is not an encompassing model that linearly lays out the

construct. Rather, our approach reflects what needs to be

a community endeavour; one that will grow in precision

as members of the field begin to build concise, singular



experiments that can be brought together to give a clearer

picture of the concept of trust in HRI as the field advances.
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