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Summary

Understanding the data generating process behind healthcare costs remains a key empiri-
cal issue. Although much research to date has focused on the prediction of the conditional
mean cost, this can potentially miss important features of the full distribution such as tail
probabilities. We conduct a quasi-Monte Carlo experiment using English NHS inpatient
data to compare 14 approaches to modelling the distribution of healthcare costs: nine of
which are parametric, and have commonly been used to fit healthcare costs, and five others
designed specifically to construct a counterfactual distribution. Our results indicate that
no one method is clearly dominant and that there is a trade-off between bias and precision
of tail probability forecasts. We find that distributional methods demonstrate significant
potential, particularly with larger sample sizes where the variability of predictions is re-
duced. Parametric distributions such as log-normal, generalised gamma and generalised
beta of the second kind are found to estimate tail probabilities with high precision, but
with varying bias depending upon the cost threshold being considered.
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1 Introduction

Econometric models of healthcare costs have many uses: to estimate key parameters

for populating decision models in cost-effectiveness analyses (Hoch et al., 2002); to adjust

for healthcare need in resource allocation formulae in publically funded healthcare systems

(Dixon et al., 2011); to undertake risk adjustment in insurance systems (Van de Ven and

Ellis, 2000) and to assess the effect on resource use of observable lifestyle characteristics

such as smoking and obesity (Johnson et al., 2003; Cawley and Meyerhoefer, 2012; Mora

et al., 2014). The distribution of healthcare costs poses substantial challenges for econo-

metric modelling. Healthcare costs are non-negative, highly asymmetric and leptokurtic,

and often exhibit a large mass point at zero. The relationships between covariates and

costs are likely to be non-linear. Basu and Manning (2009) provide a useful discussion of

these issues. The relevance and complexity of modelling healthcare costs has led to the

development of a wide range of econometric approaches, and a description of these can be

found in Jones (2011).

Much of the focus in comparisons of regression methods for the analysis of healthcare

cost data has centered on predictions of the conditional mean of the distribution, E(y|X)

(Deb and Burgess, 2003; Veazie et al., 2003; Basu et al., 2004; Buntin and Zaslavsky, 2004;

Gilleskie and Mroz, 2004; Manning et al., 2005; Basu et al., 2006; Hill and Miller, 2010;

Jones, 2011; Jones et al., 2013, 2014). Applied researchers commonly model cost data using

generalised linear models (GLMs) (Blough et al., 1999). This framework offers a relatively

simple way to incorporate non-linearities in the relationship between the conditional mean

and observed covariates. Furthermore, GLMs allow for heteroskedasticity through a choice

of a ‘family’ which specifies the conditional variance as a function of the conditional mean.

GLMs use pseudo-maximum likelihood estimation where the researcher is required only

to specify the form of the mean and the variance. Unlike maximum likelihood estimation,

where consistency requires that the whole likelihood function is correctly specified, pseudo-

maximum likelihood is consistent so long as the mean is correctly specified with the choice

of ‘distribution’ affecting the efficiency of estimates. Whilst the GLM framework has

attractive properties for researchers concerned only with E(y|X), there are important

limitations with this method. GLMs have been found to perform badly with heavy-
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tailed data (Manning and Mullahy, 2001), and they implicitly impose restrictions on the

entire distribution. For example, whatever distribution is adopted, the skewness is directly

proportional to the coefficient of variation and the kurtosis is linearly related to the square

of the coefficient of variation (Holly, 2009). Whilst they may be well placed to estimate

E(y|X) and V ar(y|X), they cannot produce estimates of F (y|X) or P (y > k|X).

While the mean is an important feature of a distribution, which is essential when

the analysis is concerned with the expected total cost, it is generally not the only aspect

that is of interest to policymakers (Vanness and Mullahy, 2007). Analysis based solely on

the mean misses out potentially important information in other parts of the distribution

(Bitler et al., 2006). As a result, a growing literature in econometrics has developed

techniques to model the entire distribution, F (y|X), thus ‘going beyond the mean’ (Fortin

et al., 2011). In health economics there is a particular emphasis on identifying individuals

or characteristics of individuals that lead to very large costs and there is a demand for

empirical strategies to “target the high-end parameters of particular interest” including

tail probabilities, P (y > k) (Mullahy, 2009).

Alternatives to GLM have typically been motivated by their ability to better capture

conditional moments of the distribution or regression coefficients – either empirically or

theoretically. Less is known about how well these methods can consistently estimate

the full distribution and features such as tail probabilities. In this paper we conduct a

quasi-Monte Carlo experiment to compare the fit of the full distribution of healthcare

costs using competing approaches proposed in the economics literature. We therefore

consider approaches which offer greater flexibility in terms of their potential applications

by estimating F (y|X), imposing fewer restrictions on skewness and kurtosis and allowing

for a greater range of estimated effects of a covariate.

We first consider developments in the use of flexible parametric distributions for mod-

elling healthcare costs (Manning et al., 2005; Jones et al., 2014), which have been applied

to healthcare costs principally in order to overcome the challenge posed by heavy-tailed

data. Unlike the GLM framework, these models impose a functional form for the entire

distribution with estimation by maximum likelihood. As a result, an estimate of f(y|X)

is produced, which can then be used to calculate E(y|X), V ar(y|X) and P (y > k|X) as
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required.1 By using flexible distributions, the restrictions on skewness and kurtosis can

be relaxed somewhat (McDonald et al., 2013), which is likely to lead to a better fit of the

full distribution according to measures based on log-likelihood (Jones et al., 2014).

A related development is the use of finite mixture models (FMM), which allow the dis-

tribution to be estimated as a weighted sum of distribution components (Deb and Trivedi,

1997; Deb and Burgess, 2003). These are also estimated using maximum likelihood, but

are often referred to as semi-parametric, since the number of components could, in princi-

ple, be increased to approximate any distribution. In this paper we group FMM with the

fully parametric distributions given the similarities to these approaches, especially since we

use a fixed number of components. For all of these approaches, if the likelihood function is

correctly specified then the parameters of the distribution are consistently estimated and

the resulting estimates of tail probabilities are also consistent.

Other developments regarding the estimation of f(y|X) for healthcare costs are less

parametric, typically involving dividing the outcome variable into discrete intervals and

estimating parameters for each of these intervals. Gilleskie and Mroz (2004) propose using

a conditional density approximation estimator for healthcare costs to calculate E(y|X) and

other moments, with the density function approximated by a set discrete hazard rates. To

implement this, Jones et al. (2013) use an approach based on Han and Hausman (1990),

where F (y|X) is estimated by creating a categorical variable that denotes the cost interval

into which each observation falls, and running an ordered logit with this as the dependent

variable.2 This implementation is slightly different from what is proposed by Gilleskie and

Mroz (2004), but has the advantage of being conceived in order to fit F (y|X) and ties

into a related literature on semi-parametric estimators for conditional distributions (Han

and Hausman, 1990; Foresi and Peracchi, 1995; Chernozhukov et al., 2013). While the

ordered logit specification used in the Han and Hausman (1990) method allows for flexible

estimation of the thresholds in the latent scale, methods such as Foresi and Peracchi (1995)

instead estimate a series of separate logit models.

More recently, Chernozhukov et al. (2013) propose that a continuum of logits should

1Note that population moments may not be defined for all ranges of parameter estimates (Mullahy,
2009).

2We implement this method using an ordered logit for the distribution, which involves maximum like-
lihood estimation and so consistency is achieved, if correctly specified, for tail probabilities corresponding
to boundary values of the cost intervals.
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be estimated (one for each unique value of the outcome variable) to allow for an even

greater range of estimates for the effect of a covariate. In an application to Dutch health

expenditures, de Meijer et al. (2013) use the Chernozhukov et al. (2013) method to de-

compose changes in the distribution of health expenditures between two periods. The

authors find that the effect of covariates varies across the distribution of health expendi-

tures, which would have been missed if analysis had focused solely on the mean. They

also find that pharmaceutical costs are growing mainly at the top of the distribution due

to structural effects, whereas growth in hospital care costs is observed more in the mid-

dle of the distribution and can be explained by changes in the observed determinants of

expenditure.

The methods described above seek to estimate the full distribution, by modelling

F (y|X) for different values of y (interval thresholds) and imposing varying degrees of

flexibility on the covariate effects for these. An alternative is to construct F (y|X) through

the inverse of the distribution function, the quantile function qτ (X).3 We consider two

methods which estimate a range of quantiles separately as functions of the covariates to

allow for flexibility as to the estimated effects of each regressor across the full range of

the distribution. The first was proposed by Machado and Mata (2005) and Melly (2005)

and uses a series of quantile regressions to estimate the full range of quantiles across

the distribution (hereafter MM method). Quantile regressions have been used where the

outcome variable was healthcare costs for analysing the varying effects of race at different

points of the distribution (Cook and Manning, 2009). However we were unable to find

any applications of the MM method to construct a complete estimate of F (y|X) with

healthcare costs as the outcome variable, although the applications in the original papers

were to wages, which share similar distributional characteristics. Quantile functions can

alternatively be estimated using recentred-influence-function (RIF) regression (Firpo et al.,

2009), where the outcome variable is first transformed according to the recentred-influence-

function and then regression used to model the effects of covariates.4

3τ ∈ (0, 1) denotes the quantile being considered.
4The methods described in Chernozhukov et al. (2013), Machado and Mata (2005) and Melly (2005)

produce “uniformly consistent and asymptotically Gaussian estimators for functionals of the status quo
and counterfactual marginal distributions of the outcome” such as tail probabilities (Chernozhukov et al.,
2013). For our purposes the method described in Foresi and Peracchi (1995) is identical to the method in
Chernozhukov et al. (2013) when the tail probability corresponds to boundary values of the cost intervals
(apart from choice of linear probability model for the latter and logit for the former, discussed later).
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This paper provides a systematic comparison of parametric and distributional meth-

ods5 for fitting the full distribution of healthcare costs using real data in a quasi-Monte

Carlo design. As such, it is novel in two ways: firstly, it provides a methodology for com-

paring the distributional fit of models which are neither special cases nor estimated using

the same procedure, and secondly it is the first paper to compare competing econometric

approaches for modelling the distribution of healthcare costs. We find that distributional

methods demonstrate significant potential in modelling tail probabilities, particularly with

larger sample sizes where the variability of predictions is reduced. Parametric distribu-

tions such as log-normal, generalised gamma and generalised beta of the second kind are

found to estimate tail probabilities with high precision, but with varying bias depending

upon the cost threshold being considered.

The study design is described in the next section, followed by a detailed description

of the methods compared. We then discuss the results, and place these in the context

of related research, and remark upon some of the limitations of our study and possible

extensions for future work.

2 Methodology and Data

2.1 Overview

Rather than comparing competing approaches for estimating E(y|X), which is the

focus of most empirical work in this area (Mullahy, 2009), we assess performance in terms

of tail probabilities, P (y > k), for varying levels of k to assess the fit of the entire dis-

tribution, F (y|X). We compare a number of different regression methods, each with a

different number of estimated parameters. Since more complex methods may capture id-

iosyncratic characteristics of the data as well as the systematic relationships between the

dependent and explanatory variables, there is a concern that better fit will not necessarily

be replicated when the model is applied to new data (Bilger and Manning, 2014). To

guard against this affecting our results, we use a quasi-Monte Carlo design where models

are fitted to a sample drawn from an ‘estimation’ set and performance is evaluated on a

5This term was used in Fortin et al. (2011).
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‘validation’ set. This means that methods are assessed when being applied to new data.6

Each method is used to produce an estimate of the whole distribution F (y|X), which can

then be used to produce a counterfactual distribution given the covariates in the ‘valida-

tion’ set. The counterfactual distribution could be constructed for certain X values, such

as patients aged over 65 years old, or female patients only. In this paper we construct the

counterfactual distribution for all X values, which forms the basis of the main results. In

addition, we investigate the performance of all approaches for different subsets of possible

X values. This provides information on the data properties that are required for good

predictive performance, since the empirical distribution of y varies widely across these

subsets (see Figure 3). We evaluate performance based on forecasting tail probabilities,

P (y > k).7

2.2 Data

Our data comes from the English administrative dataset, Hospital Episode Statistics

(HES)8, for the financial year 2007-2008. We have excluded spells which were primarily

mental or maternity healthcare and all spells taking place within private sector hospitals.9

The remaining spells constitute the population of all inpatient episodes in English NHS

hospitals, including outpatient visits and A&E attendances resulting in inpatient care, that

were completed within 2007-2008 (where treatment was not primarily mental or maternity

healthcare). Spells are costed using tariffs from 2008-200910 by applying the relevant tariff

to the most expensive episode within the spell (where a spell can be thought of as a discrete

admission).11 Our analysis is undertaken at the patient level and so we sum the costs in all

spells for each patient to create the dependent variable, giving us 6,164,114 observations

6There are substantial precedents for using split-sample methods to evaluate different regression meth-
ods for healthcare costs, for example Duan et al. (1983); Manning et al. (1987).

7The values of k are not used in estimating the distribution F (y|X).
8HES is maintained by the NHS Information Centre, now known as the Health and Social Care Infor-

mation Centre.
9This dataset was compiled as part of a wider project considering the allocation of NHS resources

for secondary care services. Since a lot of mental healthcare is undertaken in the community and with
specialist providers, and hence not recorded in HES, the data is incomplete. In addition, healthcare budgets
for this type of care are constructed using separate formulae. Maternity services are excluded since they
are unlikely to be heavily determined by ‘needs’ (morbidity) characteristics, and accordingly for the setting
of healthcare budgets are determined using alternative mechanisms.

10Reference costs for 2005-2006, which were the basis for the tariffs from 2008-2009, were used when
2008-2009 tariffs were unavailable.

11This follows standard practice for costing NHS activity.
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Figure 1: Empirical density and cumulative distribution of healthcare costs

in total. The empirical density and cumulative distribution of the outcome variable can

be seen in Figure 1 and descriptive statistics are found in Table 1.12

N 6, 164, 114
Mean £2, 610
Median £1, 126
Standard deviation £5, 088
Skewness 13.03
Kurtosis 363.18
Minimum £217
Maximum £604, 701

% observations % of total costs

> £500 82.96% 97.20%
> £1, 000 55.89% 89.80%
> £2, 500 27.02% 72.35%
> £5, 000 13.83% 54.65%
> £7, 500 6.92% 38.67%
> £10, 000 4.09% 29.35%

Table 1: Descriptive statistics for hospital costs

In order to tie in with existing literature on comparisons of econometric methods for

healthcare costs, we use a set of morbidity characteristics which we keep constant for

each regression method. In addition, we control for age and sex using an interacted,

cubic specification, which leaves us with a set of regressors similar to a simplified resource

12Costs above £10, 000 are excluded in these plots to make illustration clearer.
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Figure 2: Empirical distribution of log-costs for each of the 5 quintiles of the linear index
of covariates

allocation formula where health expenditures are modelled as a function of need (proxied

using detailed socio-demographic and morbidity information) (Dixon et al., 2011). In total

we use 24 morbidity markers, adapted from the ICD10 chapters (WHO, 2007), which are

coded as one if one or more spells occur with any diagnosis within the relevant subset of

ICD10 chapters (during the financial year 2007-2008) and zero otherwise.

To give some illustration of the features of the data conditional upon these covariates

we construct an index using these regressors and divide the data from the ‘estimation’

set into five quantiles (quintiles) according to the value of the index.13 For each quintile

we display the empirical distribution of log-costs14 in Figure 2, and in particular pick out

those that exceed ln(£10, 000). It is clear from Figure 2 that the conditional distributions

of log-costs (and thus costs) vary dramatically by quintile of covariates in terms of their

shape, range and number of high cost patients, with 17% of observations with annual costs

greater than £10, 000 in the most morbid patients, compared to a population average of

4.09% (and 0.14% in the least morbid quintile). An analysis looking only at the mean of

each quintile would overlook these features of the data.

13This is constructed by regressing cost against the regressors using OLS and taking the predicted cost.
14A log-transformation is used to make the whole distribution easier to illustrate and P (y > k) =

P (ln(y) > ln(k)) since it is a monotonic transformation.
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We also carry out a similar analysis, this time using untransformed costs and dividing

the ‘estimation’ set into 10 quantiles (deciles) of the linear index of covariates, where we

plot the kurtosis of each decile against its skewness. Parametric distributions impose re-

strictions upon possible skewness and kurtosis: one-parameter distributions are restricted

to a single point (e.g. the normal distribution imposes a skewness of 0 and a kurtosis of 3),

two-parameter distributions allow for a locus of points to be estimated, and distributions

with three or more parameters allow for spaces of possible skewness and kurtosis combi-

nations. Figure 315 shows that the data is non-normal and provides motivation for flexible

methods, since they appear better able to model the higher moments of the conditional

distributions of the outcome variable analysed here.16 We do not represent the other ap-

proaches used in this paper in this Figure, since the skewness and kurtosis space is not

defined for these approaches. This is because they discretise the distribution or estimate

several models, or both, and the effects on implied skewness and kurtosis is unclear.

2.3 Quasi-Monte Carlo design

In order to fully exploit the large dataset at our disposal, before we undertake analysis

we randomly divide the 6,164,114 observations into two equally sized groups: an ‘estima-

tion’ set and a ‘validation’ set (each with 3,082,057 observations). Because researchers

using observational data from social surveys typically have fewer observations in their

datasets than are present in our ‘estimation’ set, we draw samples from within the ‘es-

timation’ set. On these samples we estimate the regressions that will later be evaluated

using the ‘validation’ set data. In total we randomly draw 300 samples with replacement:

100 samples of each size Ns (Ns ∈ 5,000; 10,000; 50,000), where samples with Ns =

5,000 or 10,000 may be thought of as having a similar number of observations as small

to moderately sized datasets (Basu and Manning, 2009). We estimate 14 methods using

the outcome and regressor data from each sample, where each method can be used to

construct a counterfactual distribution of costs F (y|X) (more details on each method are

15Key for abbreviations: GB2 – generalised beta of the second kind, SM – Singh-Maddala, B2 – beta of
the second kind, GG – generalised gamma, LN – log-normal, WEI – Weibull, and a subscript of U or L
stands for upper and lower bounds of the permissible space, respectively.

16A similar analysis can be found in Pentsak (2007). Note also that the lower bound of the Pearson
Type IV distribution, used in Holly and Pentsak (2006), is equal to the upper bound for the beta of the
second kind distribution (also known as Pearson Type VI).
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11



found in the Empirical Models section).

Then using all 3,082,057 observations in the ‘validation’ set, we use the covariates from

the data (but not the outcome variable) to construct F (y|X) for each method. Depending

upon which method is being considered, we can either directly obtain P (y > k|X), which

we then integrate out over values of X to produce an estimate of P (y > k), or we can

use F (y|X), which we integrate out over values of X, to give F (y), to then estimate

P (y > k). Once the estimate of P (y > k) is produced for the ‘validation’ set using either

method, it can be compared to the observed empirical proportion of costs in the data that

exceeds the threshold k.17 In this paper we choose round values for k throughout the

distribution of the outcome variable (numbers in brackets correspond to % of population

mean): k ∈ £500 (19%); £1,000 (38%); £2,500 (96%); £5,000 (192%); £7,500 (287%);

£10,000 (383%).18 Results displayed look at performance across each replication for given

method with a given sample size. We construct a ratio of predicted P (y > k) to observed

P (y > k) and look at the average of these across all replications. In addition, we analyse

the variability of these ratios, for each method and a given sample size, using the average

absolute deviation from the average computed ratio, as well as their standard deviation

and their range. Finally we analyse the performance of forecasted P (y > k) for subsets

of the data based on X values. This is done by constructing a linear index of covariates

– where the weightings for each covariate is obtained from a linear regression of y against

X in the full ‘estimation’ set – and dividing the ‘validation’ set into deciles based on the

index.

3 Empirical models

3.1 Overview

We compare, in total, the performance of 14 different estimators, which we divide into

two groups: parametric methods and distributional methods. In addition, we compare

results to a näıve estimate based purely on the sample, where the researcher is assumed

17It is worth noting that the practice of comparing observed versus empirical probabilities forms the
basis of the Andrews (1988) chi-square test, although this is designed for use with parametric methods
only, and as such is not implemented in this paper, where we are interested in the performance of both
parametric and semi-parametric approaches.

18Table 1 gives the proportion of observations in the population that exceed these thresholds.
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to forecast the same tail probability for the ‘validation’ set as observed in the ‘estima-

tion’ sample (without considering the observed covariates in either dataset). First we

describe each of the parametric distributions and provide its conditional probability den-

sity function – f(y|X) – the equation to calculate P (y > k|X), as well as the procedure

for integrating over X in order to produce an estimate of P (y > k). For the remaining

five methods, the procedure is more varied and complex, so we provide a detailed account

of the steps required to produce estimates of P (y > k) for all of these distributions. Table

2 provides a key for the abbreviations used for each method throughout the remainder of

the paper.

GB2 LOG generalised beta of the second kind (log link)
GB2 SQRT generalised beta of the second kind (

√
-link)

GG generalised gamma (log link)
GAMMA two-parameter gamma (log link)
LOGNORM log-normal (log link)
WEIB Weibull (log link)
EXP exponential (log link)
FMM LOG two-component finite mixture of gamma densities (log link)
FMM SQRT two-component finite mixture of gamma densities (

√
-link)

HH Han and Hausman
FP Foresi and Peracchi
CH Chernozhukov, Fernández-Val and Melly (linear probability model)
MM Machado and Mata – Melly (log-transformed outcome)
RIF recentered-influence-function regression (linear probability model)

Table 2: Key for method labels

3.2 Parametric methods

All nine of the parametric approaches that we consider, including two variants of finite

mixture models19, are estimated by specifying the full conditional distribution of health-

care costs using between one and five parameters. While it is possible in principle to allow

shape parameters to vary with covariates, preliminary work showed that this produced

unreliable and uninterpretable results, so in all cases we only specify location parameters

as functions of covariates. This means that all models have only one parameter depending

upon covariates, except FMM LOG and FMM SQRT which have scale parameters in each

component that are allowed to vary with covariates. All other parameters are estimated as

scalars. In Table 3 we give the conditional probability density function and the conditional

19These are elsewhere considered to be semi-parametric, since the number of components can vary, but
we fix the number of components as two, meaning that they are essentially parametric.
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survival function for each model we compare.20

20Note that certain distributions’ notation could be simplified, the parameterisation is chosen to max-
imise the reader’s ability to see how distributions are related to one another.
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Model f(y|X) = P(y > k|X) =
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EXP
1

exp (Xβ) exp
(

−y
exp (Xβ)

)

exp
(

− k
exp (Xβ)

)

FMM LOG
∑2

j πj
yαj

yΓ(αj) exp (Xβj)
αj exp

(

−
(

y
exp (Xβj)

))

∑2
j πj (1− Γ (z;αj))*** where z = k

exp (Xβj)

FMM SQRT
∑2

j πj
yαj

yΓ(αj)(Xβj)
2αj

exp

(

−

(

y

(Xβj)
2

))

∑2
j πj (1− Γ (z;αj))*** where z = k

(Xβj)
2

*where IZ (p, q) = 1
B(p,q)

∫ z
0

tp−1

(1+t)p+q dt is the incomplete beta function ratio.

**where Γ
(

z;κ−2
)

= 1
Γ(κ−2)

∫ z
0 t(κ

−2−1) exp (−t)dt.

***where Γ (z;αj) =
1

Γ(αj)

∫ z
0 t(αj−1) exp (−t)dt.

Table 3: Forms of density functions and survival functions for parametric distributions
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The generalised beta of the second kind21 is a four-parameter distribution that was

applied to modelling healthcare costs by Jones (2011) specifying the location parame-

ter as a linear function of covariates using software developed by Jenkins (2009). Jones

et al. (2014) estimated the distribution with a log link (GB2 LOG) making it more com-

parable with commonly used approaches. With this specification, for example, GG (as

proposed by Manning et al., 2005) becomes a limiting case of GB2 LOG. Jones et al.

(2013) also compared GB2 SQRT as well as GB2 LOG against a broad range of models,

finding that the GB2 SQRT performed particularly well in terms of accurately predicting

mean individual healthcare costs. GG has been compared more extensively in terms of

predicting mean healthcare costs, having been found to out-perform a GLM log link with

gamma-distribution in the presence of heavy tails using simulated data (Manning et al.,

2005), and a number of models within the GLM framework when a log link is appropriate

using American survey data; the Medical Expenditures Panel Survey (Hill and Miller,

2010). GB2 LOG, GG and LOGNORM are compared in Jones et al. (2014), with some

indication that GB2 LOG better fits the entire distribution with lower AIC and BIC, al-

though LOGNORM better predicts tail probabilities associated with the majority of high

costs considered. We also consider further special cases of GG (and GB2 LOG) with two

parameters (GAMMA and WEIB) and with one parameter (EXP).22

Finite mixture models have been used in health economics in order to allow for het-

erogeneity both in response to observed covariates and in terms of unobserved latent

classes (Deb and Trivedi, 1997). Heterogeneity is modelled through a number of com-

ponents, denoted C, each of which can take a different specification of covariates (and

shape parameters, where specified), written as fj(y|X), with an associated parameter for

the probability of belonging to each component, πj . The general form of the probability

density function of finite mixture models is given as:

f(y|X) =
C
∑

j

πjfj(y|X) (1)

21Also known as generalised-F, see Cox (2008).
22The parametric distributions chosen are the set of distributions that are typically used in health

economics. There are many other candidate distributions, for example Walls (2005) uses the skew-normal
distribution to model film returns (which should exhibit empirically similar distributions).
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We use two gamma-distributed components in our comparison.23 In one of the models

used, we allow for log links in both components (FMM LOG), and in the other we allow

for a square root link in both components (FMM SQRT). In both, the probability of

class membership is treated as constant for all individuals. Unlike the other parametric

methods, this approach can allow for a multi-modal distribution of costs. In this way, finite

mixture models represent a flexible extension of parametric models (Deb and Burgess,

2003). Using increasing numbers of components, it is theoretically possible to fit any

distribution, although in practice researchers tend to use few components (two or three)

and achieve good approximation to the distribution of interest (Heckman, 2001).

Once we have obtained estimates of location parameters (all βs for each regressor)

and shape parameters for each distribution, these are stored in memory and then used

to generate estimates of P (y > k|X), where values for X are the observed covariates in

the ‘validation’ set. These estimated conditional tail probabilities will vary across each

possible combination of X, and hence for any given individual i, and so we take the average

in order to ‘integrate out’ these to provide us with a single estimate of P (y > k) for each

method and replication, which can be compared to the proportion of costs empirically

observed to exceed k. In addition, it is possible to average over observations with certain

X values to provide results for the supplementary analysis by deciles of a linear index.

We then take the average across all replications of P (y > k) for each method in order to

assess bias and analyse the variability across replications as an indicator of precision.

3.3 Distributional methods

3.4 Methods using the cumulative distribution function

Of the remaining five methods that we compare, three involve estimation of the con-

ditional distribution function and two operate through the quantile function. First we

consider the methods which estimate the conditional distribution function F (y|X). Han

and Hausman (1990) adopts a proportional hazards specification, where the baseline haz-

ard is allowed to vary non-parametrically across a number, denoted DHH , of intervals

23Preliminary work showed that models with a greater number of components lead to problems with
convergence in estimation. Empirical studies such as Deb and Trivedi (1997) provide support for the two
components specification for healthcare use.
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of a discretised continuous outcome variable. The logarithm of the integrated baseline

hazard for each of the DHH − 1 intervals (one is arbitrarily omitted for estimation) is

estimated as a constant δDHH
. The effects of covariates are estimated using a particular

functional form, which is typically linear. This approach is similar to the semi-parametric

Cox proportional hazard model (Cox, 1972), but differs in that the baseline hazard is not

regarded as a nuisance parameter and is better suited to data with many ties of the out-

come variable (or in the case of a discrete outcome). In order to implement this method,

we construct a categorical variable for each observation, indicating the interval into which

the value of the outcome variable falls. This is then used as the dependent variable in

an ordered logit regression on the covariates. The cut-points are estimates of the baseline

hazard within each interval δDHH
. The authors argue that given a large sample size, finer

intervals should improve the efficiency of the estimator, without providing guidance on a

specific number of intervals to be used. As a result we carried out preliminary work to

establish the largest number of intervals that could be used for each sample size whilst

maintaining good convergence performance,24 which resulted in a maximum of 33 intervals

for sample sizes 5,000 and 10,000, and 36 intervals for a sample size of 50,000.

Foresi and Peracchi’s (1995) method is similar to Han and Hausman’s (1990) in that

it divides the data into a set of discrete intervals. Rather than using an ordered logit

specification, Foresi and Peracchi (1995) estimate a series of logit regressions. For each

upper boundary of the DFP − 1 intervals (the highest value interval is excluded), an

indicator variable is created which is equal to one if the observation’s observed cost is

less than or equal to the upper boundary, and zero otherwise. These are then used as

dependent variables in DFP − 1 logit regressions each using the full set of regressors. In

their application to excess returns in their paper they use zero, as well as the 10th, 15th,

20th, ... , 80th, 85th and 90th percentiles as boundaries. While we do not have information

on patients with zero costs in our dataset, we base our intervals on their specification of

the dependent variables by using the 5th, 10th, 15th, ... , 85th, 90th and 95th percentiles

(vigiciles).

The third approach that we compare is an extension of Foresi and Peracchi (1995) and

is described in Chernozhukov et al. (2013). The crucial difference between the methods

24This was taken to mean that the model converges at least 95 times out of the 100 samples.
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is that Chernozhukov et al. (2013) argue that a logit regression should be used for each

unique value of the outcome variable. A continuum of indicator variables needs to be

generated and then regression models are used to construct the conditional distribution

functions for each value. Given the computational demand of this approach, and lack

of variation in the indicator variables at low and high costs, de Meijer et al. (2013) use

linear probability models in place of logit regressions. We also adopt this approach in our

comparison, since preliminary work showed that, where it was possible to estimate both

logit and linear probability models, there was little difference between the methods.

All of these methods are similar in that they can produce estimates of P (y > k∗|X),

where k∗ represents one of the boundaries of the intervals generated using either Han and

Hausman (1990) or Foresi and Peracchi (1995), or any cost value observed in the sample

when implementing Chernozhukov et al. (2013). Since models are estimated without

knowing what thresholds (k) the policymaker might be interested in, it is not always the

case that k∗ = k. Therefore, for all three methods described above, we use a weighted

average of P (y > k∗|X) for the nearest two values of k∗ to k when k∗ 6= k. Our weight is

based on a simple linear interpolation:

P (y > k|X) = P (y > k∗a|X) +

(

k − k∗a
k∗
b
− k∗a

)

(

P (y > k∗b |X)− P (y > k∗a|X)
)

(2)

where k∗a and k∗b represent the thresholds analysed in estimation closest below and closest

above k, respectively.25

Since we end up with an estimate for each observation of P (y > k|X), we carry out the

same procedure as with the parametric distributions. This means that we take the average

of P (y > k|X), thus ‘integrating out’ over X and giving us an estimate of P (y > k) to be

compared against the empirical proportion.

25This should work well when there are a large number of k∗ spaced throughout the distribution. When
interested in high values of k this linear interpolation may be more inappropriate if there are few high values
of k∗, given the often large distances between a high cost and the next highest observed cost, which will
lead to bias if the linear interpolation is invalid. This could potentially be overcome by using additional
empirical information to inform the ‘within-cell’ distributions of outcomes. Alternatively, values for k∗

can be chosen by using a model-fitting algorithm that maximises goodness-of-fit, as in Gilleskie and Mroz
(2004). Both of these are considered beyond the scope of this paper and sensitivity of results to the linear
interpolation assumption can be observed by comparing results from CH and FP approaches, since CH
uses as many values for k∗ as possible given the sample.
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3.5 Methods using the quantile function

Machado and Mata (2005) propose a method for constructing a counterfactual distri-

bution based on a series of quantile regressions using the logged outcome variable. They

suggest that a quantile (τ) is chosen at random by drawing from a uniform probability

distribution between zero and one. After running the quantile regression for the drawn

value, the set of estimated coefficients is used to predict the quantile given the covariate

values observed for a randomly selected observation. The authors repeat this process 4500

times with replacement, generating a full counterfactual distribution. The theoretical mo-

tivation for this procedure is that each predicted quantile based on qτ (X) represents a

draw from the conditional distribution of healthcare costs (f(y|X)). Therefore drawing a

random observation and forecasting qτ enough times with random τ effectively integrates

out X. Running such a large number of quantile regressions is computationally expensive,

and so Melly (2005) suggest running a regression for a fixed number of quantiles spread

over the full range of the distribution, e.g. for each percentile, rather than drawing a quan-

tile at random. We use the Melly (2005) approach for the MM method, running quantile

regressions for each percentile on the ‘estimation’ set, after log-transforming the outcome

variable, and randomly choosing one of these quantiles to forecast for each observation

in the ‘validation’ set.26 For the analysis by deciles of the linear index of covariates a

random quantile is estimated for each of the observations in the decile of interest only.

Once this has been done, the forecasted values represent the counterfactual distribution

of healthcare costs belonging to the ‘validation’ set. Therefore to produce an estimate of

P (y > k) we observe the proportion of the observations in the counterfactual distribution

that exceed k.

Another method to estimate quantiles of the distribution is developed by Firpo et al.

(2009), which employs recentred-influence-function regressions. For a given observed quan-

tile (qτ ), a recentred-influence-function (RIF) is generated, which can take one of two val-

ues depending upon whether or not the observation’s value of the outcome variable is less

than or equal to the observed quantile:

26The prediction is exponentiated to achieve the quantile of the distribution of the levels of healthcare
costs.

20



RIF (y; qτ ) = qτ +
τ − 1 [y ≤ qτ ]

fy (qτ )
(3)

Here, qτ is the observed sample (τ) quantile, 1 [y ≤ qτ ] is an indicator variable which

takes the value one if the observation’s value of the outcome variable is less than or equal

to the observed quantile and zero otherwise, and fy (qτ ) is the estimated kernel density

of the distribution of the outcome variable at the value of the observed quantile. The

recentred-influence-function is then used as the dependent variable in an OLS regression

on the chosen covariates, which effectively constitutes a rescaled linear probability model.27

These estimated coefficients can then be used to predict the quantile being analysed for

a given observation’s covariates. Following the same thought process as MM, predictions

based on qτ (X) represent a draw from f(y|X). This means that we can use the estimated

quantile functions to predict a counterfactual distribution in the same way for the RIF

method as we do for the MM method.28

4 Results

When analysing the performance of the methods, we calculate a ratio of the estimated

P (y > k) to the actual proportion of costs in the ‘validation’ set observed to exceed

the threshold value k (see Table 4). Using a ratio allows for greater comparability when

looking at performance at different thresholds. We will look at the average ratio across

replications (with methods estimated on different samples drawn from the ‘estimation’

set29) as well as the variability of the ratios. The former indicates the bias associated

with each method at a given k, while the latter indicates precision of the method. First

we will look at results across methods for a given sample size and threshold cost value:

Ns = 5, 000 and k = £10, 000.30 Second we consider performance for a given sample size,

with a range of values for the threshold cost value, since different methods may be better

27Firpo et al. (2009) also describe a RIF approach using a logit regression. In forecasting the quantile
the researcher is required to know the observation’s outcome value, which therefore rules out this approach
as a candidate for our comparison.

28We calculate the recentred-influence-function using the level of costs and so no re-transformation is
required unlike when using MM.

29Three samples were discarded when Ns = 5, 000, due to being unable to form the categorical variable
for HH. Only one sample was discarded when Ns = 10, 000 and Ns = 50, 000.

30We choose these values of Ns and k since they are the smallest and most challenging sample size and
the largest and most economically interesting threshold value, respectively.
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at fitting different parts of the distribution of healthcare costs: Ns = 5, 000 and (k ∈ £500;

£1,000; £2,500; £5,000; £7,500; £10,000). Then performance at different sample sizes is

evaluated at a given threshold cost value: (Ns ∈ 5,000; 10,000; 50,000) and k = £10, 000.

And finally we evaluate performance for different deciles of a linear index of covariates,

again with Ns = 5, 000 and k = £10, 000.

k % observations in ‘validation’ set > k

£500 82.93%
£1, 000 55.89%
£2, 500 27.04%
£5, 000 13.84%
£7, 500 6.94%
£10, 000 4.10%

Table 4: Actual empirical proportion of observations greater than k in the ‘validation’ set

In Figure 4 we present the performance of the 14 methods in predicting the proba-

bility of a cost exceeding £10,000 in the validation set, when samples with Ns = 5, 000

observations are used. The points indicate the ratio of estimated to actual probability,

and the capped spikes indicate the range of ratios across all of the replications. A ratio of

one represents a perfect fit, i.e. the method correctly predicted that 4.10% of observations

would exceed £10,000.

From Figure 4, it is clear that performance of the methods varies both in terms of bias

(the point – the average ratio) and precision (the variability of ratios as depicted by the

capped spikes showing the range). There is no clear pattern in terms of parametric versus

distributional methods, since in both groups there are methods where the average ratio

is seen to be near the desired value of one, as well as methods in both groups where the

range of computed ratios does not contain one. In terms of bias, the best method is CH

with an average ratio of almost exactly one. It appears that this is not the most precise

method for k = £10, 000, however, with a range of ratios: 0.82 − 1.14, that is the fifth

largest of all methods compared (the largest belongs to FMM SQRT). To more clearly

represent the tradeoff between bias and precision, see Table 5, which gives the rankings of

each method in terms of bias (absolute value of one minus the average ratio), the range of

ratios and also the standard deviation of ratios.
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Figure 4: Performance of methods predicting the probability of a cost exceeding £10,000
at sample size 5,000

From Table 5 it can be seen that three of the parametric distributions – GB2 SQRT,

GG and LOGNORM – demonstrate significant potential in terms of the variability of

their predictions as the three methods with the lowest standard deviations of ratios. MM

performs consistently well across all three measures of performance, especially when vari-

ability is measured by the range of ratios, although the standard deviation is still among

the five lowest of methods compared. From these results it is unclear which method is the

best for forecasting costs greater than £10,000, since there is no outright winner over the

three metrics. Some methods actually perform worse than the näıve sample-based method

across all three metrics, namely FMM LOG and FMM SQRT (with WEIB and GAMMA

worse on two of three metrics).

Whilst the results outlined previously give some indication of the methods’ respective

abilities to forecast high costs, we are interested in the performance of the regression

methods at all points in the distribution. For this reason we carry out a similar analysis

across a range of cost threshold values. To present these results, once again we plot the

average ratio and the range of ratios across the replications. The results presented in

Figure 5 are undertaken using samples with 5,000 observations.
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Method Bias Range Standard deviation

GB2 LOG 6th 6th 6th
GB2 SQRT 13th 5th 3rd

GG 10th 4th 2nd
GAMMA 5th 12th 11th
LOGNORM 12th 1st 1st
WEIB 8th 13th 12th
EXP 11th 9th 8th

FMM LOG 4th 14th 15th
FMM SQRT 9th 15th 14th

HH 7th 7th 9th
FP 14th 3rd 4th
CH 2nd 10th 10th

MM 3rd 2nd 5th
RIF 15th 8th 7th

NAÏVE 1st 11th 13th

Table 5: Rankings of methods based on threshold of £10,000 at sample size 5,000
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Figure 5: Performance of methods predicting the probability of costs exceeding various thresholds at sample size 5,000



There is a clear pattern in Figure 5: the higher the cost threshold being considered,

the greater the variability in ratio of estimated to actual probability. Besides this, the way

in which performance varies across different thresholds, including by how much variability

increases with higher thresholds, is different for all methods.

Beginning with the parametric distributions, with log links, there seems to be little

difference in the performance of GB2 LOG and GG, except for that GB2 LOG performs

slightly better at the higher costs considered in terms of bias. Looking at the gamma-type

models, LOGNORM demonstrates potential in terms of producing precise estimates of tail

probabilities if not in terms of bias. Since FMM LOG represents a two-component version

of GAMMA, comparing the performance of these methods provides some insight into the

returns from using more complex mixture specifications. The pattern of performance at

different thresholds is quite similar for these, and the main difference seems to be that

FMM LOG produces more variable estimates, especially at low cost thresholds. WEIB

and EXP seem to perform similarly, with high variability forecasts. It is interesting to

note that the square-root link methods differ from their log link counterparts, particularly

in terms of having worse high cost forecasts.

There is considerable variation in performance between the distributional methods.

The methods that use the cumulative distribution function seem to vary predominantly

according to the number of intervals that are used, rather than the specification for pre-

dicting interval membership. CH is practically unbiased for all cost thresholds, illustrating

the strength of this method in forecasting P (y > k) for a range of values of k. As pointed

out earlier, however, the variability of the forecasts across replications is wider than the

majority of other methods considered in this paper. It seems therefore that much of the

bias in HH and FP stems from when k∗a and k∗b are not close to the value of k being

investigated. This is more likely to be the case with FP than with HH, since FP has fewer

intervals (and is highly unlikely using CH – in our application, especially using linear

probit models instead of logit regressions). This is particularly clear with k = £10, 000,

since with HH and FP in this case k∗b will often be the highest observed cost in the sample.

When this occurs, the linear interpolation that we employ is likely to lead to an overesti-

mation of the forecasted probability (see equation 2 for details). For these three methods

the variability of ratios is roughly similar, but when looking also at the methods using
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Figure 6: Performance of methods predicting the probability of a cost exceeding £10,000
at different sample sizes

the quantile function, it is clear that MM offers an improvement upon the variability. Its

performance, however, in terms of bias varies across values of k. RIF seems to perform

badly both in terms of bias and precision.

To analyse the effect of sample size on result, we vary the number of observations that

are present in the drawn samples used for estimation. To do this, we return to the style

of graph used for Figure 4, but illustrate performances for the three sample sizes analysed

(Ns ∈ 5,000; 10,000; 50,000). The results are therefore only for one value of k, but results

at other values followed a similar pattern.

From Figure 6 we can see that there is a clear effect of sample size on the performance of

the regression methods fitting the whole distribution. Having more observations does not

particularly affect the bias of each method, but, as expected, it reduces the variability of

the estimates. This therefore means that methods such as CH perform relatively better at
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bigger sample sizes since they remain unbiased, but forecast costs with increased precision.

Finally, analysis is conducted by decile of a linear index covariates (where the weight-

ings for each covariate are determined in a single linear regression on the full ‘estimation’

set). There is considerable variation within each of the deciles of this index, as shown

in Figure 231, though the data properties and the proportion of observations with costs

greater than £10, 000 of each decile are different (0.1% observations in the ‘validation’ set

exceed £10, 000 for the lowest decile of the index of covariates, whereas the corresponding

figure for the highest decile is 27.1%).

31This Figure was constructed using quintiles for clarity, but illustrates the same principle.
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Decile number

Method 1 2 3 4 5 6 7 8 9 10

Observed 0.1% 0.2% 0.3% 0.3% 0.5% 1.0% 1.8% 3.0% 6.8% 27.1%

GB2 LOG 0.5% 0.5% 0.6% 0.8% 1.0% 1.3% 1.7% 2.7% 5.4% 24.5%
GB2 SQRT 0.3% 0.4% 0.5% 0.7% 1.0% 1.3% 1.9% 3.1% 5.8% 18.1%
GG 0.3% 0.4% 0.5% 0.6% 0.8% 1.1% 1.5% 2.5% 5.1% 23.7%
GAMMA 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 1.6% 6.4% 33.4%
LOGNORM 0.0% 0.1% 0.1% 0.2% 0.3% 0.4% 0.8% 1.7% 4.9% 27.1%
WEIB 0.0% 0.0% 0.0% 0.0% 0.1% 0.3% 0.7% 2.3% 7.9% 33.6%
EXP 0.0% 0.0% 0.0% 0.1% 0.2% 0.6% 1.3% 3.2% 8.8% 31.9%
FMM LOG 0.0% 0.0% 0.1% 0.2% 0.3% 0.8% 1.5% 3.1% 6.9% 27.4%
FMM SQRT 0.0% 0.0% 0.2% 0.3% 0.4% 1.1% 2.0% 3.9% 7.7% 21.1%
HH 0.4% 0.5% 0.6% 0.8% 1.0% 1.3% 1.8% 3.0% 6.4% 28.5%
FP 0.3% 0.5% 0.6% 0.7% 1.1% 1.4% 2.4% 3.8% 7.7% 31.1%
CH −3.3% −2.5% −2.1% −1.0% 0.9% 2.1% 4.3% 6.9% 11.3% 24.3%
MM 0.0% 0.0% 0.0% 0.1% 0.2% 0.5% 1.1% 2.6% 6.7% 30.2%
RIF 0.2% 0.3% 0.4% 0.6% 1.2% 1.8% 3.5% 6.6% 13.1% 22.6%

Table 6: Forecasted probabilities of a cost exceeding £10,000, sample size 5,000, by decile of linear index of covariates
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From Table 6, where the worst (best) performing method for each decile is highlighted

in red (green), it is clear that the linear probability model specification of CH is influ-

ences the forecasted tail probabilities at lower deciles of the index of covariates. CH

performs the worst in seven of the deciles despite being the best performing regression

method when analysing over all values of X, and produces negative tail probabilities in

four of the deciles. The performance of other distributional methods was mixed over the

deciles. FMM LOG and FMM SQRT consistently rank highly across all deciles. Generally

speaking the models all seem to do well in picking up the variations in the observed tail

probabilities based on the observed covariates. This provides strong support for a regres-

sion model approach (over a näıve approach where observable covariates are not used) to

forecasting tail probabilities when the researcher is interested in forecasting not only for

the whole population, but for non-random sub-groups also. While the relative rankings

of methods varied considerably between the decile-based analysis compared to the overall

results in terms of bias, the rankings were more or less preserved when considering the

variability of predictions (or precision).

5 Discussion

The results of this paper are the first to provide a comparative assessment of paramet-

ric and distributional methods designed to estimate a counterfactual distribution. This

makes them different to most studies concerning econometric modelling of healthcare costs

where performance has largely been judged on the basis of the ability to predict condi-

tional means. Jones et al. (2014) compare parametric distributions (but not distributional

methods) against one another for predicting tail probabilities as well as in-sample fit of the

whole distribution based on log-likelihood statistics. The analysis presented here builds

on this work with a range of thresholds for tail probabilities as well as a broader range

of parametric distributions including mixture distributions and models with a square-root

link as well as those with a log link.

The results of this paper have external validity, beyond applications to English in-

patient data, since the empirical distribution of healthcare costs displays the common

characteristics associated with this type of variable (for example, it is heavily right-hand
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skewed and leptokurtic). However, caution should be taken when extrapolating these re-

sults beyond this data and the regression specification adopted, as previous research has

shown that different methods may perform better in certain healthcare cost contexts over

others (Hill and Miller, 2010). In particular, it should be noted that the healthcare costs

variable in this data has a large number of mass points, owing to the data generating pro-

cess. This may indicate a greater suitability for analysis using the distributional methods

– CH, FP and HH (Chernozhukov et al., 2013). Healthcare costs obtained from other

types of healthcare systems, such as the US insurance-style system – e.g. Medical Expen-

diture Panel Survey (MEPS), may be more continuous and therefore may have a different

ranking of preferred methods. Further research into these open empirical questions will

be valuable to advance the understanding of the performance of these approaches in other

contexts.

As mentioned in the methodology section of the paper, some of these methods have

been automated in order to make the quasi-Monte Carlo study design feasible. For in-

stance, we only allow location parameters to vary with covariates and we restrict the

number of mixtures used in FMM LOG and FMM SQRT. In practice, analysts are likely

to train their model for a given sample – testing the appropriateness of covariates in the

specification as well as the number of mixtures that are required etc. Since all methods

have been restricted to some degree, e.g. the regressors are the same for all methods, the

results of this paper give some indication of the relative performance of these methods and

illustrate their pitfalls and strengths.

For our application, CH demonstrates potential even for forecasting probabilities of

high costs – such as costs that exceed £10,000. A function of the adopted methodology

is that CH (as well as HH and FP) is unable to extrapolate beyond the observed sample

support, and so in applications where sample size is small, or if the decision-maker is

interested in the probability of extremely high costs beyond the largest observed, this

method would be unable to provide any information on this parameter. This represents a

limitation for this type of method for fitting the distribution of healthcare costs, where the

underlying data generating process is heavy-tailed, and any observed sample is unlikely

to contain some of the potential extreme outcomes. This could be overcome by applying

some smoothing techniques and moving beyond the non-smooth methodology adopted in
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this paper.

There is considerable variation in the best performing parametric distributions accord-

ing to the specific tail probability being considered. When considering costs that exceed

£10,000, FMM LOG is the least biased parametric method, but is the most imprecise of all

methods considered. For this threshold, FMM LOG performs consistently well across all

deciles of the index of covariates. At other thresholds, the distribution with the best fit on

average varies: for example WEIB performs best among parametric distributions for costs

that exceed £7,500. This means that the preferred parametric distribution would depend

upon the decision-maker’s loss function. Some distributions are particularly imprecise at

all tails investigated, notably the mixture models – FMM LOG and FMM SQRT – as well

as some of the more restrictive distributions – GAMMA, WEIB and EXP. LOGNORM is

the most precise and thus demonstrates its potential for modelling the whole distribution

of costs, and – in addition – is able to forecast the percentage of costs above £10,000 for

the highest decile of the index of covariates with the least bias of all methods considered.

Whilst other papers have focused on the importance of the link function, which seems to

have a large impact on performance when it comes to predicting mean healthcare costs

(see for example Basu et al., 2006), this paper finds that when we are concerned with

predicting tail probabilities the link function is less of an issue than are the distributional

assumptions more generally.32

The distributional methods show promise for modelling the full distribution of health-

care costs. In particular, CH is practically unbiased in terms of all forecasted tail prob-

abilities considered. The related methods of FP and HH also perform well in terms of

bias, but not when considering costs that exceed £10,000, because £10,000 is likely to fall

in the highest quantile of costs in either method. CH is better placed to model this tail

probability, since each unique value of costs that is encountered in the sample is used as

the basis for an indicator variable for a separate regression, and using a linear probabil-

ity model does not require variation across all covariates for each value of the dependent

variable. The linear probability model, however, is a source of weakness when forecasting

probabilities of high costs for subsets of observations with covariates associated with low

32The data-indicated link function, for this data, was between a log and square root link using the
extended estimating equations approach (Jones et al., 2013).
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costs on average (and can produce negative predictions). At the smallest sample size of

5,000 observations, these three methods exhibit highly imprecise forecasted probabilities,

but this becomes less of an issue at larger sample sizes where the variability is lower for all

14 methods. MM delivers better precision, but its performance on average varies across

the different tail probabilities. RIF appears to be the worst among the distributional

methods for this dataset and specification.33
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Appendix A

We use the variables shown in Table A1 to construct our regression models. They are

based on the ICD10 chapters, which are given in Table A2.

Variable name Variable description

epiA Intestinal infectious diseases, Tuberculosis, Certain zoonotic bacterial diseases, Other bacterial diseases, In-
fections with a predominantly sexual mode of transmission, Other spirochaetal diseases, Other diseases caused
by chlamydiae, Rickettsioses, Viral infections of the central nervous system, Arthropod-borne viral fevers and
viral haemorrhagic fevers

epiB Viral infections characterized by skin and mucous membrane lesions, Viral hepatitis, HIV disease, Other viral
diseases, Mycoses, Protozoal diseases, Helminthiases, Pediculosis, acaiasis and other infestations, Sequelae of
infectious and parasitic diseases, Bacterial, viral and other infectious agents, Other infectious diseases

epiC Malignant neoplasms
epiD In situ neoplasms, Benign neoplasms, Neoplasms of uncertain or unknown behaviour and III
epiE IV
epiF V
epiG VI
epiH VII and VIII
epiI IX
epiJ X
epiK XI
epiL XII
epiM XIII
epiN XIV
epiOP XV and XVI
epiQ XVII
epiR XVIII
epiS Injuries to the head, Injuries to the neck, Injuries to the thorax, Injuries to the abdomen, lower back, lumbar

spine and pelvis, Injuries to the shoulder and upper arm, Injuries to the elbow and forearm, Injuries to the
wrist and hand, Injuries to the hip and thigh, Injuries to the knee and lower leg, Injuries to the ankle and
foot

epiT Injuries involving multiple body regions, Injuries to unspecified part of trunk, limb or body region, Effects of
foreign body entering through natural orifice, Burns and Corrosions, Frostbite, Poisoning by drugs, medica-
ments and biological substances, Toxic effects of substances chiefly nonmedicinal as to source, Other and
unspecified effects of external causes, Certain early complications of trauma, Comlications of surgical and
medical care, not elsewhere classified, Sequelae of injuries, of poisoning and of other consequences of external
causes

epiU XXII
epiV Transport accidents
epiW Falls, Exposure to inanimate mechanical forces, Exposure to animate mechanical forces, Accidental drowning

and submersion, Other accidental threats to breathing, Exposure to electric current, radiation and extreme
ambient air temperature and pressure

epiX Exposure to smoke, fire and flames, Contact with heat and hot substances, Contact with venomous ani-
mals and plants, Exposure to forces of nature, Accidental poisoning by and exposure to noxious substances,
Overexertion, travel and privation, Accidental exposure to other and unspecified factors, Intentional self-
harm, Assault by drugs, medicaments and biological substances, Assault by corrosive substance, Assault by
pesticides, Assault by gases and vapours, Assault by other specified chemicals and noxious substances, Assault
by unspecified chemical or noxious substance, Assault by hanging, strangulation and suffocation, Assault by
drowning and submersion, Assault by handgun discharge, Assault by rifle, shotgun and larger firearm dis-
charge, Assault by other and unspecified firearm discharge, Assault by explosive material, Assault by smoke,
fire and flames, Assault by steam, hot vapours and hot objects, Assault by sharp object

epiY Assault by blunt object, Assault by pushing from high place, Assault by pushing or placing victim before
moving object, Assault by crashing of motor vehicle, Assault by bodily force, Sexual assault by bodily force,
Neglect and abandonment, Other maltreatment syndromes, Assault by other specified means, Assault by
unspecified means, Event of undetermined intent, Legal intervention and operations of war, Complications
of medical and surgical care, Sequelae of external causes of morbidity and mortality, Supplementary factors
related to causes of morbidity and mortality classified else

epiZ XXI

Table A1: Classification of morbidity characteristics

ICD10 codes beginning with U were dropped because there were no observations in the

6,164,114 used. Only a small number (3,170) were found of those beginning with P and

so these were combined with those beginning with O - owing to the clinical similarities.
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Chapter Blocks Title
I A00-B99 Certain infectious and parasitic diseases
II C00-D48 Neoplasms
III D50-D89 Diseases of the blood and blood-forming organs and certain disorders

involving the immune mechanism
IV E00-E90 Endocrine, nutritional and metabolic diseases
V F00-F99 Mental and behavioural disorders
VI G00-G99 Diseases of the nervous system
VII H00-H59 Diseases of the eye and adnexa
VIII H60-H95 Diseases of the ear and mastoid process
IX I00-I99 Diseases of the circulatory system
X J00-J99 Diseases of the respiratory system
XI K00-K93 Diseases of the digestive system
XII L00-L99 Diseases of the skin and subcutaneous tissue
XIII M00-M99 Diseases of the musculoskeletal system and connective tissue
XIV N00-N99 Diseases of the genitourinary system
XV O00-O99 Pregnancy, childbirth and the puerperium
XVI P00-P96 Certain conditions originating in the perinatal period
XVII Q00-Q99 Congenital malformations, deformations and chromosomal abnormali-

ties
XVIII R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not

elsewhere classified
XIX S00-T98 Injury, poisoning and certain other consequences of external causes
XX V01-Y98 External causes of morbidity and mortality
XXI Z00-Z99 Factors influencing health status and contact with health services
XXII U00-U99 Codes for special purposes

Table A2: ICD10 chapter codes
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Appendix B

Online only, not for print publication.

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 1.045 1.076 0.927 0.759 0.859 0.950
GB2 SQRT 1.038 1.095 0.969 0.753 0.789 0.809
GG 1.044 1.082 0.935 0.745 0.821 0.887
GAMMA 1.004 1.138 1.089 0.868 0.950 1.022
LOGNORM 1.032 1.103 0.970 0.754 0.814 0.866
WEIB 0.955 1.091 1.101 0.911 1.011 1.097
EXP 0.899 1.018 1.061 0.913 1.028 1.125
FMM LOG 1.030 1.058 0.995 0.844 0.927 0.984
FMM SQRT 1.024 1.074 1.013 0.842 0.892 0.898
HH 1.006 1.018 1.003 0.977 1.021 1.078
FP 1.000 0.999 1.007 0.990 1.084 1.209
CH 0.999 0.999 0.999 0.999 0.998 0.999
MM 1.043 1.011 0.929 0.806 0.920 1.013
RIF 0.836 0.751 0.800 0.860 1.078 1.223

NAÏVE 1.000 0.998 0.998 0.998 0.997 1.000

Table B1: Mean ratios of predicted to actual survival probabilities, sample size 5,000
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Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.016 0.048 0.081 0.104 0.161 0.232
GB2 SQRT 0.017 0.040 0.080 0.113 0.174 0.229
GG 0.017 0.044 0.080 0.108 0.156 0.206
GAMMA 0.025 0.039 0.135 0.153 0.245 0.342
LOGNORM 0.019 0.034 0.089 0.109 0.140 0.169
WEIB 0.037 0.042 0.113 0.156 0.255 0.371
EXP 0.028 0.060 0.121 0.137 0.204 0.295
FMM LOG 0.072 0.073 0.163 0.198 0.279 0.407
FMM SQRT 0.065 0.110 0.191 0.242 0.318 0.431
HH 0.032 0.051 0.094 0.144 0.231 0.254
FP 0.026 0.054 0.082 0.163 0.219 0.195
CH 0.030 0.050 0.103 0.140 0.220 0.312
MM 0.041 0.073 0.100 0.119 0.144 0.184
RIF 0.060 0.061 0.095 0.131 0.184 0.275

NAÏVE 0.033 0.060 0.135 0.171 0.245 0.317

Table B2: Range of ratios of predicted to actual survival probabilities, sample size 5,000

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.003 0.008 0.015 0.021 0.034 0.047
GB2 SQRT 0.003 0.007 0.015 0.021 0.031 0.041
GG 0.003 0.008 0.015 0.021 0.031 0.040
GAMMA 0.005 0.008 0.027 0.034 0.047 0.061
LOGNORM 0.003 0.007 0.016 0.021 0.030 0.039
WEIB 0.009 0.009 0.022 0.034 0.049 0.065
EXP 0.006 0.012 0.024 0.029 0.040 0.053
FMM LOG 0.016 0.016 0.029 0.042 0.071 0.095
FMM SQRT 0.018 0.020 0.035 0.036 0.056 0.089
HH 0.007 0.010 0.021 0.029 0.049 0.057
FP 0.005 0.011 0.017 0.035 0.045 0.045
CH 0.006 0.011 0.019 0.030 0.042 0.060
MM 0.006 0.012 0.019 0.024 0.034 0.045
RIF 0.012 0.014 0.022 0.028 0.040 0.053

NAÏVE 0.006 0.012 0.025 0.035 0.050 0.068

Table B3: Standard deviation of ratios of predicted to actual survival probabilities, sample
size 5,000

40



Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 1.045 1.077 0.928 0.759 0.859 0.950
GB2 SQRT 1.037 1.095 0.970 0.753 0.789 0.808
GG 1.043 1.083 0.936 0.745 0.820 0.885
GAMMA 1.004 1.138 1.092 0.871 0.954 1.026
LOGNORM 1.032 1.103 0.971 0.755 0.814 0.867
WEIB 0.953 1.088 1.102 0.914 1.015 1.101
EXP 0.900 1.019 1.063 0.916 1.031 1.128
FMM LOG 1.034 1.055 0.988 0.845 0.931 0.989
FMM SQRT 1.028 1.076 1.002 0.835 0.890 0.901
HH 1.006 1.018 1.001 0.978 1.020 1.083
FP 0.999 0.999 1.004 0.988 1.083 1.209
CH 0.999 0.999 0.999 1.000 0.997 1.002
MM 1.043 1.010 0.929 0.804 0.915 1.007
RIF 0.836 0.747 0.800 0.862 1.080 1.222

NAÏVE 1.000 0.999 0.999 1.000 0.997 1.003

Table B4: Mean ratios of predicted to actual survival probabilities, sample size 10,000

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.012 0.031 0.059 0.075 0.111 0.144
GB2 SQRT 0.010 0.028 0.058 0.070 0.093 0.126
GG 0.011 0.026 0.055 0.081 0.122 0.159
GAMMA 0.019 0.027 0.077 0.105 0.166 0.224
LOGNORM 0.011 0.029 0.062 0.075 0.107 0.135
WEIB 0.036 0.039 0.068 0.101 0.166 0.233
EXP 0.016 0.034 0.070 0.088 0.140 0.195
FMM LOG 0.054 0.050 0.126 0.149 0.265 0.363
FMM SQRT 0.073 0.096 0.112 0.135 0.213 0.321
HH 0.022 0.038 0.073 0.102 0.161 0.191
FP 0.020 0.036 0.060 0.125 0.145 0.144
CH 0.020 0.035 0.064 0.094 0.138 0.238
MM 0.019 0.052 0.076 0.074 0.100 0.136
RIF 0.043 0.062 0.104 0.103 0.158 0.225

NAÏVE 0.026 0.043 0.096 0.127 0.173 0.263

Table B5: Range of ratios of predicted to actual survival probabilities, sample size 10,000
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Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.002 0.006 0.011 0.014 0.022 0.030
GB2 SQRT 0.002 0.005 0.011 0.015 0.021 0.027
GG 0.002 0.005 0.010 0.014 0.022 0.029
GAMMA 0.004 0.006 0.017 0.023 0.033 0.044
LOGNORM 0.002 0.005 0.011 0.014 0.021 0.027
WEIB 0.006 0.007 0.014 0.023 0.035 0.047
EXP 0.004 0.008 0.016 0.020 0.028 0.038
FMM LOG 0.013 0.010 0.021 0.027 0.050 0.069
FMM SQRT 0.013 0.015 0.020 0.024 0.042 0.064
HH 0.005 0.007 0.015 0.022 0.035 0.042
FP 0.004 0.008 0.011 0.026 0.032 0.028
CH 0.004 0.008 0.012 0.021 0.032 0.046
MM 0.004 0.009 0.015 0.015 0.021 0.030
RIF 0.009 0.012 0.017 0.020 0.032 0.043

NAÏVE 0.004 0.009 0.017 0.027 0.039 0.053

Table B6: Standard deviation of ratios of predicted to actual survival probabilities, sample
size 10,000

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 1.045 1.078 0.928 0.758 0.857 0.945
GB2 SQRT 1.037 1.096 0.970 0.753 0.787 0.806
GG 1.043 1.084 0.937 0.744 0.817 0.879
GAMMA 1.004 1.139 1.092 0.871 0.954 1.025
LOGNORM 1.032 1.103 0.971 0.754 0.813 0.864
WEIB 0.951 1.086 1.101 0.914 1.015 1.102
EXP 0.900 1.020 1.063 0.915 1.031 1.128
FMM LOG 1.038 1.053 0.981 0.845 0.935 0.997
FMM SQRT 1.033 1.079 0.996 0.828 0.885 0.899
HH 1.004 1.017 0.998 0.984 1.011 1.072
FP 0.999 1.001 1.004 0.985 1.076 1.211
CH 1.000 1.000 0.999 0.999 0.994 0.995
MM 1.043 1.010 0.929 0.803 0.908 0.997
RIF 0.834 0.745 0.803 0.861 1.072 1.204

NAÏVE 1.001 1.000 0.999 0.999 0.993 0.995

Table B7: Mean ratios of predicted to actual survival probabilities, sample size 50,000
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Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.006 0.013 0.029 0.034 0.055 0.075
GB2 SQRT 0.006 0.011 0.030 0.037 0.052 0.064
GG 0.006 0.012 0.028 0.037 0.053 0.070
GAMMA 0.010 0.012 0.045 0.064 0.087 0.107
LOGNORM 0.005 0.011 0.028 0.038 0.053 0.065
WEIB 0.015 0.017 0.034 0.064 0.093 0.119
EXP 0.009 0.018 0.041 0.055 0.075 0.093
FMM LOG 0.024 0.019 0.082 0.099 0.114 0.150
FMM SQRT 0.008 0.016 0.034 0.059 0.101 0.136
HH 0.011 0.022 0.028 0.040 0.060 0.074
FP 0.011 0.021 0.026 0.053 0.075 0.063
CH 0.010 0.016 0.026 0.041 0.079 0.088
MM 0.011 0.024 0.038 0.036 0.044 0.069
RIF 0.019 0.025 0.038 0.049 0.080 0.112

NAÏVE 0.009 0.020 0.039 0.060 0.086 0.093

Table B8: Range of ratios of predicted to actual survival probabilities, sample size 50,000

Cost threshold (£k)

Method 500 1000 2500 5000 7500 10000

GB2 LOG 0.001 0.003 0.005 0.007 0.010 0.014
GB2 SQRT 0.001 0.003 0.006 0.007 0.010 0.013
GG 0.001 0.003 0.005 0.007 0.010 0.013
GAMMA 0.002 0.002 0.008 0.010 0.015 0.020
LOGNORM 0.001 0.002 0.005 0.007 0.010 0.013
WEIB 0.003 0.003 0.006 0.011 0.016 0.022
EXP 0.002 0.003 0.007 0.009 0.013 0.017
FMM LOG 0.002 0.004 0.009 0.013 0.019 0.025
FMM SQRT 0.001 0.003 0.007 0.010 0.016 0.022
HH 0.002 0.004 0.006 0.008 0.012 0.017
FP 0.002 0.005 0.005 0.012 0.014 0.011
CH 0.002 0.004 0.006 0.009 0.015 0.019
MM 0.002 0.004 0.007 0.007 0.010 0.013
RIF 0.004 0.005 0.009 0.010 0.017 0.022

NAÏVE 0.002 0.004 0.008 0.011 0.017 0.019

Table B9: Standard deviation of ratios of predicted to actual survival probabilities, sample
size 50,000
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Decile number

Method 1 2 3 4 5 6 7 8 9 10

GB2 LOG 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.012
GB2 SQRT 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.008
GG 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.011
GAMMA 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.007 0.017
LOGNORM 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.003 0.012
WEIB 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.009 0.017
EXP 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.006 0.014
FMM LOG 0.000 0.001 0.001 0.002 0.002 0.005 0.006 0.009 0.009 0.015
FMM SQRT 0.000 0.001 0.003 0.003 0.003 0.006 0.008 0.010 0.010 0.014
HH 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.004 0.014
FP 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.005 0.014
CH 0.004 0.003 0.003 0.003 0.002 0.002 0.003 0.004 0.006 0.014
MM 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.005 0.012
RIF 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.005 0.006 0.007

Table B10: Standard deviation of predicted probabilities of a cost exceeding £10,000,
sample size 5,000, by decile of linear index of covariates

Decile number

Method 1 2 3 4 5 6 7 8 9 10

GB2 LOG 0.004 0.004 0.004 0.005 0.006 0.007 0.008 0.011 0.016 0.051
GB2 SQRT 0.003 0.003 0.004 0.005 0.006 0.007 0.009 0.012 0.018 0.045
GG 0.004 0.004 0.005 0.006 0.007 0.007 0.008 0.010 0.015 0.045
GAMMA 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.013 0.036 0.096
LOGNORM 0.000 0.000 0.001 0.001 0.001 0.002 0.004 0.007 0.016 0.046
WEIB 0.000 0.000 0.000 0.001 0.001 0.005 0.010 0.019 0.043 0.096
EXP 0.000 0.000 0.001 0.001 0.002 0.004 0.007 0.014 0.030 0.081
FMM LOG 0.002 0.003 0.008 0.011 0.008 0.019 0.022 0.032 0.051 0.082
FMM SQRT 0.002 0.004 0.016 0.020 0.011 0.025 0.029 0.040 0.053 0.061
HH 0.002 0.002 0.003 0.003 0.005 0.005 0.008 0.011 0.022 0.068
FP 0.003 0.004 0.005 0.006 0.006 0.008 0.010 0.014 0.020 0.062
CH 0.021 0.013 0.022 0.016 0.012 0.013 0.018 0.022 0.030 0.063
MM 0.001 0.002 0.002 0.004 0.004 0.006 0.009 0.016 0.024 0.061
RIF 0.009 0.010 0.010 0.011 0.012 0.010 0.017 0.021 0.030 0.032

Table B11: Standard deviation of predicted probabilities of a cost exceeding £10,000,
sample size 5,000, by decile of linear index of covariates
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