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Abstract: A key challenge for engineers and scientists over the coming decades is to develop and 

deploy power plants with sufficient capacity and flexibility to meet the growing demand for energy 

(mainly electrical) whilst simultaneously reducing emissions (primarily greenhouse gases). With 

fusion-based power plants not currently being considered viable for large-scale deployment for at 

least 40 years, other technologies must to be considered. Renewable and high efficiency combined 

gas-fired plants, along with nuclear solutions, are regarded as the most suitable candidates, with 

Small Modular Reactors (SMRs) developing as a favoured choice. However, two main impediments 

to the current deployment of SMRs exist: (1) safety concerns, particularly following the Fukushima 

accident, and (2) their economic models, with high capital costs only being available through a 

limited number of investors. The goal of this paper is to provide a review and a holistic assessment 

of this class of nuclear reactor, with specific focus on the most common technology: the Light 

Water Reactor (LWR). In particular, the paper provides a state-of-the-art assessment of their life 

cycle, along with a comparison of their relative merits with other base-load technologies. It is 

shown that SMRs are a suitable choice when the power to be installed is in the range 1-3 GWe and 

the social aspects of the investment, such as the creation of new employment positions, is a goal of 

policy makers. The paper thereby provides governments and stakeholders with key economic and 

social boundaries for the viable deployment of SMRs.  

Keywords: Small modular Reactors; SMR; life cycle assessment; sustainability; finance; 

economics.  

  



1. Introduction 

According to the DOE/EIA [1] the world energy consumption in 2035 will be more than double that of 1995, 

mainly due to increasing requirements in non-OECD countries1. Moreover, global electricity generation and 

energy consumption will increase by a factor of 3 over the same timeframe with non-OECD countries increasing 

their consumption by 5-6 times; mainly due to an expected exponential growth in China. Specifically for nuclear 

power plants, it is forecast that electricity generation will increase from 2.6 trillion kWh in 2008, to 4.9 trillion 

kWh in 2035, and with many nuclear reactors approaching the end of their productive life [2] the market is 

expected to expand significantly. Although the Fukushima accident has directly prevented an immediate 

deployment of nuclear power in some countries (e.g. Germany, Switzerland and Italy), other nations, (China, 

Emirates, Russia, India and to some extent the USA and UK) are still pursuing their programs vigorously. 

Since nuclear power provides zero greenhouse-gas emission electricity (if correctly managed at affordable 

prices), the construction of new reactors is now also being considered in many “new-comer countries”. 

According to World Nuclear Association (WNA) [3], 53 countries including Poland, Turkey, Vietnam, 

Kazakhstan are at various stages in the development of their nuclear infrastructure.  In particular:  

• Contracts signed, with a well-developed legal and regulatory infrastructure: UAE, Turkey.  

• Committed plans, with a legal and regulatory infrastructure being developed: Vietnam, Jordan, Belarus, 

Bangladesh.  

• Well-developed plans but full commitment still pending: Thailand, Indonesia, Egypt, Kazakhstan, 

Poland, Lithuania, Chile.  

• Developing plans: Saudi Arabia, Israel, Nigeria, Malaysia, Morocco, Ghana. 

• Under discussion as a serious policy option: Namibia, Kenya, Mongolia, Philippines, Singapore, 

Albania, Serbia, Croatia, Estonia, Latvia, Libya, Algeria, Azerbaijan, Sri Lanka, Tunisia, Syria, Kuwait, 

Qatar, Sudan, Venezuela.  

                                                 
1 The OECD (Organisation for Economic Co-operation and Development) is an international economic organisation of 34 
countries founded in 1961 to stimulate economic progress and world trade (www.oecd.org). The 34 countries are mainly 
form Europe, North America and Australia. Non-OECD countries are from Africa and Asia (with the exception of South 
Korea and Japan), including Russia, India and China. 

http://www.oecd.org/


In all such countries, governments are required to create (i) a suitable environment for investment, including 

professional and independent regulatory regimes, (ii) policies on nuclear waste management and 

decommissioning, (iii) involvement with international non-proliferation measures and (iv) insurance 

arrangements for third party damage [4]. This article aims to show to what extent a particular type of nuclear 

reactor, termed the “Small Modular Reactor” (SMR) might provide a candidate solution to fulfil the energy 

needs in these emerging nuclear markets.  Specifically, the paper focuses on the Light Water Reactor (LWR),  

predominantly the Pressurised Water Reactor (PWR), since more advanced Generation IV  (GEN IV) reactors 

will not be available for commercial deployment for at least two decades [5, 6]. GEN IV  designs still need a 

great deal of research and development to be sufficiently reliable and economic to justify their commercial large 

scale deployment, as demonstrated by the recent experience with the PBMR reactor [7]. Therefore, because of 

the dramatic difference between GEN IV  reactors and commercial GEN III  / GEN III+  reactors, GEN III+  LWR 

will be the only SMRs considered in this paper. 

  



2. Why SMRs 

From annex IV  of [8], which is considered a seminal text on SMR technology, small sized reactors are 

defined as those with an equivalent electric power less than 300 MWe, while medium sized reactors are those 

with an equivalent electric power between 300 and 700 MWe. More often, the two are combined into the 

commonly termed ‘‘Small and Medium-sized Reactors’’ or “Small Modular Reactors” (SMR) representing those 

with an electrical output less than 700 MWe. For the purposes here, it will be assumed that a “Large Reactor” 

(LR) counterpart has a power output >700 MWe. The term SMR includes the nuclear options along with the 

remainder of the plant support infrastructure and equipment, namely the steam generator, turbine and fuel 

storage facilities, if  necessary, and can be deployed as multiple units on the same site to increase total power 

output. Several SMR designs (detailed in [9]) are currently at different stages of development around the globe. 

Ingersoll [10] provides a good summary of the innovative feature of these; “reactor designs that are deliberately 

small, i.e. designs that do not scale to large sizes but rather capitalize on their smallness to achieve specific 

performance characteristics.”. 

SMRs usually have attractive characteristics of simplicity, enhanced safety and require limited financial 

resources. However, they are usually not considered as economically competitive with LR because of the 

accepted axiom of “bigger is better” i.e. a misguided application of the economy of scale principle. According to 

the economy of scale, the specific capital cost (currency/KWe) of a nuclear reactor decreases with increasing 

size, due to the rate reduction of unique set-up costs in investment activities (e.g. licensing, siting activities, or 

civil works to access the transmission network), the more efficient use of raw materials and the exploitation of 

higher performances characterizing larger equipment (e.g. steam generators, heat exchangers, pumps, etc.). Thus, 

when the size and the power increases, in the specific capital cost expression the numerator (currency) increases 

less than the denominator (KWe). Consequently, in large developed countries, during last four decades, the 

reactor size has steadily increased from a few hundred MWe to 1500 MWe and more today. However, the 

economies of scale apply if  and only if  the comparison is 1 Large vs. 1 Small and the reactors are of a similar 

design, as has largely been the case in the past. This is no longer true today, however, where smaller, modular 

reactors have very different designs and characteristics from  large-scale counterparts [11]. Thus, assuming by 



definition, that because of the economy of scale principle, the capital cost of a smaller size reactor is higher than 

for a large size reactor is simplistic and not wholly applicable. Despite this, a reasonable retort is “why has 

nobody built SMR in the last two decades?” There are a number of reasons, the most important being: 

1. In the nuclear industry there is a strong belief in the economy of scale. However, this is not supported by 

data. An example is analysed by Grubler for the French case [12]. In this instance the author showed that 

with increasing the size came increased construction time without the economy of scale. 

2. In general, in the last two decades relatively few reactors have been built globally, with most investors 

(mainly in South Korea, Japan and China) using “proven designs” i.e. the large GEN II  reactors further 

developed in large GEN III  reactors. 

3. To be fully competitive the SMR needs to balance size reduction with technical solutions that can only be 

enabled by a reduction in size; a typical example of which is an integral vessel, incorporating the heat 

exchangers, able to rely on natural circulation. Solutions like these are impossible to be fully implemented 

on large reactors. It was not possible to implement these solutions in the 1970s because (quoting a senior 

engineer from an important nuclear vendor) “to properly exploit passive solutions like natural circulation 

you need a great deal of computer simulations and codes. 20-30 years ago those tools were not available, so 

the only option was to use a pump (plus the backup pumps). From an engineering perspective it is much 

easier to control fluids using several pipes and pumps than to rely and make sophisticated simulations with 

computer codes”. 

4. One of the enabling factors to build cost competitive SMRs is the modularisation (again expensive to 

implement in terms of software resources) and the availability of heavy lift cranes which have emerged only 

in recent years. 

In particular, SMRs by their nature, are designed to be factory manufactured, transportable and/or re-

locatable, and be suitable for the production of  heat, desalinated water and other by-products that industrial 

sectors require [13]. The term “modular” in this context refers to (1) a single reactor that can be grouped with 

others to form a large nuclear plant, and (2) whose design incorporates mainly pre-fabricated modules assembled 

on site. Whilst current LRs also incorporate factory-fabricated components or modules, a substantial amount of 



field work is required to assemble components into an operational plant. SMRs are envisaged to require limited 

on-site preparation as they are expected to be “plug and play” when arriving from the factory. Kuznetsov [14] 

stresses these aspects by underlining how small reactor size allows transportation by truck, rail or barge and 

installation in close  proximity to the user, such as residential housing areas, hospitals, military bases, or large 

governmental complexes. Figure 1 presents a typical PWR with a loop configuration, i.e., large primary circuit 

piping and components external to the reactor vessel, whereas SMR as IRIS features an integral configuration, 

i.e., all major primary system components are placed inside the reactor vessel (“integral vessel”), and external 

piping is eliminated. While the vessel size is increased in integral configuration, the containment and overall 

NPP size is decreased, with a positive impact on safety and economics. [15] 

 Figure 2 highlights the transportability of SMRs. 

 

 

Figure 1. Comparison of Large LWRs with loop configuration (a) and SMR (IRIS) integral primary circuit 

configuration (b), and the overall containment size (c)[15] 

 



 

Figure 2. NuSclare reactor (45 MWe). This reactor has been designed by explicitly considering constraints in 

transportability. The figure shows the containment of the reactor, that includes the vessel and a number of other 

components such as steam generators and pressuriser that in large reactors (such as EPR and AP1000) are 

connected to the vessel via large pipes. [Figure from www.nuscalepower.com] 

 

 
The US Secretary of Energy, Dr. Steven Chu, has highlighted the importance of SMRs for the USA [16] 

“[…] one of the most promising areas is small modular reactors (SMR). If  we can develop this technology in the 

U.S. and build these reactors with American workers, we will have a key competitive edge. […] Their small size 

makes them suitable to small electric grids so they are a good option for locations that cannot accommodate 

large-scale plants. The modular construction process would make them more affordable by reducing capital 

costs and construction times. Their size would also increase flexibility for utilities since they could add units as 

demand changes, or use them for on-site replacement of aging fossil fuel plants. Some of the designs for SMR 

use little or no water for cooling, which would reduce their environmental impact. “ 

Notably, the world nuclear organisation lists 20+ SMR designs. However, according to the IAEA database the 

only SMRs under construction are in Russia: the Akademik Lomonosov 1 & 2. These are based on a reactor 

design used for several years on icebreakers and now - with low-enriched fuel, are used on barges for remote 

area power supply. For the most part, the primary candidates to be a First Of A Kind unit (FOAK) land-based 

http://www.nuscalepower.com/


counterpart are the Korean SMART (System-integrated Modular Advanced ReacTor) reactors. These are 330 

MWt units designed for electricity generation and seawater desalination. The construction of SMART will be a 

significant test of the technology, since South Korea is the country that has recently demonstrated the best 

capability in construction of nuclear plants. Importantly, successful construction will form the basis for best 

practice guidelines. 

Because of the growing interest in these technologies several papers and reports have been published. The 

following section provides a critical appraisal of the most relevant of these. 

2.1 Reports and Publications 

Several research institutes see the SMR as a credible technology for supporting electricity production.  

NEA/OECD [17] provides one of the earliest reports, focusing on an assessment of their suitability for electric 

power production, heat generation (both for industrial process and space heating) and cogeneration of both heat 

and electrical power in OECD countries. However, most of the SMRs described are actually scaled versions of 

the LR, and not the modular SMR concept. More recently, IAEA [5] provided a milestone report (more than 700 

pages) on the “modern” SMR. It reviews their main concepts and provides an extensive review of water cooled 

variants (13 designs), gas cooled reactors (6 designs), liquid metal cooled (6 designs) as well as one 

“unconventional” advanced high-temperature reactor. Their economics and strategic implications are 

qualitatively discussed, and have been recently updated. The main conclusion of the report is that GEN III+  

SMR can rely on the successful experiences in building large GEN II  and GEN III  LWRs. However, regarding 

their commercial deployment, there remain several challenges. 

IAEA [8] investigates safety features, economics and other important factors such as proliferation resistance 

and other challenges (always with qualitative approaches). Nevertheless, a later report [18] is devoted to 

explaining the superior safety features of SMRs, with a further short paper [19] summarising the status and near-

term prospects of SMRs. Two others UOC/EPIC [20] and NEA/OECD [21], review different designs and 

underpinning technologies, economics, safety aspects and licensing issues. It is the implications of the outputs of 

these reports that are used as a basis for much of what follows. Nevertheless, much recent work has also been 



published looking into issues surrounding SMRs and their relative merits. Although each of these focuses on 

different aspects, key recurring concluding remarks from the literature are: 

• SMRs have enhanced safety attributes primarily due to them being “passive systems” that impede the 

effects of any human error and perform well and predictably in extreme circumstances. 

• SMRs can be divided in two categories: Gen III+  Light Water Reactor (LWR), and GEN IV  reactors. 

GEN III+  SMRs are based on the same physical principles of current LRs, and can be deployed rapidly 

in around 2-3 years. GEN IV  SMRs require greater research and development effort, and if  adopted 

most could only be available for commercial operation from 2030. 

• Current GEN III+  SMRs are suitable for electricity production and low-temperature cogeneration, while 

GEN IV  SMRs will add the capability to burn nuclear waste from GEN III+  reactors, to produce high 

grade heat. 

Here, the most relevant economic and strategic information related to SMRs is now considered, comparing them 

with other technologies and discussing their relative merits under various scenarios. 

  



3. The Economics of the SMR  

3.1 Introduction to the economic evaluation of power plant 

The nuclear industry commonly clusters NPP life cycle costs as: capital cost, operating and maintenance, fuel 

and decommissioning. Two broad cost estimation techniques can be used to calculate these: top down and 

bottom up. The first merges different cost drivers and escalation coefficients. Regarding the power plant 

industry, these drivers are size, technology, location etc. With the bottom up analysis, “resources level” elements 

identify quantities and unitary cost. The final cost is their sum. 

The most important indicator for policy makers is the levelised cost of the electricity produced by the power 

plant. This indicator, usually termed “Levelised Unit Electricity Cost” (LUEC) or “Levelised Cost Of Electricity 

(LCOE)” accounts for all the life cycle costs and is expressed in terms of energy currency, typically [$/KWh].  

To investigate the profitability of investing in a power plant for utilities, several indicators are used, with the 

two most popular being Net Present Value (NPV) and the Internal Rate of Return (IRR). 

NPV measures absolute profitability [$], and is significantly affected by the discount value, i.e. the corrective 

factor used to weight “present cost” vs. “future revenue”. This indicator usually depends on the source of 

financing and can be forecast as the Weighted Average Cost of Capital (WACC). A low WACC gives the same 

weighting to present cost and future revenue (promoting capital intensive plants such as nuclear power stations), 

while high WACC is weighted more towards the present cost respect to future revenues (promoting low capital 

cost solutions, such as gas fired power plant). 

The IRR is a specific dimensionless indicator, usually presented as a percentage that represents the return. 

The greater the value, the higher the profit for the utility. 

3.2 Economy of scale 

Economy of scale are widely employed to drive the generation cost structure of LWR. Traditional techno-

economic analyses show that the average investment and operating costs per unit of electricity are decreasing 

with respect to increasing plant size. However, this result cannot be directly transferred into the investment 



analyses of SMRs versus LR, because it relies upon the clause “other things being equal”.  Effectively, this 

presumes that SMRs are the same as LRs except for size. If  the design is only marginally different, the capital 

cost of a larger unit is significantly cheaper than for a smaller version. The reasons are geometrical (volumes 

increase to the power of 3 and areas – and so material and cost – to the power of 2) and economic (sharing of fix 

or semi fix cost e.g. licensing on more MWe). 

By contrast, SMRs exhibit several benefits that are uniquely available to smaller innovative reactors and can 

only be replicated by LRs to a very limited extent. The most important factors are [22, 23]: 

Modularization: the process of converting the design and construction of a monolithic plant to facilitate factory 

fabrication of modules for shipment and installation in the field as complete assemblies. The factory fabrication 

is cheaper than site fabrication, but the limit is the possibility of a cheap shipping of modules built off site. The 

SMRs can take a differential advantage since it is possible to have a greater percentage of factory made 

components.  

Multiple units at a single site. SMRs allow the investors to make incremental capacity additions in a pre-existing 

site. This leads to co-siting economies: the set-up activities related to siting (e.g. acquisition of land rights, 

connection to the transmission network) have been already carried out; certain fixed indivisible costs can be 

saved when installing the second and subsequent units. The larger the number of SMR co-sited units, the smaller 

the total investment costs for each unit.  

New design strategy and solutions. An integral and modular approach to the design of the nuclear reactors offers 

the unique possibility to exploit a simplification of the plant. This can lead to a reduction of the type and number 

of components. This also positively affects the safety of the plant via a reduction of the number of safety systems 

and a simplification of those remaining.” 

3.3 Learning and construction time 

SMR can exploit two strong synergic advantages: Learning and construction time. 

Regarding learning, there are two key aspects [23]. 



1 - Modularity - Learning economies. SMRs rely upon a technical concept that includes the supply of 

standardized components and their assembly and maintenance within the plant site, with a reduction of 

investment and operating costs. The standardization of SMR components is a necessary condition, along with the 

smaller size of units, for supplier to replicate in a factory the production of SMR units and to reap the learning 

economies. 

2 - Mass production economies. For a certain installed power many more SMRs than LRs are required since the 

power provided by an SMR is a fraction of the power provided by a LR. Therefore it is possible to have a large 

bulk ordering process of components like valves. This aspect allows the SMR to  exploit economies of mass 

production and a more standardised procurement process. 

A fundamental precondition for the industrial learning is a stable regulatory environment allowing the utilities to 

“standardise the design”. According to [22] N-Of A Kind (NOAK costs are achieved for the next plant after 8 

gigawatts (GWe) power installed, before that costs decline with each doubling of experience. Learning is 

definitely an advantage for the SMRs in the early stages of the market, to be eventually equalized as the market 

for both designs mature. In addition to the above “worldwide” learning (it does not matter where the units are 

built to reach the Nth) there is also an additional “on site” learning, obtained from the construction of successive 

units on the same site. This important portion of the “total learning” offers a significant advantage for SMRs 

when, using a similar power comparison, a site with one LR is compared with a site with many SMRs. 

Aside from learning economies related to a high cumulated number of supplied SMR units, the mentioned 

technical benefits will hopefully allow the SMRs to experience smaller average generation costs, for a given 

plant size (technical progress economies).  

The construction schedule is another very critical economic aspect in nuclear power plant for 2 reasons: 

1 – Fixed daily cost. On a nuclear construction site there are thousands of people working and the utilisation of 

expensive equipment (e.g. cranes). Consequently each working day has high fixed costs. 

 2- The postponing of cash flow. Each year of construction postponement (or delay) of inbound cash flow for the 

utility increases the interest to be paid on the debt. It is possible to argue that, since the life of the reactor is fixed 

e.g. 60 years, this makes no difference. However, this is not true since the present value of a cash flow that is 



received 60 years from the present, is negligible. Consequently, for each year of delay the revenue has to be 

considered as lost. 

[22] presents a very detailed analysis of FOAK schedule vs. NOAK schedule. Being a SMR, the smaller FOAK 

units weigh less that the equivalent for LR, therefore the extra time of the FOAK has less impact. Moreover, as 

previously discussed, there is a reduced construction time for SMR delivery due to reduced size and assumed 

design simplification. 

3..4 Life cycle costs 

• Capital cost 

Shepherd & Hayns [27] show that investment in SMRs could be potentially attractive for 300-400 MWe 

PWRs, with specific capital costs [$/MWe] of co-siting being of the same order as a single LR. Carelli et al. also 

provides a parametric methodology to calculate the capital cost of a SMR, based on the application of 

dimensionless coefficients related to the main differential aspects between SMR and LRs in terms of size, 

number of units on the same site, and differences in their design. It is concluded that the capital costs of 1× LR 

and 4× SMRs, are commensurate. However, NEA/OECD also provides a detailed analysis, and concludes that 

the SMR may cost the same as the LR, or up to 50% more, depending on the number of required units and 

assumptions based on the economies of scale. Figure 3 provides a summary of the conclusions of the two 

studies. An alternative, bottom-up cost estimation is provided by UOC/EPIC [20], and shows that the cost of a 

600MWe FOAK is around $5000M, although the cost drops to $3000M for NOAK units. Most of savings are 

attributed to reductions in direct costs. 

 



 

Figure 3 (a) Parametric approach for estimating the capital cost of SMRs [23] 

  

 

Figure 3 (b) cost reduction from the economies of multiples [20]  



 
• Operation & Maintenance (O&M) and Fuel 

Considering O&M, Carelli et al. [24] considers all differential factors (economy of scale, multiple units, 

outage additional cost, outage duration), and the overall difference in capital costs between a large size reactor of 

1340 MWe and a suite of 4 SMRs, of 335 MWe each, is 19%, with SMR being the more expensive. According 

to NEA/OECD [21] the corresponding O&M and fuel costs (combined) for LRs vary from 16.9 to 25.8 

[$/MWh], while the costs for SMR vary between 7.1 and 36.2 [$/MWh]. According to UOC/EPIC [20] the 

O&M cost for the 600MWe FOAK is 16.54 [$/MWh], although the cost falls to 12.05 [$/MWh] for the NOAK. 

Fuel cost is always 8.53 [$/MWh]. 

 

• Decommissioning 

Estimates of decommissioning costs vary between authors. Locatelli & Mancini [25], using a multi-

regression analysis calculate the specific decommissioning costs of 4× 335MWe SMRs to be double that of 1× 

1340MWe LR. According to NEA/OECD [21] and the IAEA [26] the decommissioning appears technically 

easier for full factory-assembled reactors, as they can be transported back to the factory in an assembled form. 

The dismantling and recycling of components of a decommissioned NPP at a centralized factory is expected to 

be cheaper compared to the on-site activity, in particular, due to the economies of scale associated with the 

centralized factory.  

3.5 Overall life cycle economics  

[27] is the first paper investigating the whole life cycle of SMRs. It presents a bottom-up cost estimation 

model for a 300-400 MWe PWR, that also considers the IRR indicating a positive economic attraction for this 

model of plant. In an alternative formulation, Shropshire [28] focuses on scenarios more in line with EU 

expectations, with an indication that the actual competitiveness of SMRs for these markets is yet to be fully 

demonstrated, but that they show potential to achieve competitive costs in other electricity market areas. 

Evidence is also given that greater benefits are afforded by their combined usage with wind turbines to stabilize 

the power grid, with an additional impact on sustainability measures from deployment. UOC/EPIC [21] stress 



the importance of the ‘learning effect’ and economy of multiples (or mass production). The “SMR economics is 

strongly dependent on the degree of cost savings achievable through off-site factory manufacturing of the 

reactors and the subsequent learning-by-doing achieved after production of multiple modules”. A NOAK unit 

could provide a LCOE that is around half that of a FOAK, and be comparable to the Natural Gas Combined 

Cycle (NGCC) [20].  

Boarin et al. [29] compares the use of the INCAS model (“INtegrated model for the Competitiveness 

Analysis of Small modular reactors”) for the SMR and LR. Four SMR units on a single site are compared to the 

use of a single LR unit, with the total power installed being equal. They assess LR and SMR technology with 

two business cases: a “Merchant” case, based on the rules of the liberalised electricity and capital markets; and a 

“Supported” case, referring to special risk-mitigation policies and conditions. The “Merchant” case has a higher 

cost of financing while the cost of the “supported” case is lower due to external support (e.g. from the state). 

The economic performance of the two alternatives (i.e. LR and SMR) is shown to be broadly similar, but with 

SMRs having lower capital risk and lower up-front capital investment requirements. For similar reasons, the 

financial risk of SMRs is lower than LRs due to lower sensitivity of financial profitability to changes in 

operational conditions. The reader is referred to Figure 4 showing example profitability characteristics. It is 

important to notice that the NOAK units of SMR bear less risk than the NOAK of LR, mainly because of the 

simpler design and lower upfront investment requirements. Consequently, the remuneration expected by the 

investors (both Debt and Equity) is lower. 

  



 

 
 

Figure 4 (a) LCOE trend at increasing cost of debt Kd, at different cost of equity Ke (i.e. for “Merchant” case –

solid lines– and “Supported” case –dotted lines) and (b) Project profitability (IRR) with different levels of price 

of electricity (ee_price) and construction schedule – “Supported” case. [29] 

3.6 Economics of SMR vs. Other sources 

According to NEA/OECD [21], the use of nuclear power, in general, is directly competitive with other 

technologies (coal-fired plants, gas-fired plants, renewable plants of the various types) in Brazil, Japan, the 

Republic of Korea, the Russian Federation and the United States—though notably not in China. SMRs, 

including twin-unit and multi-module plants, generally have higher LUEC than NPPs with large reactors. As 

shown in [30], similar to large NPPs, some SMR are expected to be competitive to several coal-fired, gas-fired 

and renewable plant projects, of various types, including those of small to medium-sized capacity (below 700 

MWe). 

Locatelli & Mancini [30] show a Montecarlo analysis comparing SMRs with coal and gas fired plants, and 

stress the fundamental role played by the carbon tax (or the sequestration cost). Without accommodating this 

cost, it is clear how coal and Combined Cycle Gas Turbine (CCGT) are, for a 335 MWe Power plant, more 

attractive then nuclear (Figure 5). Coal has the lowest LUEC, and the highest NPV, CCGT the higher IRR. In 

these scenarios, SMRs do not appear as attractive options due to the low NPV for the shareholders, and the high 

uncertainty of the ultimate output. This is very consistent with the policy in EU and USA. In these countries, 

most of the base load power installed in the last decade is CCGT. Those plants have small upfront cost and are 



very reliable. The low risk in the investment and the short payback time are therefore key factors that have 

pushed their adoption in liberalised markets.” 

 

 

 

Figure 5  (a) NPV to the shareholders probabilistic distribution, no carbon tax (b) Impact of carbon tax on the 

NPV [30]  

UOC/EPIC [20] focuses on a comparison of SMR and NGCC. According to their analysis, the cost of SMR is 

higher than NGCC, but the long-term market competitiveness of SMR, measured as LCOE, will need to be 

benchmarked to new NGCC capacity. The exploitation of learning and “economies of multiples” in general is a 

key element in this respect.  



4. SMRs from a “system’s” perspective 

4.1 Portfolio analysis 

A classical method for utility companies to reduce the overall risk to their business is to differentiate 

investments by building a portfolio of power plants based on different technologies. Due to their smaller size, 

SMRs can provide a means to increase this diversification, even for utilities with a small market share. Locatelli 

& Mancini [31] present a detailed analysis of this. The adopted mathematical approach demonstrates that 

portfolios composed of larger power plants have a lower LCOE than those of small plants (including SMRs). 

However, in the case of the small-scale market (2GWe), portfolios of small plants are able to provide a lower 

investment risk than large portfolio counterparts, both for IRR and LUEC indicators, due to their diversification, 

which is not otherwise applicable to large plants.  

4.2 Non- electrical sectors 

Other than for the generation of electricity, other application sectors are also appropriated for SMR 

consideration. Figure 6 summarizes the most important, comparing their temperature range with that required for 

various sectors. 

 



 

Figure 6 Required temperature for industrial processes (adapted from[32]) 

In the short term, the most relevant non-electrical applications are concerned with district heating, where the 

extracted steam from high and/or low-pressure turbines is fed to heat exchangers in order to produce hot 

water/steam, which is delivered to the consumer. Heat transportation pipelines are installed either above or 

below-ground. Steam from low-pressure turbines is usually used for the base heat load, while steam from high-

pressure turbines is used, when needed, to meet peak demand. The portion of steam retrieved for heat production 

represents only a portion of the total steam produced by the reactor, the remaining being used to produce 

electricity [32]. Co-generation plants, when forming part of large industrial complexes, can be readily integrated 

into an electrical grid system. In turn, they serve as a back-up to providing energy security and a high degree of 

flexibility [33]. 

EPI [34] reviews three possible co-generation options: (1) Desalination (because of population growth, 

surface water resources are increasingly stressed in many parts of the world), (2) Hydrogen production and (3) 

process heat for industrial applications and district heating. Regarding GEN III+  SMRs, process heat for industry 

and district heating, provide the most attractive applications. GEN III+  SMRs can be used to provide heat at 

temperatures ranging from 100 to 200C—more than half of the heat generated is rejected at low temperature. 

This residual heat is available for other uses. District heating is an existing low temperature application provided 



by nuclear plants in cold regions. Given the modular nature of SMRs, they offer advantages in areas or 

applications where heat is needed but where the large heat output, and the expense of a large nuclear reactor, 

makes their use impractical. 

NEA/OECD [21] stress the relative advantages of using SMRs compared to LR counterparts for cogenerative 

applications.  Specifically: 

• Many SMR designs are considered for replacement of ageing power plant in the range of 250-700 

MWth. The cost of upgrading the distribution infrastructure for a LR can be very substantial. 

• SMR sites are expected to be located closer to the final consumer than large reactors (due to improved 

safety), and thus energy losses and the associated costs due to long-distance transport of hot water or 

desalinated water, can be significantly reduced. 

Shropshire [28] suggests that SMR may be well suited to support process heat markets. The smaller SMR 

align well with the capacity requirements of process industries, and reduced exclusion zones may allow SMRs to 

be located near industrial parks. The economies of heat production are process industry dependent (e.g., 

temperature requirements for primary and secondary heat cycles, availability requirements, capacities, 

processing durations, etc.). Considering specifically GEN IV  reactors, they can also recycle waste from other 

reactors to produce electricity [35]. One of the most promising designs is the molten salt reactor. Cammi et al. 

[36] present a detailed review of this technology and specifically  allude to its unique characteristics in terms of 

actinide burning and waste reduction.  

4.3 Non financial factors 

The nature of an investment in energy production requires enlarging the range of parameters influencing 

strategic decisions, moving from technical, economic and financial, to social, environmental and political. For 

these reasons, non-financial factors are important in assessing the overall suitability and configuration of a site 

for energy production (technology, size, output, interconnection with existing network). Mancini et al. [37] 

provides a list of these parameters (risk of severe accidents, EPZ preparation, security of fuel supply, volatility of 

fuel price, environmental aspects and public acceptance), guidelines and algorithms for their quantification and 



integration to support the identification of a long-term investment decision. Results show that nuclear power 

plants present a promising alternative to improve a country’s sustainability and energy independence, even when 

the adverse impact of nuclear options have been accommodated—i.e. including Not In My Back Yard (NIMBY) 

social aspects[38]. Focusing on the nuclear choice, and in particular on the impact of plant size, [39,40] propose 

a set of differential qualitative and quantitative measures to help the identification of suitable deployment 

scenarios: spinning reserves management, electric grid vulnerability, public acceptance, technical siting 

constraints, risks associated to the project, impact on national industrial system, time-to-market, competences 

required for the operations, impact on employment, incremental design robustness and historical and political 

issues. The results clearly show that the greater flexibility afforded by the use of SMRs, from technical, 

managerial and economic standpoints, can be the critical factor for many emerging countries.  

4.4 Cost management aspects 

The cost escalation of nuclear power plant has been one of the major issues preventing their construction in 

the USA, where costs have risen by 300% [2]. However, this is not always typical, for example, the (previous 

generation) French and (current) South Korean programs present more successful economic cases, while the 2 

LRs under construction in the EU (Olkiluoto 3 and Flamanville 3) are expected to require a doubling of their 

budgets and schedules [41]. Much of the delay is due to the project size, FOAK issues and the complexity of 

design. SMRs, due to their inherently modular approach, are easier to build and, because of their smaller size, 

the FOAK impact on cost escalation has a limited effect. Shorter construction times imply an important economy 

in the costs of financing, and are particularly important when discount rates are high (the specific capital costs 

could be reduced by up to 20%). 

  



5. Evaluation of Scenarios 

Locatelli and Mancini [42] have previously shown how to integrate financial, economic and non-monetary 

factors to evaluate their suitability on a country-by-country basis.  The authors discuss the different algorithms 

available and apply their own methodology to an Italian scenario, finding that LRs are still preferable to SMRs 

in a number of situations.  However, Boarin et al. [29] describe an important option embedded into the 

investment model of proposing several SMRs: so-called “self-financing”, typically encountered in modular 

investments. It represents the capability of the project to finance itself by re-investing the income from early-

deployed Nuclear Power Plants (NPP) operation into the construction of later NPP units’. This approach is 

common in many other sectors, e.g. in the transportation industry with the toll roads used to finance the 

construction of further highways [43] or in the civil sector where residential complexes construction is 

performed sequentially, in order that the first build covers the cost of the second build. If  short-term positive 

income exists for a NPP, after covering debt obligations, it is diverted to cash-deficit NPPs under construction, to 

an extent defined by the user (from 0% to 100%), the rest being earned as "shareholders’ dividends”. That gives 

the shareholders an option to reduce up-front equity investment, re-investing self-generated equity resources in 

the project, at an appropriate IRR.  

EPI [34] have assessed the possibility of building SMRs in the USA. Besides the main advantage quoted by 

S. Chu [16] and reported in section 2, they discuss how factors such as licensing, public acceptance, and supply 

chain issues may hinder significant SMR deployment in the future.  

From a more global perspective it is clear that SMRs should not be considered an alternative to LRs, but a 

solution for niche markets that are normally not suitable for LRs. For instance: 

• When SMRs are competitive with LRs and the power required is 1-3 GWe: since the economies of scale 

are compensated by the “economy of multiples”. 

• Where the power required is about 300 MWe - 1 GWe: since there is not enough market space to justify 

the construction of a LR. Here, SMRs can also be competitive with coal and CCGT. Typical scenarios 

are islanded plants for isolated towns etc. 

• Where the environment presents a challenge in terms of water availability, earthquakes etc.[18, 44] 



• SMRs can represent the ideal solution for “nuclear newcomers” without significant prior experience in 

building and operating nuclear reactors: to build and operate an SMR requires much less prior 

knowledge than LR counterparts [40].  

• Replacements for the decommissioned small and medium-sized fossil fuel power and heat plant. Typical 

scenarios are the replacement of an old coal power plant, jeopardized by the carbon tax and tighter 

environmental legislation, or an old oil plant that is no longer allowed to operate. 

  



6. Conclusions 

The aim of the paper has been to summarise the main features of SMRs; predominantly from the perspective 

of investors and policy makers. Given the extreme relevance and complexity of the field, this paper aimed to 

bring together the contributions of scholars and practitioners with state-of-the-art papers and report. Senior 

managers, policy makers, practitioners and the wider community of scholars are the target audience. 

 Modern SMRs are a relatively “new product” in the nuclear industry since they are not a scaled version of 

more traditional LRs, but a new concept in nuclear power generation. They aim to take advantage of a smaller 

size to implement new technical solutions and easier construction. SMRs exploit the “economy of multiples” 

rather than the “economy of scale”. The strengths and weaknesses of an investment in SMRs allow an 

identification of market conditions where they are more economically viable than LRs. From an investment 

perspective, the IRR remains one of the most important differential indicators, particularly when utilities are 

owned by private sector companies tasked with maximizing the return. However, the “added extra” from LR 

investment is reduced when the electricity price and overnight costs are not stable, and mainly decrease: the 

lower the electricity price, the smaller the difference in the IRR among the reactors. It is concluded that SMRs 

are attractive in scenarios with limited financial resources, where the utilities can add modules to exploit the self-

financing options. With this approach, shareholders receive a lower remuneration of their equity in the short-

term, in favour of higher income at a later date. Moreover, SMRs, because of lower up-front investment 

requirements, present a promising choice in cases of limited resources, and “wait and see” (real options) 

strategies. However the SMR must be built sequentially, with an ideal delay of 1 year between a “first concrete” 

and the following to reap the advantages from “learning” and “self-financing” i.e. from the “economy of 

multiples”. 

Considering non-financial factors, preliminary results indicate that SMR perform better or at least as well as 

LRs. However, NIMBY limits the possibility of using SMRs on many sites to exploit the advantages of grid 

stability and site availability. Nevertheless, even if  a proposed solution is to focus many SMRs on a reduced 

number of sites (quasi-distributed) they may still present with regard to life cycle costs. For instance, during the 

planning and construction phases, more sites can be exploited (than for LRs), and the time to market is shorter 



with less risk associated with construction issues. During the operational phase, SMRs provide more 

employment positions and require lower spinning reserves.  

We expect that SMR will play an important role in nuclear industry in the next decades.  

SMRs are cost competitive with LRs when the power required is 1-3 GWe, since the economies of scale are 

compensated by the “economy of multiples”. This is very important when 1-3 GWe is the total power to be 

installed in a country, where the specific regulatory requirements and the local project delivery chain push for an 

ad-hoc national design. Moreover, the investment project flexibility, in terms of time and placement, is one of 

the greatest strengths of SMRs. With a smart schedule (a delay of about 1.5 – 2 years between the start of the 

construction of each module) is possible to achieve the maximization of learning and co-siting economies and 

self-financing to minimize the upfront investment. Where the power required is less than 1 GW the situation has 

to be carefully evaluated. They can be viable where there is not enough market space to justify the construction 

of a LR, and SMRs can be competitive with coal and CCGT.  However, the long licence process if  often not 

justified for small projects. SMRs can represent the ideal solution for “new comers” without experience in 

building and operate nuclear reactors: to build and operate SMRs is easier than LR counterparts. 

In conclusion, regarding the future of LWR, it appears clear as there are now two well established categories of 

reactors: LR (1100 MWe or more) and SMR (350 MWe or less). The first group, LR, exploit the economies of 

scale and targets markets requiring several GWe where few utilities (usually owned by the national state) have 

large availability of capital able to sustain the deployment of a fleet of standard LR. Such countries include 

China, Russia, Korea, UAE. SMRs are intended for newcomers (like Kenya) or private utilities (like in USA) 

willing to reduce the risk and the upfront investment and are keen to exploit learning and prefabrication. The 

“middle ground” of 700 MWe LWR does not appear to have a promising future at this time: those reactors are 

too big for “factory builts” but too small for recouping the benefits afforded by the economies of scale. For 

instance the AP600 received the NRC's final design certification 1999 but no orders were ever placed, while the 

AP1000 is under construction in USA, China and regarded as viable options in several other countries. 
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