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Private Labels and Retail Assortment Planning: 

A Differential Evolution Approach 

 

Abstract 

Despite the longstanding recognition of the importance of product assortment planning (PAP), 

existing literature has failed to provide satisfactory solutions to a great deal of problems that reside in 

this area of research. The issue of optimal assortment planning in the retail sector becomes even more 

important in periods of economic crisis, as retailers must adapt their product portfolios to new 

evolving patterns of consumer buying behaviour and reduced levels of consumer’s purchasing power. 

Private labels (PLs) typically experience significant growth in times of recession, due to their 

low prices, and the reduced disposable income of households. In this direction, the present 

paper introduces Differential Evolution (DE) to assist retailers in adapting their product 

portfolios in periods of economic recession and facilitate strategic PAP decisions, related to a) 

optimal variety of PL product categories, b) optimal service level of PL merchandise within a 

product category, and hence, c) optimal balance between PLs and National Brands (NBs) in a 

retailer’s product portfolio. The interrelated issue of assortment adaptation across different 

store formats is also considered. Economic recessions contribute to the prolonged upward 

evolution in PL share, and hence, our mechanism facilitates decisions that are nowadays more 

important than ever before. The proposed mechanism is illustrated through an implementation 

to an empirical dataset derived from a random sample of 1,928 consumers who participated in 

a large-scale computer assisted telephone survey during the current economic crisis period. 

 

Keywords: Product assortment planning, Differential evolution, Private label, Economic 

crisis 
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1. Introduction 

One of the basic strategic decisions a retailer must make involves the determination of the 

product assortment to offer. Product assortment planning (PAP) involves important decisions 

related to the determination of variety (i.e., number of different product categories), depth 

(i.e., number of stock-keeping units/distinct items for sale, within a product category) and 

service level (i.e., amount of merchandise inventory within a product category) in a retailer’s 

product portfolio (Mantrala et al., 2009; Hübner and Kuhn, 2012). These decisions become 

even more crucial in periods of economic downturn, as retailers are expected to adapt their 

product portfolios to changing economic conditions. By making optimal PAP decisions, retailers 

hope to satisfy customers’ changing needs by providing the right merchandise in the right 

store at the right time (Nogales and Gómez-Suarez, 2005). If the retailer fails to provide the 

expected assortment, customers defect, causing losses in both current and future sales. 

   At the same time, economic crisis hits consumers’ disposable income very hard and makes them 

more prone to switch to Private Labels (PLs) at the expense of National Brands (NBs). PLs are 

products which are typically manufactured by one company for offer under another 

company’s brand. Simply put, they are products that retail stores put their own names or 

brands on. They may also be called store brands, own brands, or retailer brands, but they all 

have one thing in common – they are manufactured and brought to market in much the same 

way as the familiar National Brands they sit next to on store shelves. PLs can be available in 

almost every food and non-food product category (e.g., fresh, frozen and refrigerated food, 

canned and dry foods, snacks, pet foods, health and beauty care, household and laundry 

products, stationery and housewares, etc). For many shoppers, PLs represent better value and 

savings. As a result, a closer look at the role of PLs in a retailer’s product portfolio is more relevant 

nowadays than ever before. Several academics have theorized the growing importance of PLs in 
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periods of economic downturn (e.g., Lamey et al., 2007; Quelch and Harding, 1996; Nandan and 

Dickinson, 1994). For example, Quelch and Harding (1996) suggest that PL market share goes 

up when the economy is suffering and down in stronger economic periods. Likewise, Nandan 

and Dickinson (1994) state that during difficult economic times, the popularity of PLs tend to 

increase, whereas in periods of relative economic prosperity, the share of NBs increases. 

Unlike other drivers of PL success, the general economic conditions are largely beyond the 

retailer’s control. 

   In the present study we extend the PAP problem in an attempt to also consider the crucial 

role of PLs in a retailer’s product portfolio, an issue which has been neglected in the existing 

PAP literature. In this direction, this paper conceptualizes the optimal Private Label-Product 

Assortment Planning (PL-PAP) problem, and subsequently, introduces a new mechanism, 

namely Differential Evolution (DE), which facilitates simultaneously relevant important 

decisions. More specifically, we attempt to optimize the variety and service levels of PLs in a 

retailer’s product portfolio. A closer look at the role of PLs in a retailer’s product portfolio is more 

relevant nowadays than ever before, due to the severe economic recession.  

   The rest of the article is organized as follows. The next section presents the theoretical 

background of our study and the optimal PL-PAP problem. Subsequently, we introduce our 

proposed mechanism, which is followed by a section that illustrates its implementation to our 

empirical dataset. Finally, results are presented, while a concluding section summarizes the 

article. 

 

2. Theoretical background 

2.1 Category management and assortment planning 

Existing literature on retail category management attempts to develop efficient support 

systems as a means to facilitate decision making that focuses on two broad areas, namely 
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shelf space planning and assortment planning. Shelf space planning considers facing and 

replenishment decisions (see e.g., Corstjens and Doyle, 1981), while assortment planning 

considers the question of which and how many different products to offer (Mantrala et al., 

2009). In the past two decades, numerous models and analytical solutions have been proposed 

to deal with both areas of research (e.g., Anderson and Amato, 1974; Borin and Farris, 1995; 

Borin et al., 1994; Brijs et al., 2000; Brijs et al., 1999; Bultez and Naert, 1988; Bultez et al., 

1989; Corstjens and Doyle, 1981; Corstjens and Doyle, 1983; FadılogѺlu et al., 2010; Hansen 

and Heinsbroek, 1979; Russell and Urban, 2010; Urban, 1998; Yang, 2001). In the shelf space 

planning literature, researchers traditionally apply the individual space elasticity and cross-

elasticity between products to determine which products to stock and how much shelf space to 

display these products, whereas, the main body of literature on assortment planning models is 

based on the estimation of substitution effects and develops optimization algorithms to define 

inventory levels by stochastic demand. 

   The present study is concerned with the latter area of research. Kök and Fisher (2007) 

define retail product assortment planning (PAP) as the process used to find the optimal 

combination of products to be carried and set the inventory levels of each product. Hübner 

and Kuhn (2012) define variety as the number and combination of product categories in a 

retailer’s product portfolio, depth as the number of stock-keeping units within a category and 

service level as the amount of merchandise inventory within a category. Evidently, retailers 

want to identify the optimal balance among variety, depth, and service levels, but at the same 

time they are also constrained by the amount of money they can invest in inventory and/or by 

their physical space. For example, offering more variety may limit the depth within categories 

and the service level, or both. 

   Empirical findings of existing assortment optimization algorithms suggest that variety levels 

have become so excessive that sales can increase by reducing variety significantly 
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(Boatwright and Nunes, 2001; Dhar et al., 2001; Sloot and Verhoef, 2008). In the same 

direction, Iyengar and Lepper (2000) show that consumers are more willing to purchase 

consumer goods when offered a limited array of choices only. However, even if retailers 

could determine the optimal assortment mix for all individual customers, it may be 

unprofitable to stock such an assortment. Therefore, out-of-shelf situations are inevitable. 

Literature suggests that between 45% and 84% of demand can be substituted (Campo et al., 

2003; Xin et al., 2009). The average potential for substitution depends on product-, situation- 

and consumer-specific characteristics (Fitzsimons, 2000; Xin et al., 2009). 

   Despite the longstanding recognition of the importance of the PAP problem, several limitations and 

gaps can be found in existing literature. First, existing research tends to examine analytical 

solutions that deal almost exclusively with questions of depth, whilst it completely fails to 

address issues related to variety and service levels (see for example, Mantrala et al., 2009). 

Second, current literature focuses on a single category or subcategory of products or services 

and fails to examine the interplay among various categories that are offered by a retailer. 

Third, although in reality a retailer might have a different assortment at each store format, the 

academic literature has focused on determining a single assortment for a retailer, which could 

be viewed as either a common assortment to be carried at all stores or the solution to the PAP 

problem for a single store (Kök et al., 2005). Finally, PLs have been widely neglected in 

existing PAP literature, despite the fact that PLs are considered as a powerful competitive tool, 

especially in periods of economic downturn, as they allow retailers to improve their service 

offering and store image, obtain greater margins and profits (Nogales and Gómez-Suárez, 

2005), while they also have significant marketing potential for improving service quality 

(Herstein and Gamliel, 2006). The growing penetration of PLs in a number of product 

categories makes PAP decisions even more complicated. For extensive reviews of the 
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assortment planning literature, the reader is advised to see the work of Mahajan and van 

Ryzin (1998) and Kök et al. (2005). 

   Against this background, the present paper attempts to correct for the omissions of existing 

PAP research by introducing Differential Evolution (DE). To the best of our knowledge the 

proposed mechanism is introduced for the first time in the broader area of marketing and 

service research. Therefore, the novelty of this study is two-fold and resides in both the 

managerial problem and the research methodology. More specifically, we show how this 

innovative approach can facilitate strategic PAP decisions, related to the determination of a) 

optimal variety of PL product categories, b) optimal service level of PL merchandise within 

each product category, and hence, c) optimal balance between PLs and NBs in a retailer’s 

product portfolio.  

   At the same time, it is widely accepted that the heterogeneity among marketplaces requires 

that retailers tailor their assortments to local tastes rather than making national-level product 

assortment planning (PAP) decisions. In this direction, retailers have realized that a “one 

size/style fits all” strategy is not adequate, and are moving toward tailoring at least 15% of the 

merchandise in each of their store to local tastes (O’Connell 2008). In the light of this shift, 

the interrelated issue of assortment adaptation across different store formats is also considered 

in this paper. 

 

2.2 Formulation of the assortment planning problem 

The difficulty of Product Assortment Planning as a task for retailers has been widely studied 

in the literature. As noted earlier, PAP models are based on substitution effects and focus on 

developing algorithms to define inventory levels by stochastic demand. The most popular 

approach for estimating demand substitution in assortment planning is multinomial logit 

models (e.g., van Ryzin and Mahajan, 1999; Mahajan and van Ryzin, 2001; Cachon et al., 
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2005; Li, 2007; Hopp and Xu, 2008) and exogenous substitution models (e.g., Smith and 

Agrawal, 2000; Rajaram and Tang, 2001; Kok andFisher, 2007; Shah and Avittathur, 2007; 

Yucel et al., 2009). The multinomial logit model is a discrete consumer choice model 

assuming that consumers are rational utility maximizers, while exogenous demand models 

directly specify the consumer reaction and are mostly used in inventory models. 

   The exogenous demand and multinomial logit models have different origins, but allow the 

optimization of assortments. As a result, retail assortment studies have so far introduced 

various heuristic techniques for consumer-driven substitution, which have been employed to 

solve such complex formulations. For example, Urban (1998) introduced Genetic Algorithms, 

Borin et al. (1994) and Bai and Kendall (2005) implemented Simulated Annealing, while 

Smith and Agrawal (2000) addressed the problem using Lagrange relaxation. In these studies, 

the assortment planning problem is usually formulated with the use of mixed integer 

nonlinear objective functions in an attempt to maximize the expected product profit. Our 

approach differs in that we formulate the problem using a continuous real-valued function in 

an attempt to maximize retailer’s sales volume. 

   The global economic recession has significantly affected consumers’ purchasing behaviour. 

Consumers’ brand preferences for NBs and PLs have dramatically changed. The global 

economic slump has accelerated the growth of PLs at the expense of NBs. Our proposed 

mechanism also considers the interplay between PLs and NBs in the retailer’s product 

portfolio. More specifically, we assume that a retailer carries m different categories (variety), 

within which, a merchandize inventory of both NBs and PLs may be carried (service levels). 

The optimal PL-PAP problem for the retailer is to decide, in terms of customer demand, on 

the optimal configuration of PL categories that must be carried (i.e., PL variety), and the 

optimal amount of PL merchandize inventory within each category (i.e., PL service level), as 

a percentage of the total merchandize carried in the given category. 
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   A number of criteria to optimize can be selected, such as profit maximization, cost 

minimization etc. In this study, we choose to maximize the retailer’s sales volume; however, 

our approach can be easily adapted to any other criterion. The optimization of the PL-PAP 

problem is based on consumer preferences for PL product categories. We assume that each 

customer has made his decision whether to buy PL or NB from a given category before 

visiting the retail store. The probability of purchase depends on the service levels (amount of 

merchandize inventories) that a retailer offers in a given category. For example, a customer 

who generally prefers PLs in the alcoholic beverages category, is more likely to buy alcoholic 

beverages from a particular retailer if this retailer has an extensive PL service level within this 

product category. Different approaches can be adopted for modeling the relationship between 

probability of purchase and service level within a category. Also, we assume that the amount 

of money a customer spends on a certain category is linearly proportional to the respective 

service level of that category. In particular, we assume that the monthly expenditure of a 

customer in a specific PL category of a given retailer, equals the amount of PL merchandize 

inventory (PL service level) offered in that category by the retailer times the total budget 

spent by the customer on that product category per month. In this manner, the optimal PL-

PAP problem is formulated as follows: 

   Find plr  and br , for r=1,…, m that  

 

   maximize f=       (1) 

   under plr  + br = 1  r         (2) 

   plr, br  [0, 1]          (3) 

   ≤0.27          (4) 
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where m is the number of categories carried by the retailer, n is the average number of 

customers visiting the retailer per month, plr and br are the percentages (service levels) of PLs 

and NBs, respectively, that the retailer carries in category r, Įplcr  and Įbcr  are the total 

monthly expenditures that customer c spends on PLs and NBs, respectively, in category r. In 

line with the existing literature, constraint (4) requires the average percentage of PLs that the 

retailer carries across all categories to be equal or less than 27% (see e.g., Gómez-Suárez, 

2005; Nogales and Gómez-Suárez, 2005). For example, Gómez-Suárez (2005) suggests that 

in a retail grocery store the percentage of space occupied by private labels is on average up to 

27%. The author observed the total shelf space occupied by private labels across a set of 40 

product categories based on a large sample of retail superstores. Constraint (4), which is a 

fixed rate for the percentage of PLs, can be easily adapted to match any percentage assigned 

by the retailer, so as to address the particular characteristics of the given market conditions, 

geographic location, store size, and/or cultural differences. Constraint (4), along with the fact 

that plr and br can take any real value in the range [0, 1] makes the problem very complex. For 

example, if we allow plr to take only 10 different values 0, 0.1, …, 0.9 (i.e., a 10% step), the 

number of possible solutions for a retailer that carries 10 different categories is 1010. If we 

decrease the step to 1%, the size of the solution space becomes 1020! Even the fastest 

computer will require more than a week to completely enumerate the whole solution space 

(i.e., exhaustive search), if it does not run out of memory. In order to find a good 

approximation of the global optimal solution in tractable time, we introduce the Differential 

Evolution algorithm to the PL-PAP problem. We selected Differential Evolution because it is 

a state of the art technique for global optimization over continuous spaces and one of the most 

powerful stochastic real parameter optimizers of current interest. It has also displayed 

excellent performance in constrained optimization problems (Mohamed and Sabry, 2012). 

The application of other optimization algorithms to the problem (e.g., Particle Swarm 
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Optimization, Ant Colony Optimization, etc) may constitute an interesting area of future 

research.  

 

3. Method 

Differential Evolution (DE) is an evolutionary, population-based algorithm, for global 

optimization over continuous spaces. It was first introduced by Storn and Price (1997), and 

has been extensively applied to a wide domain of optimization problems due to its ability to 

efficiently handle non-differentiable, nonlinear and multimodal cost functions (for a state of 

the art survey see Das and Suganthan, 2011). Recently, DE has been implemented to solve the 

lot size problem in stochastic supply chain management systems (e.g., Lieckens and 

Vandaele, 2015), and also identify optimal groups of assets in active portfolio management 

(e.g., Krink et al., 2009). 

   DE’s great popularity comes from its good convergence properties, as well as its 

parallelizability that enables the successful handling of computation intensive cost functions. 

DE is based on the Darwinian theory of Evolution (Engelbrecht, 2007): In a world with 

limited resources and stable populations, each individual competes with others for survival. 

The individuals with the best characteristics will more probably survive and reproduce. Those 

desirable characteristics (a) are passed on to their offspring, (b) are inherited by the 

subsequent generations, and (c) over time will become dominant among the population. 

During the production process of a child organism, random events may cause random changes 

to its characteristics. If these altered characteristics benefit the organism, then the likelihood 

of survival for the organism is increased.  

In accordance to this, DE works with a group (population) of candidate solutions to the 

problem (individuals). The algorithm searches for the global optimum through an iterative 

process, as described below. 
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3.1 Initialization 

DE begins with the random creation of a number of individuals. Each individual i corresponds 

to a candidate solution of the problem, and is represented by a vector
i
x
 d :  

i
x


=(xi1, xi2,..., xid), i =  1, 2,..., NP, x ,  

where d is the number of problem’s dimensions, and NP is the population size. The 

individuals of the initial population are randomly created and usually follow a uniform 

probability distribution. The initial population should cover the entire range of parameter 

values, or at least the domain space that may contain the global optimum.  

 

3.2 Mutation 

Once the initialization is completed, the mutation process follows, whereas other evolutionary 

algorithms first apply crossover. The mutation operator of DE generates new vectors of 

individuals by adding to a base vector the weighted difference between two difference 

vectors. For each individual i (represented by a target vector xi) three vectors are randomly 

chosen from the population: a base vector xb, and two differentials xd1, xd2, (i≠b≠d1≠d2). The 

mutant vector is then produced as follows: ui= xb + F * (xd1 – xd2), where the scale factor F is 

a positive real number in [0, 2] that controls the amplification of the differential variation, 

which in turn controls the rate at which the population evolves. At each algorithm’s iteration 

(generation) every individual i serves once as the target vector. This is known as “classic DE” 

or DE/rand/1, where the word rand denotes that the base vector is randomly chosen, and the 

number shows how many vector differences are considered for the perturbation (one in this 

case). The five most frequently referred mutation strategies are (Islam et al., 2012): 

1. DE/rand/1: ui= xb + F * (xd1 – xd2) 

2. DE/best/1: ui= xbest + F * (xd1 – xd2) 
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3. DE/current-to-best/1: ui= xb + F * (xbest – xb) + F * (xd1 – xd2) 

4. DE/best/2: ui= xbest + F * (xd1 – xd2) + F * (xd3 – xd4) 

5. DE/rand/2: ui= xb + F * (xd1 – xd2) + F * (xd3 – xd4) 

The indices d1, d2, d3, d4 are mutually exclusive integers randomly chosen from the range [1, 

NP], and are all different from the index b, while xbest is the best individual vector in the 

current population t. 

 

3.3 Crossover 

The crossover process follows, which produces an offspring xi
’ (trial vector) through 

implementing a discrete recombination of the target vector xi and the newly produced mutant 

vector ui (Price et al., 2005): 

 

   

 

The crossover probability, Cr  [0,1], is defined by the user, and controls the fraction of 

parameter values that are copied from the mutant. In uniform crossover the value of Cr is 

compared to a random generated number from a uniform distribution in (0, 1). If the random 

number is less than or equal to Cr, the trial parameter is copied from the mutant, otherwise the 

parameter is inherited from the target vector. Furthermore, the trial parameter with randomly 

selected index jrand is taken from the mutant, in order to ensure that the trial vector does not 

duplicate the target vector. 

 

3.4 Selection 
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If the trial vector performs better than the target vector with regard to the problem’s objective 

function, then the trial vector replaces the target vector in the population of the subsequent 

generation. Otherwise the target vector survives intact into the next generation. This 

constitutes the selection process of DE.   

 

3.5 Pseudocode 

A pseudocode of the Differential Evolution algorithm is presented below: 

 

Initialization 

Select the values of the control parameters F and Cr , and the population size NP  

Select the maximum number of iterations tmax and set the iteration counter t=0 

Generate the initial population Pop(0) of NP individuals 

Evaluate the fitness f(xi(t)) of each individual i of the initial population 

Main phase 

do until t=tmax 

for each individual xi(t)  Pop(t) do 

Generate the mutant vector ui(t) through mutation 

Create the trial vector xi
’(t) through crossover 

Evaluate the fitness f(xi
’(t)) 

If f(xi
’(t)) is better than f(xi(t)) then 

Replace xi with xi
’ in Pop(t+1) 

else 

Add xi
 to Pop(t+1) 

end if 

end for 
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t=t+1 

end do 

return the best solution 

 

As Lampinen and Storn (2004) state, DE is self-adjusting because, in contrast to classical 

Evolutionary Strategies, it deduces the perturbation information from the distances between 

the vectors that comprise the population. This feature automatically yields reasonably large 

vector perturbations at the first phase of the optimization (exploratory stage). At the later 

stages, when the algorithm is approaching the optimum, the distances between the vectors 

automatically get smaller. These smaller perturbations allow DE to conduct a fine-grained 

search for the optimal solution. This self-adjusting property of DE uses fewer control 

mechanisms than other algorithms, making DE both easy to use and effective. 

 

4. Implementing DE to the PL-PAP Optimization Problem 

4.1 Data and variables 

The proposed mechanism is implemented to empirical data that have been collected for the 

purposes of a large-scale telephone survey research examining consumer buying behaviour 

and preferences in the grocery market of a European metropolitan area. A highly structured 

questionnaire was developed and data were collected from a random sample of 1,928 

supermarket customers. The telephone survey was conducted by the Computer Assisted 

Telephone Interviewing (CATI) facilities of a local university. Respondents, among others, 

were asked to state their average expenditure per supermarket visit, the number of 

supermarket visits per month, the supermarket store format they usually prefer for their main 

shopping, the amount of money they usually spend on PLs, and the PL categories they mostly 



16 

 

prefer. In total we examined consumer preferences for a set of twelve product categories that 

are usually available in a typical supermarket. 

   In Table 1, some basic descriptive statistics of our sample are presented in a condensed 

form. As is shown, we recruited customers from three distinct supermarket store formats, 

which differ significantly in terms of the assortment they offer: small local supermarket 

chains (7.6%), discount supermarket chains (5.2%), and large mainstream supermarket chains 

(87.1%). In terms of buying behaviour, our sample spends approximately 67.7 euros per 

supermarket visit and pays 6.9 supermarket visits per month, while 21.3% of its budget is 

spent on PL products. In Table 1 the percentage of customers who buy PLs per product 

category is also presented. It can be inferred that the majority of respondents buys PLs from 

categories such as disposable paper products (70.7%), packaged foods (57.1%), and 

household cleaning products (40.5%), while PLs in product categories such as clothing 

products (10.2%), tea/coffee (12.5%) and alcoholic beverages (13.0%) are the least successful 

in terms of customer demand.  

 

Take in Table 1. 

 

4.2 Solution representation 

Since the number of categories is m=12, we represent a potential solution i to the problem 

with a vector: ix


= (xi1, xi2,..., xir,…, xi12), x[0, 1], where xir is the percentage of PLs (PL 

service level) that the retailer carries in category r (plr). The parameter xir is allowed to take 

any real value in the range [0, 1], which corresponds to a 0-100% percentage range. The 

percentage of NBs (NB service level) in the same category (br) is easily derived from 

constraint (2). We set the number of customers visiting the retailer per month equal to 

n=1,928. Also, the monthly amount that customer c spends on PLs (Įplcr) and NBs (Įbcr) are 
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known. Hence, we are looking for the optimal x


that maximizes the objective function (1). 

An issue that arises is the handling of constraint (3). The reproduction process of DE 

(mutation and crossover) is possible to extend the search outside of the range of the search 

space ([0, 1]). In order to ensure that parameter values lay inside their allowed ranges after 

reproduction we adopt the approach for boundary constrained problems by Lampinen and 

Zelinka (1999) (i.e., the parameter values that violate boundary constraints are replaced with 

random values generated within the feasible range). 

 

4.3 Selection of DE Parameters 

We fine-tuned the parameters of DE to select the best configuration for the optimal PL-PAP 

problem. Based on suggested general guidelines from previous research (Mezura-Montes et 

al., 2006) we tested six different values for the Population Size (NP), seven different values 

for the maximum number of iterations (tmax), seven different values for the Scaling Factor (F), 

and four different values for the Crossover rate (CR). Table 2 illustrates the values for each of 

the four parameters in the 5x7x7x4 full factorial design that was implemented. 

 

Take in Table 2. 

 

We performed 25 replications (5 for each of the five mutation strategies) for each of the 980 

combinations of the four parameters, resulting in a total of 24,500 runs of the algorithm. The 

results indicate that for more than 100 iterations, and for NP>80 there is no gain in 

performance, while the best performance was achieved for F=0.3 and CR=0.9. 

 

4.4 Performance Evaluation 
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We implement the DE algorithms to find optimal solutions (i.e., PL service level per 

category) in the entire dataset and each of the three store-formats separately. The parameter 

values used for all the five versions of the algorithm (different mutation strategies) are 

tmax=100, NP=80, F=0.3, and CR=0.9. Without loss of generality we assume that customers 

equally divide the PL monthly budget to each category. In order to evaluate the performance 

of our approach we compare the results of the five DE versions to that of a Simulated 

Annealing (SA) algorithm, which has been applied in the assortment planning problem in the 

past. SA is an optimization algorithm introduced by Kirkpatrick et al. (1983). It is a local 

search algorithm inspired from the physical process of annealing in metallurgy. The algorithm 

begins with the generation of a random initial solution (PL service level per category), which 

is evaluated using the problem’s objective function (eq. 1 - retailer’s sales volume). An 

iterative process follows, where a single parameter xir of the potential solution vector ix


is 

randomly altered at each iteration. If the change improves the value of the objective then the 

change is accepted, else it is accepted with a probability P as follows: 

 

P= , 

 

where f is the retailer’s sales volume after the change, f’ is the retailer’s sales volume before 

the change, and T is the “temperature”, a control parameter of the algorithm. T takes a 

relatively large value in the initial stages of the algorithm, which allows the acceptance of a 

high percentage of changes that worsen the objective function. This enables the algorithm to 

escape from possible local optima, and favors global search. The initial value of T is gradually 

decreased during the process, and the algorithm accepts fewer worsening changes, favoring 

local search at the final stages. We fine-tuned the parameters of SA to select the best 

configuration for the optimal PL-PAP problem. We tested several values for the initial T in 
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the range [10, 100], as well as for the number of parameter xir changes per temperature level 

in the range [1000, 10000]. After calibration, we set a number of 8000 parameter xir changes 

and an initial T=37. We decrease T by multiplying the current temperature level by 0.75 in 

each iteration. This results in 27 different temperature levels and a total of 216000 changes. 

Throughout the algorithm’s iterations the best solution so far is stored, in order to be protected 

from a worsening change. 

 

5. Results 

All algorithms were developed and executed in Matlab. We performed 30 independent runs 

for each algorithm on a 2.8GHz-i7 PC with 8GB RAM. Table 3 provides statistical results for 

the performance of the SA and the five DE implementations. The results show the average 

values across the 30 runs, and are calculated as a percentage of the best solution for each 

problem (entire dataset and each of the three store-formats) found by any algorithm in a single 

run.  

Take in Table 3. 

 

On average, the DE/best implementations exhibit the highest performance, followed by the 

DE/rand implementations. The superiority of the DE/best implementations to Simulated 

Annealing, as well as DE/current-to-best is statistically significant (p<0.05). With regard to 

computational time the DE implementations terminate after 11.2sec on average, and SA 

terminates after 89.5sec. 

Table 4 illustrates the best solution (% of merchandize inventory allocated for PLs in each 

category) found in each case.  

 

Take in Table 4. 



20 

 

 

The retailer can also decide on the threshold below which the introduction of PLs in a specific 

category is not desirable. This threshold may vary across retailers depending on the respective 

inventory and handling costs. If for example, a retailer sets this threshold to 5%, the derived 

optimal solution for the entire dataset in Table 4 suggests that this retailer should mainly 

focus its efforts on providing extensive PL service levels in product categories such as 

disposable paper products and packaged foods, and also maintain a decent PL presence in 

categories such as bakery, laundry, household cleaning products, tea-coffee, and non-

alcoholic beverages. The derived percentages are well below the threshold of 5% in categories 

such as frozen foods, personal hygiene products and clothing products; a finding which 

implies that the introduction of PLs in these categories would not be advisable. These results 

are also graphically depicted in Figure 1, which also outlines the optimal balance between PL 

and NB service levels per category, based on constraint (2). 

   Regarding the adaptation of PL service levels across store formats, interesting conclusions 

can be drawn from Table 4. For example, managers of large mainstream supermarket chains 

must offer extensive PL service levels in categories such as disposable paper products and 

packaged foods, whilst they should also maintain a decent PL presence in categories such as 

laundry and dairy products. In line with our expectations, discount retailers are expected to 

provide broader varieties of PLs, because in addition to the PL categories offered by 

mainstream supermarkets, discounters must also provide extensive PL service levels in 

household cleaning products. Finally, the derived optimal percentages in most product 

categories of local supermarket chains are extremely low. This finding indicates that local 

grocery stores should concentrate their efforts in providing a narrow variety of PLs, by 

focusing on few categories, such as packaged food and laundry products. A cross-format 

comparison of the optimal PL service levels per category is graphically depicted in Figure 2. 
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It can be seen that discount supermarkets not only must offer broader varieties of PLs, but 

also more extensive service levels within those varieties (the derived percentages are higher 

compared to the respective percentages of the other two store formats).  

 

Take in Figure 1. 

 

Take in Figure 2. 

 

6. Conclusions-Discussion 

The present paper introduces evolutionary analysis to strategic assortment planning. We have 

shown how Differential Evolution algorithms can address assortment management problems 

and identify optimal PL varieties and service levels in a retailer’s product portfolio. The 

performance of five different DE implementations was benchmarked against Simulated 

Annealing. The interrelated issue of assortment adaptation across different retail store formats 

is also taken into consideration. 

   It is widely recognized that economic recessions contribute to the prolonged upward 

evolution in PL share, leaving scars on NBs performance levels. As a result, the proposed 

mechanism facilitates PL-PAP decisions that are nowadays more important than ever before. 

Evolutionary notions such as selection and variation shed new light on retail and assortment 

management, as they can facilitate, in a unified framework, important decisions related to 

optimal variety of PL product categories, optimal service level of PL merchandise within a 

product category, and optimal balance between PLs and NBs in a retailer’s product portfolio.  

   Nowadays most retailers gather huge amounts of data each day. Sales transactions are 

recorded with the use of scanner panels, or online systems in case of Internet sales. Due to 

developments in scanning and electronic point of sale technologies, it is increasingly possible 
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to monitor and model contributions of certain items within product categories to sales. 

Decisions about assortment reductions, therefore, seem straightforward. Such large amounts 

of data are hard to be manipulated, requiring sophisticated methods such as optimization 

algorithms. Implementation of algorithms as the one presented here to big scanner data will 

give retailers the opportunity to track sales effects and allow timely adjustments of 

merchandise and other marketing mix elements. The effective processing of such data 

transforms them into valuable information that can provide a company with sustainable 

competitive advantage. DE can assist retailers in determining the optimal level of inventory 

and variety to carry. Those with experience in optimization methods and computer 

programming can find several DE implementations on the Internet (e.g., see 

http://www1.icsi.berkeley.edu/~storn/code.html). Retailers not familiar with software 

customization may consult specialized professionals. Ultimately, DE can be integrated into a 

retailer’s existing information system, or even constitute the foundation for the development 

of new system or standalone application. 

   In conclusion, we believe that evolutionary analysis can open new avenues and reveal 

exciting opportunities not merely for new research, but for novel, revolutionary views of 

market behavior. Differential evolution algorithms can be applied to several similar marketing 

problems such as advertising scheduling, service design and diversification, product line 

management and innovation. We hope that the ideas presented here will motivate research in 

new ways to view and innovative methods to address marketing problems. 

http://www1.icsi.berkeley.edu/~storn/code.html
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Table 1. Descriptive statistics 

Variable Mean (Stand. Dev.) 
Number of supermarket visits per month 6.9 (5.2) 
Expenditure per supermarket visit (in euros) 67.7 (66.9) 
Percentage of budget spent on PLs 21.3 (19.3) 
  
Store format most frequently visited for main shopping Total sample (in %) 

Small local supermarket chain 7.6 
Discount supermarket chain 5.2 
Large mainstream supermarket chain 87.1 

  
Product category Percent of customers buying PLs - 

Yes (No) 
Frozen Foods 20.1 (79.9) 
Packaged Foods 57.1 (42.9) 
Laundry Products (e.g., detergents) 35.3 (64.7) 
Household Cleaning Products 40.5 (59.5) 
Personal Hygiene Products 14.7 (85.3) 
Disposable Paper Products 70.7 (29.3) 
Non-Alcoholic Beverages (e.g., soft drinks, juices, 
bottled water) 

17.7 (82.3) 

Dairy Products 24.2 (75.8) 
Bakery Products 29.3 (70.7) 
Clothing Products 10.2 (89.8) 
Tea and Coffee 12.5 (87.5) 
Alcoholic Beverages (e.g., wines, beers) 13.0 (87.0) 

 

 

 

Table 2. Parameters and Values used in Full Factorial Design Experiment 

Parameters Values 
Population Size (NP) 40 60 80 100 120   
Number of iterations (tmax) 50 60 70 80 90 100 110 
Scaling Factor (F) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Crossover rate (CR) 0.2 0.4 0.7 0.9    
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Table 3. Performance comparison results 

 DE/rand/1 DE/best/1 DE/current-

to-best/1 

DE/best/2 DE/rand/2 Simulated 

Annealing 

Best 0.9932 0.9968 0.9907 0.9973 0.9940 0.9915 

Mean 0.9683 0.9736 0.9662 0.9791 0.9704 0.9566 

Worst 0.9261 0.9285 0.9109 0.9327 0.9283 0.8947 

Standard 

Deviation 
0.0085 0.0047 0.0088 0.0021 0.0057 0.0097 

 

 

 

 

Table 4. Optimal PL Service Levels per Category* 

FF PF LP HCP PHP DPP NAB DP BP CP TC AB 
Entire data set 
0.4 47.29 7.18 6.71 1.48 82.83 5.2 4.62 10.76 1.78 6.12 3.94 
Large mainstream supermarket chains 
2.23 68.2 7.75 2.49 0.5 83.94 0.49 6.11 2 0.82 1.37 0.3 
Discount supermarket chains 
0.42 87.45 51.06 83.89 1.42 86.42 1.32 5.2 1.58 1.02 0.64 2.86 
Small local supermarket chains 
0.7 6.75 6.46 4.02 2.98 3.39 0.27 0.05 0.23 1.63 0.88 2.58 
*FF: Frozen foods, PF: Packaged foods, LP: Laundry products (e.g., detergents), HCP: Household cleaning products, PHP: 
Personal hygiene products, DPP: Disposable paper products, NAB: Non-alcoholic beverages (e.g., soft drinks, juices, bottled 
water), DP: Dairy products, BP: Bakery products, CP: Clothing products, TC: Tea and coffee, AB: Alcoholic beverages (e.g., 
wines, beers). 

 

 



31 

 

 

 

4
7
,2

9

8
2
,8

3

1
0
,7

6

9
9
,6

5
2
,7

9
2
,8

9
3
,3

9
8
,5

1
7
,2

9
4
,8

9
5
,4 8
9
,2

9
8
,2

9
3
,9

9
6
,1

3
,9

4

6
,1

2

1
,7

8

4
,6

2

5
,2

0

1
,4

8

6
,7

1

7
,1

8

0
,4

0

0

10

20

30

40

50

60

70

80

90

100

FF PF LP HCP PHP DPP NAB DP BP CP TC AB

Private Labels National Brands

 

Figure 1. Optimal Balance Between PLs and NBs 
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Figure 2. Optimal PL Service Levels across Store formats 

 


